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Abstract
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet,

perhaps confused by the large number of statistical models and fitting methods available,

many ecologists seem to believe this is best left to specialists. Here, we describe the

issues that need consideration when analysing spatial data and illustrate these using

simulation studies. Our comparative analysis involves using methods including

generalized least squares, spatial filters, wavelet revised models, conditional autoregres-

sive models and generalized additive mixed models to estimate regression coefficients

from synthetic but realistic data sets, including some which violate standard regression

assumptions. We assess the performance of each method using two measures and using

statistical error rates for model selection. Methods that performed well included

generalized least squares family of models and a Bayesian implementation of the

conditional auto-regressive model. Ordinary least squares also performed adequately in

the absence of model selection, but had poorly controlled Type I error rates and so did

not show the improvements in performance under model selection when using the

above methods. Removing large-scale spatial trends in the response led to poor

performance. These are empirical results; hence extrapolation of these findings to other

situations should be performed cautiously. Nevertheless, our simulation-based approach

provides much stronger evidence for comparative analysis than assessments based on

single or small numbers of data sets, and should be considered a necessary foundation

for statements of this type in future.
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I N TRODUCT ION

With the growing availability of remote sensing, global
positioning services and geographical information systems
many recent ecological questions are intrinsically spatial: for
example, what do spatial patterns of disease incidence tell us
about sources and vectors (Woodroffe et al. 2006; Carter
et al. 2007; Jones et al. 2008)? How does the spatial scale of
human activity impact biodiversity (Nogues-Bravo et al.
2008) or biological interactions (McMahon & Diez 2007)?
How does the spatial structure of species! distribution
patterns affect ecosystem services (Wiegand et al. 2007;
Vandermeer et al. 2008)? Can spatially explicit conservation

plans be developed (Grand et al. 2007; Pressey et al. 2007;
Kremen et al. 2008)? Are biodiversity patterns driven by
climate (Gaston 2000)? While many ecologists recognize
that there are special statistical issues that need consider-
ation, they often believe that spatial analysis is best left to
specialists. This is not necessarily true and may reflect a lack
of baseline knowledge about the relative performance of the
methods available.

A plethora of new spatial models are now available to
ecologists, but while discrepancies between the models and
their fitting methods have been noted (e.g. Dormann 2007),
it is essentially unknown how well these different methods
perform relative to each other, and consequently what are
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their strengths and weaknesses. For example, application of
several methods to a single data set can lead to regression
coefficients that actually differ in sign as well as in
magnitude and significance level for a given explanatory
variable (Beale et al. 2007; Diniz-Filho et al. 2007; Dormann
2007; Hawkins et al. 2007; Kühn 2007). Indeed, recent
applications of a range of spatial regression methods to an
extensive survey of real datasets concluded that the
difference in regression coefficients between spatial (allow-
ing for autocorrelation) and non-spatial (i.e. ordinary least
squares) regression analysis is essentially unpredictable (Bini
et al. 2009). It is perhaps this confusion that explains why a
recent review of the ecological literature found that 80% of
studies analysing spatial data did not use spatially explicit
statistical models at all, despite the potential for introducing
erroneous results into the ecological literature if important
features of the data are not properly accounted for in the
analysis (Dormann 2007). It follows that the important
synthesis required by ecologists is the identification of which
methods consistently perform better than others when
applied to real data sets.

Unfortunately, in real-world situations it is impossible to
know the true relationships between covariates and depen-
dent variables (Miao et al. 2009), so performance of different
modelling techniques can never be convincingly assessed
using real data sets. In other words, without controlling the
relationships between and properties of the response
variable, y, and associated explanatory, x, variables, the
relative ability of a suite of statistical tools to estimate these
relationships is impossible to quantify: one can never know
if the results are a true reflection of the input data or an
artefact of the analytical method. Here, we measure how
well each method performs in terms of bias (systematic
deviation from the true value) and precision (variation
around the true value) of parameter estimates by using a
series of scenarios in which the relationships are linear, the
explanatory variables exhibit spatial patterns and the errors
about the true relationships exhibit spatial auto-correlation.
These scenarios describe a range of realistic complexity that
may (and is certainly often assumed to) underlie ecological
data sets, allowing the performance of methods to be
assessed when model assumptions are violated as well as
when model assumptions are met. By using multiple
simulations from each scenario, we can compare the true
value with the distribution of parameter estimates: such an
approach has been standard in statistical literature since the
start of the 20th century (Morgan 1984) and has also been
used in similar ecological contexts (e.g. Beale et al. 2007;
Dormann et al. 2007; Carl & Kuhn 2008; Kissling & Carl
2008; Beguerı́a & Pueyo 2009). Previously, however, such
studies have been limited both in the lack of complexity of
the simulated datasets and by the limited range of tested
methods (Kissling & Carl 2008; Beguerı́a & Pueyo 2009) or

data sets (e.g. Dormann et al. 2007) or both (Beale et al.
2007; Carl & Kuhn 2008). Here, we describe simulations
and analyses that overcome these previous weaknesses and
so significantly advance our understanding of methods to
use for spatial analysis.

Highly detailed reference books have been written on
analytical methods for the many different types of spatial
data sets (Haining 1990, 2003; Cressie 1993; Fortin & Dale
2005) and we do not attempt an extensive review. Instead,
we provide a comparative overview and an evidence base to
assist with model and method selection. We limit ourselves
to linear regression, with spatially correlated Gaussian
errors, the most common spatial analysis that ecologists
are likely to encounter and a relatively straightforward
extension of the statistical model familiar to most. The
approach we take and many of the principles we cover,
however, are directly relevant to other spatial analysis
techniques.

Why is space special?

Statistical issues in spatial analysis of a response variable
focus on the almost ubiquitous phenomenon that two
measurements taken from geographically close locations are
often more similar than measurements from more widely
separated locations (Hurlbert 1984; Koenig & Knops 1998;
Koenig 1999). Ecological causes of this spatial autocorre-
lation may be both extrinsic and intrinsic and have been
extensively discussed (Legendre 1993; Koenig 1999; Lennon
2000; Lichstein et al. 2002). For example, intrinsic factors
(aggregation and dispersal) result in autocorrelation in
species! distributions even in theoretical neutral models
with no external environmental drivers of species distribu-
tion patterns. Similarly, autocorrelated extrinsic factors such
as soil type and climate conditions that influence the
response variable necessarily induce spatial autocorrelation
in the response variable (known as the Moran effect in
population ecology). Whilst these processes usually lead to
positive autocorrelations in ecological data, they may also
generate negative autocorrelations, when near observations
are more dissimilar than more distant ones. Negative
autocorrelation can also occur when the spatial scale of a
regular sampling design is around half the scale of the
ecological process of interest. As ecological examples of
negative autocorrelation are rare and the statistical issues
similar to those of positive autocorrelation (Velando &
Freire 2001; Karagatzides et al. 2003), all the scenarios we
consider have positive autocorrelation.

The potential for autocorrelation to vary independently in
both strength and scale is often overlooked (Cheal et al.
2007; Saether et al. 2007). Regarding scale, for example, in
data collected from within a single 10 km square, large-scale
autocorrelation would result in patterns that show patches
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of similar values over a kilometre or more, whilst data
showing fine-scale autocorrelation may show similarity only
over much smaller distances. In terms of strength, obser-
vations from patterns with weak autocorrelation will show
considerable variation even over short distances, whilst
patterns with strong spatial autocorrelation should lead to
data with only small differences between neighbouring
points. Whether autocorrelation is locally weak or strong, it
can decay with distance quickly or instead be relatively
persistent (Fig. 1a,b,d,e).

Whatever its nature, spatial autocorrelation does not in
itself cause problems for analysis in the event that (1) the
extrinsic causes of spatial pattern of the y variable are fully
accounted for by the spatial structure of the measured x
variables (i.e. all the systematic autocorrelation in the
dependent variable is a simple function of the autocorre-
lation in the explanatory variables), and (2) intrinsic causes
of spatial autocorrelation in the response (such as dispersal)

are absent (Cliff & Ord 1981). If both conditions are met,
the errors about the regression model are expected to have
no spatial autocorrelation and thus do not violate the
assumptions of standard regression methodologies. In
practice, the two conditions are almost never met simulta-
neously as, firstly, we can never be sure of including all the
relevant x variables and, secondly, dispersal is universal in
ecology. In this case, the errors are expected to be spatially
dependent, violating an important assumption of most basic
statistical methods. It is this spatial autocorrelation in the
errors that, if not explicitly and correctly modelled, has a
detrimental effect on statistical inference (Legendre 1993;
Lichstein et al. 2002; Zhang et al. 2005; Barry & Elith 2006;
Segurado et al. 2006; Beale et al. 2007; Dormann et al. 2007).
In short, ignoring spatial autocorrelation in the error term
runs the risk of violating the usual assumption of
independence: it produces a form of pseudoreplication
(Hurlbert 1984; Haining 1990; Cressie 1993; Legendre 1993;
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Figure 1 Examples of data sets showing spatial autocorrelation of both different scales and strengths and some basic exploratory data
analysis. In (a), (b), (d) and (e), point size indicates parameter values, negative values are open and positive values are filled. (a) Large scale,
strong autocorrelation; (b) large scale, weak autocorrelation; (d) small scale, strong autocorrelation; (e) small scale, weak autocorrelation.
Correlograms (c) and empirical semi-variograms (f) showing mean and standard errors from 100 simulated patterns with (blue) large scale,
strong autocorrelation, (green) large scale, weak autocorrelation, (black) small scale, weak autocorrelation and (red) small scale, strong
autocorrelation. The expected value of Moran!s I in the absence of autocorrelation is marked in grey. Note that correlograms for simulations
with the same scale of autocorrelation cross the expected line at the same distance, and strength of autocorrelation is shown by the height of
the curve.
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Fortin & Dale 2005). Unsurprisingly, spatial pseudoreplica-
tion increases the Type I statistical error rate (the probability
of rejecting the null hypothesis when it is in fact true) in just
the same way as do other forms of pseudoreplication: P-
values from non-spatial methods applied to spatially
autocorrelated data will tend to be artificially small and so
model selection algorithms will tend to accept too many
covariates into the model (Legendre 1993; Lennon 2000;
Dale & Fortin 2002, 2009; Barry & Elith 2006). This effect
is easily illustrated by simulation (Fig 2a), showing that Type
I errors from a non-spatial regression method (ordinary least
squares, OLS) increase dramatically with the degree of
autocorrelation in the errors, whilst those from a spatial
regression method which correctly models the autocorrela-
tion (generalized least squares, GLS) do not.

A related phenomenon is perhaps less well known: when
the correct covariates are included in the model, the
estimates of regression coefficients from methods which
incorrectly specify the correlation in the errors are less
precise (Cressie 1993; Fortin & Dale 2005; Beale et al. 2007).
If the true regression coefficients are close to zero, then a
decrease in estimation precision will lead to an increased
chance of obtaining an estimate with a larger absolute value
(Beale et al. 2007). Comparisons of the distributions of
parameter estimates from application of Ordinary Least
Squares and Generalized Least Squares to simulated data
sets show this clearly, with strengthening autocorrelation
resulting in an increasing tendency for Ordinary Least
Squares estimates to be larger in magnitude than General-
ized Least Squares estimates (Fig. 2b,c,d). When spatial
autocorrelation in the errors is absent, the two methods are

broadly in agreement, but as either strength or scale of
spatial autocorrelation increases, Ordinary Least Squares
estimates become much more widely spread than General-
ized Least Squares estimates. Whilst there is a mathematical
proof for the optimal performance of Generalized Least
Squares estimation when the correlation matrix of the errors
is known (Aitken 1935), its performance in practice depends
on the quality of estimation of the correlation matrix. The
mathematical intractability of this problem has led to it
being investigated by simulation (Alpargu & Dutilleul 2003;
Ayinde 2007). This reduction in precision is probably
responsible for the evidence in the ecology literature
(Dormann 2007) that parameter estimates from spatially
explicit modelling methods are usually of smaller magnitude
than those from non-spatially explicit models applied to the
same data sets. This also explains the unpredictability of the
difference between regression coefficients from spatial and
non-spatial methods (Bini et al. 2009); by using the very low
precision estimate from ordinary least squares as the gold-
standard against which other estimated regressions coeffi-
cients are judged, this study necessarily generates unpre-
dictable differences.

EVALUAT ION AND SYNTHES I S OF SPAT IA L
REGRESS ION METHODS

Data set scenarios

Simulation studies of spatial methods have been undertaken
before in ecology (e.g. Beale et al. 2007; Dormann et al.
2007; Kissling & Carl 2008), but have been both insuffi-
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Figure 2 Two important consequences of spatial autocorrelation for statistical modelling. (a) Type I statistical error rates for the correlation
between 1000 simulations of two independent but spatially autocorrelated variables estimated using Ordinary Least Squares (black) and
Generalized Least Squares (grey) methods with increasing scale of autocorrelation (0 < c. 2 grid squares < c. 5 grid squares). Note that Type I
error rates for models fitted using Ordinary Least Squares increase with scale of autocorrelation and are far greater than the nominal 0.05.
Comparison of parameter estimates for the relationship between 1000 simulations of two independent but spatially autocorrelated variables
with increasing scale of autocorrelation [same datasets as in (a)] is shown in (b–d). The Ordinary Least Squares and Generalized Least Squares
parameter estimates are nearly identical in the absence of autocorrelation (b) but estimates from Ordinary Least Squares become significantly
less precise as autocorrelation increases (c, d) whilst the distribution of estimates from models fitted with Generalized Least Squares are less
strongly affected. Consequently, parameter estimates from model fitted with Generalized Least Squares are likely to be smaller in absolute
magnitude than those from Ordinary Least Squares methods. The simulated errors were normally distributed and decayed exponentially with
distance, whilst the Generalized Least Squares method used a spherical model for residual spatial autocorrelation.
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ciently broad and too simplistic to reflect the complexities of
real ecological data (Diniz-Filho et al. 2007). Here, we
simulate spatial data sets covering eight scenarios that reflect
much more the complexity of real ecological data sets. Full
details of the implementation and R code for replicating the
analysis are provided as Supporting Information, here (to
maintain readability) we present only the outline and
rationale of the simulation process. The basis for each
scenario was similar: we simulated 1000 data sets of 400
observations on a 20 · 20 regular lattice. To construct each
dependent variable, we simulated values for the covariates
using a Gaussian random field with exponential spatial
covariance model. All scenarios incorporated pairs of
autocorrelated covariates that are cross-correlated with each
other (highly cross-correlated spatial variables cause impre-
cise parameter estimates in spatial regression: see Supporting
Information). We then calculated the expected value for the
response as a linear combination (using our chosen values
for the regression coefficients) of the covariates, then
simulated and added the (spatial) error term as another
(correlated) Gaussian surface. Just as with real ecological
data sets, all our scenarios include variables which vary in
both the strength and the scale of autocorrelation. As strong
or weak autocorrelation are relative terms, here we defined
weakly autocorrelated variables as having a nugget effect
that accounts for approximately half the total variance in the
variable, and strongly autocorrelated patterns as having a
negligible nugget. Similarly, large- and small-scale autocor-
relation is relative, so here we define large-scale autocorre-
lated patterns as having an expected range approximately
half that of the simulated grid (i.e. 10 squares), whilst small
scale had a range of around one-third of this distance.

Within this basic framework, scenarios 1–4 (referred to
below as "simpler scenarios! ) involve covariates and correla-
tion matrices for the errors which are homogeneous, meaning
that the rules under which the data are generated are constant
across space and do not violate the homogeneity assumption
made by many spatial regression methods. Scenarios 5–8
(described below as "more complex!) all involve adding an
element of spatial inhomogeneity (i.e. non-stationarity) to the
basic situation described above and therefore at least
potentially violate the assumptions of all the regression
methods we assessed (Table 1). We note that non-stationarity
is used to describe many different forms of inhomogeneity,
and here we incorporated non-stationarity in several different
ways: firstly, we included spatial variation in the true
regression coefficient between the covariates and the depen-
dent variable (smoothly transitioning from no relationship –
i.e. regression coefficient = 0 – along one edge of the
simulated surface, to a regression coefficient of 0.5 along the
opposite edge). Secondly, we included covariates with non-
stationary autocorrelation structure, implemented such that
one edge of the simulated surface had a large-scale autocor-

relation structure gradually changing to another with small-
scale autocorrelation structure (as commonly seen in real
environmental variables such as altitude when a study area
includes a plain and more topographically varied area).
Thirdly, we incorporated a spatial trend in the mean: another
form of non-stationarity. And finally, we incorporated similar
types of non-stationarity in the mean and ⁄or correlation
structure of the simulated errors.

We simulated datasets with exponential autocorrelation
structures because our method for generating cross-corre-
lated spatial patterns necessarily generates variables with this
structure, although alternative structures are available if
cross-correlation is not required. In the real world,
environmental variables exhibit a wide range of spatial
autocorrelation structures.

For each scenario, we estimated the regression coeffi-
cients using all the methods listed below (Table 2). We then
summarized the coefficient estimates (excluding the inter-
cept) for each statistical method, assessing performance in
terms of precision and bias. Contrary to standard definitions
of precision which measure spread around the mean of the
parameter estimates, here we measure mean absolute
difference from the correct parameter estimate; a more
meaningful index for our purposes. For methods where
selection of covariates is possible, we also record the Type I
and Type II statistical error rates.

For each method of estimation and each scenario,
performance statistics were evaluated in the form of the
median estimate of absolute bias and root mean square error
(RMSE, the square root of the mean squared difference
between the estimates and the associated true values
underlying the simulated data). These were then combined
across scenarios after rescaling by the corresponding values
for Generalized Least Squares-Tb (Table 2).

Model fitting and parameter estimation

A wide range of statistical methods have been used in the
literature for fitting regression models to spatial data sets
(Table 2, where full details and references can be found for
each method), and a number of recent reviews have each
highlighted some methods whilst explicitly avoiding recom-
mendations (Guisan & Thuiller 2005; Zhang et al. 2005;
Barry & Elith 2006; Elith et al. 2006; Kent et al. 2006;
Dormann et al. 2007; Miller et al. 2007; Bini et al. 2009).
Each review concludes that different methods applied to
identical data sets can result in different sets of covariates
being selected as important, due to the many differences
underlying the methods (e.g. in modelled correlation
structures and computational implementation).

Methods for fitting linear regression models can be
classified according to the way spatial effects are included
(Dormann et al. 2007). Three main categories exist: (i)
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methods that model spatial effects within an error term (e.g.
Generalized Least Squares, implemented here using a
Spherical function for the correlation matrix of the errors
(GLS-S), a structure that is deliberately different to the
exponential structure of the simulated data and Simulta-
neous Autoregressive Models (SAR), implemented here as
an error scheme, which is Generalized Least Squares with a
1-parameter model for the correlation matrix of the errors),
(ii) methods incorporating spatial effects as covariates (e.g.
Spatial Filters and Generalized Additive Models) and (iii)
methods that pre-whiten the data, effectively replacing the
response data and covariates with the alternative values that
are intended to give independent values for analysis (e.g.
Wavelet Revised Models). From these three categories, we
selected a total of 11 different methods (with 10 additional
variants, including Generalized Additive Mixed Models
which allows for a spatial term in both the covariate and

error terms), covering the range used in the ecological and
statistical literature (Table 2).

Where relevant, we specified a spherical covariance
structure for the errors during parameter estimation rather
than the correct exponential structure because in real-world
problems the true error structure is unknown and is unlikely
to exactly match the specified function. Consequently, it is
important to know how these methods perform when the
error structure is not modelled exactly to assess likely
performance in practical situations. Although several tech-
niques have been used for selecting spatial filters (Bini et al.
2009), only one method – the selection of filters with a
significant correlation with the response variable – has been
justified statistically (Bellier et al. 2007) and consequently we
use this implementation. We also include two generalized
least square models we call GLS-True that had the
correct empirical spatial error structure. These models are

Table 1 Scenarios for assessing performance of statistical methods applied to spatial data. In all scenarios, the covariates and error term have
an exponential structure underlying any added non-stationarity. R code provided in the Supporting Information provides a complete
description of all scenarios, Figs S4–S10 identify the correlated variables and the expected value of each parameter

Scenario Designed to test Dependent variable error Covariates

1 The performance of models when
assumptions are met, but with
correlated x variables which also
have various strengths and scales
of autocorrelation

Strong (all variance because of
spatial pattern), large-scale
(c. 10 grid squares)
autocorrelation

Six x variables having varying scales
and strengths of autocorrelation,
with a subset correlated (expected
Pearson!s correlation = 0.6) with
each other. Four have non-zero
regression coefficients in the
simulation of the y-variable

2 As (1) Strong, small-scale (c. 2
grid squares)
autocorrelation

As (1)

3 As (1) Weak (50% of variance because
of spatial structure), large-scale
autocorrelation

As (1)

4 As (1) Weak, small-scale autocorrelation As (1)
5 The performance of methods

when x variables have various
kinds of non-stationarity

Strong, large-scale autocorrelation Three x variables, one of which also
has non-stationary autocorrelation
structure. Two have non-stationary
correlations with each other. The
third x variable has intermediate
scale autocorrelation (c. 5 grid
squares) and a strong (i.e. adding
equal variance to the pattern)
linear spatial trend

6 As (5) Strong, small-scale autocorrelation As (5)
7 The performance of methods

when the errors in the y variable
are non-stationary in scale of
autocorrelation

Non-stationary: varying large to
small scale autocorrelation across
domain

As (5) but all variables are
uncorrelated

8 The performance of methods
when the errors in the dependent
variable have a trend

Non-stationary: strong large-scale
autocorrelation plus strong
(i.e. adding equal variance to
pattern) trend

As (7)
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Table 2 Spatial analysis tools applied to each of the 1000 simulations of eight scenarios

Method Description Classification

Ordinary Least
Squares (OLS)

Most basic regression analysis, regarding errors about the
fitted line as being independent and with equal variance

Non-spatial

OLS with model
selection (OLS MS)

As OLS with stepwise backward elimination of non-
significant variables using F-tests and 5% significance

Non-spatial

Subsampling (SUB)
(Hawkins et al. 2007)

Data set repeatedly resampled at a scale where no
autocorrelation is detected, OLS model fitted to data
subsets and mean parameter estimates from 500
resamples treated as estimates

Non-spatial

Spatial Filters
(FIL)(Bellier et al. 2007)

A selection of eigenvectors (those significantly correlated
with the dependent variable) from a principal coordinates
analysis of a matrix describing whether or not locations
are neighbours are fitted as nuisance variables in an OLS
framework

Space in covariates

FIL with model
selection (FIL MS)

As FIL, with stepwise backward elimination of non-
significant covariates (but maintaining all original
eigenvectors) using F-tests and 5% significance.

Space in covariates

Generalized Additive
Models with model
selection (Generalized
Additive Models MS)

As Generalized Additive Models but stepwise backwards
elimination of non-significant covariates using v2 tests
and 5% significance (degrees of freedom in thin plate
spline fixed as that identified before model selection)

Space in covariates

Simple
Autoregressive (AR)
(Augustin et al. 1996;
Betts et al. 2009)

An additional covariate is generated consisting of an
inverse distance weighted mean of the dependent
variable within the distance over which spatial
autocorrelation is detected. Ordinary Least Squares is
then used to fit the model

Space in covariates

AR with model
selection (AR MS)

As AR but stepwise backwards elimination of non-
significant covariates using F-tests and 5% significance

Space in covariates

Wavelet Revised
Models (WRM) (Carl
& Kuhn 2008)

Wavelet transforms are applied to the covariate matrix and
the transformed data analysed using Ordinary Least Squares

Spatial correlation removed
from response variable, with
corresponding redefinition
of the covariates

Simultaneous
Autoregressive (SAR)
(Lichstein et al. 2002;
Austin 2007; Kissling
& Carl 2008)

Spatial error term is predefined from a neighbourhood
matrix and autocorrelation in the dependent variable
estimated, then parameters are estimated using a GLS
framework. Here, we use simultaneous autoregressive
error models with all first order neighbours with equal
weighting of all neighbours (Kissling & Carl 2008)

Space in errors

SAR with model
selection (SAR MS)

As SAR but stepwise backwards elimination of non-
significant covariates using likelihood ratio tests and 5%
significance

Space in errors

Generalized Additive
Mixed Models (GAMM)
(e.g. Wood 2006)

An extension of GAM to include autocorrelation
in the residuals.

Space in errors and
covariates.

Generalized Additive
Mixed Models with
model selection
(GAMM MS)

As GAMM but stepwise backwards elimination of non-
significant covariates using likelihood ratio tests and 5%
significance

Space in errors and
covariates

Generalized Least
Squares (GLS-S)
(Pinheiro & Bates
2000)

A standard generalized least squares analysis, fitting a spherical
model of the semi-variogram. Model fitting with REML

Space in errors

GLS with model
selection (GLS-S MS)

As GLS but model fitting with ML and stepwise backwards
elimination of non-significant covariates using likelihood ratio
tests and 5% significance

Space in errors
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impossible in real-world analysis but provide an objective
best-case gold-standard to measure other parameter esti-
mates against in addition to the true parameter estimates and
are therefore repeatable comparisons as further spatial
regression methods are developed.

All these methods, and the data simulation, have been
implemented using the free software packages R (R
development core team 2006) and, for the conditional
autoregressive model, WinBUGS (Spiegelhalter et al. 2000).
To facilitate the use of our scenarios and provide a template
for ecologists interested in undertaking their own spatial
analysis, all the code to generate the simulations and figures
presented here is provided as Supporting Information.

The distinctions between the various regression models
are extremely important in terms of interpretation of the
results, as the expected patterns of residual autocorrelation
vary between the three categories. Contrary to assertions by
some authors (Zhang et al. 2005; Barry & Elith 2006;
Segurado et al. 2006; Dormann et al. 2007; Hawkins et al.
2007), the residuals of a correctly fitted spatial model may
not necessarily lack autocorrelation. Take the case of two
spatially autocorrelated variables (y and one x) that in truth
are independent of each other (Fig. 3). In this simple
example, all methods should, on average, correctly estimate
the slope to be zero. However, models that ignore spatial
effects will clearly have autocorrelation in the residuals,
violating the model assumptions and resulting in lower
precision and inflated Type I error rates. By contrast, those
models that assign spatial effects to an error term will also
retain autocorrelation in the residuals because the error term
forms part of the residual variation (i.e. variation that

remains after the covariate effects – in this case expected to
be zero – are accounted for; residuals and errors are
synonyms in this usage) but the important difference is that
these models are tolerant of such autocorrelation and should
provide precise estimates and correct error rates. When
fitted correctly, the third class of models with spatial
processes incorporated in the fixed effects should show little
residual autocorrelation, even when (as in this simple
example) the spatial structure in the dependent variable is
entirely unrelated to the covariate, because such structure
should be "soaked up! by the additional covariates.

SPAT IA L ANALYS I S METHOD PER FORMANCE

The performance of the different methods is summarized in
Table 3 and all results are presented graphically in Figs S4–
S11, with an example (Scenario 1) illustrated in Fig. 4. In
fact, the best performing methods in any one scenario also
tended to be the best performing methods in other
scenarios.

Focussing first on the four simple scenarios (Figs S4–S7,
Fig. 4), in the absence of model selection, all the methods
with autocorrelation incorporated in the error structure
perform approximately equally well in terms of absolute bias
and root mean squared error. Methods incorporating spatial
structure within the covariates were generally much poorer,
with the exception of the Generalized Additive Models
methods which were only marginally poorer. With the
exception of Generalized Additive Models and Wavelet
Revised Models, methods that did not have space in the
errors had the greatest difficulty estimating parameters for

Table 2 continued

Method Description Classification

Bayesian Conditional
Autoregressive (BCA)
(Besag et al. 1991)

A Bayesian intrinsic conditional autoregressive (CAR) model using all
first order neighbours with equal weighting and analysed via MCMC
using the WinBUGS software (Lunn et al. 2000) with 10000 iterations
for each analysis

Space in errors

BCA with model
selection (BCA MS)

As above but using reversible jump variable selection (Lunn et al. 2006),
selecting the model with highest posterior probability

Space in errors

True GLS (GLS T) As GLS but spatial covariance defined and fixed a priori from the
exponential semi-variogram of the actual (known) error structure.
For scenarios 1–6, this reflects the true structure of the simulations
in a way that is not possible in real data

Space in errors

True GLS with model
selection (GLS T MS)

As true GLS but model fitting with ML and stepwise backwards
elimination of non-significant covariates using likelihood ratio tests
and 5% significance

Space in errors

True GLS b (GLS Tb) As GLS T but with only the correct covariates included within the initial
model

Space in errors

True GLS b with
model selection
(GLS Tb MS)

As GLS T MS but with only the correct covariates included within the
initial model

Space in errors
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cross-correlated covariates. Subsampling to remove auto-
correlation (SUB) was consistently the worst method.
Ordinary Least Squares performed poorly in the presence
of strong, large-scale autocorrelation, but before model
selection was otherwise comparable with the other unbiased
methods. Applying model selection to the well-performing
methods resulted in a consistent and marked improvement,
but model selection with other methods (including Ordinary
Least Squares) resulted in less consistent improvement in
their performance and sometimes in no improvement
whatsoever. Regarding statistical errors, all methods showed
low Type II error rates (failure to identify as significant the
covariates whose regression coefficients were in truth not
zero). Ordinary Least Squares and Simple Autoregressive
showed particularly high Type I error rates (identifying as
significant covariates whose regression coefficients were in
truth zero). Type I error rates were generally above the
nominal 5% rate, but lower for methods with autocorrela-
tion in the error structure: Simultaneous Autoregressive
Models performed well for three of the four scenarios,
whereas Generalized Least Squares-S performed relatively
poorly for three of the four scenarios. For Bayesian

Conditional Autoregressive, the error rate was consistently
under half of the (otherwise) nominal 5% level. Generalized
Least Squares-T, which had almost exactly the correct Type
I error rate for three scenarios, had double the nominal
value for the third scenario.

The first two of the more complex scenarios where non-
stationarity was introduced in the covariates (Figs S8 and
S9), and hence indirectly into the residuals, generally
produced a marked decline of the performance of poorer
methods (from the simple scenarios) against that of the
better methods. Good methods were again those with space
in the error terms and Generalized Additive Models. Model
selection, whilst having little effect on absolute bias,
improved the precision of estimates from the good methods
(i.e. those with space in the errors and Generalized Additive
Models) but not those of the poorer methods (the remaining
methods). In particular, spatial filters and autoregressive
(AR) methods were highly biased and subsampling again
resulted in imprecise estimates. Increased scale of autocor-
relation in the errors in the y variable again resulted in
Ordinary Least Squares performing more poorly. Ordinary
Least Squares, Simple Autoregressive and Spatial Filters
methods had Type I error rates of 100%, Generalized Least
Squares-S had the highest rate of the better performing
methods, while those of Bayesian Conditional Autoregres-
sive and Simultaneous Autoregressive Models were close to
target. Type II error rates were generally lower apart from
Ordinary Least Squares, Spatial Filters and Simple Autore-
gressive Models.

The last two scenarios (Figs S10 and S11), with non-
stationarity introduced in the error term (and therefore the
most challenging), generated a comprehensive failure for
most methods: only Generalized Least Squares when
provided with the correct model parameters for the
autocorrelation of the errors and the correct set of
covariates beforehand (Generalized Least Squares-Tb)
performed very well. This is unsurprising given that it was
provided with information that would be unknown in most
circumstances. The distinction between the good and bad
methods was still evident even in these extreme scenarios
(Scenario 8), but only if autocorrelation was not both strong
and large scale (Scenario 7). The Generalized Additive
Mixed Models methods proved impossible to fit irrespective
of autocorrelation. Simple Generalized Additive Models
performed best of all, particularly with model selection. In
Scenario 7, Ordinary Least Squares, Simple Autoregressive
and Spatial Filters always found covariates significant when
there was no true relationship. Other methods also had
inflated Type I error rates, but were broadly comparable.
Simple Autoregressive and Spatial Filters had high Type II
error rates. In Scenario 8, Generalized Additive Mixed
Models methods again failed to fit the simulated data, whilst
Type I errors were uniformly too high (except for
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Figure 3 Autocorrelation of the residuals from two types of spatial
analysis. Generalized Least Squares methods (red) have autocor-
relation modelled in a spatial error term (here as an exponential
structure) so errors are correctly autocorrelated, whilst wavelet
revised methods (green) have autocorrelation removed before
analysis. The plot shows mean and standard deviations from 100
simulations of Moran!s I for residuals. The mean and standard
error of the autocorrelation structure of the dependent variables is
plotted in blue: note the similar autocorrelation structure of the
residuals from Generalized Least Squares models and the
dependent variable, but that the residuals of the Wavelet Revised
Models are effectively zero after the first lag. Both models are
correctly fitted, despite the Generalized Least Squares fit retaining
residual autocorrelation.
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Generalized Least SquaresT, which was too low). As all
methods identified the vast majority of covariates as
significant irrespective of true effect, Type II error rates
were low, and some (Generalized Least Squares-T, Gener-
alized Least Squares-S, Simultaneous Autoregressive Models

and Spatial Filters) were effectively zero. Ordinary Least
Squares, Simple Autoregressive, Spatial Filters and Simulta-
neous Autoregressive Models had high Type I error rates,
that for Generalized Least Squares-S was nearly as bad and
only Bayesian Conditional Autoregressive models and

Table 3 Overall performance of spatial analysis methods

Method Overall performance Comments

OLS Moderate precision and bias, but imprecise with strong
large-scale AC

OLS MS Highly biased, intermediate to poor Type I and poor
Type II error rate

OLSGLS Highly biased, intermediate to poor Type I and poor Type
II error rate

c. 10% of simulations
failed to converge

SUB Extremely low precision
FIL Highly (downward) biased Moderately computer

intensive
Generalized Additive
Models MS

Fairly good overall performance. Intermediate Type I error
rate throughout, poor Type II error rate

Convergence issues for
only one model

AR Highly (downward) biased
AR MS Highly (downward) biased, Type I error rates were good for

scenarios 1–4, poor for 5–8. Type II error rates were
intermediate to poor

SAR Generally good overall performance
Generalized Additive
ModelsGeneralized
Additive Mixed
Models MS

Generally good overall performance. Type I error rates were
good to intermediate, Type II error rates were good
throughout

Model convergence was
never achieved for
scenarios 7 and 8 and
frequently failed in other
scenarios. Extremely
computationally intensive

GLS-S Generally good overall performance Convergence issues for
several simulations in
scenarios 1, 5, 6, 7 and
8. Computationally intensive

GLS-S MS Generally good overall performance. Intermediate Type I
error rate throughout, poor Type II error rate

Convergence issues for
several simulations in
scenarios 1, 5, 6, 7 and
8. Very computationally
intensive

BCA Good overall performance Moderately computationally
intensive. Improvements
would be made by manual
checking and tuning of
MCMC chains

BCA MS Best overall performance Moderately computationally
intensive. Improvements
would be made by manual
checking and tuning of MCMC
chains

GLS T Good overall performance Not possible with real data
GLS T MS Very good overall performance Not possible with real data
GLS Tb Excellent overall performance Not possible with real data, but

demonstrates the value of a priori
knowledge

GLS Tb MS Excellent overall performance Not possible with real data
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Generalized Additive Models were better, but still poor.
High Type II errors were encountered with both Ordinary
Least Squares and Simple Autoregressive, with BCA and
Generalized Additive Models intermediate.

Considering the performance of the models within
scenarios, and also in combination across all scenarios
(Fig. 5), the following results can be observed.

(1) Differentials in method performance in scenarios
where model assumptions were not violated (the
"simpler scenarios!) can be seen to have been exagger-
ated in the more complex scenarios. Poorly performing
methods in the simpler scenarios performed much
worse in the complex scenarios.

(2) Applying model selection using methods with low bias
generally resulted in improved precision and lower bias
(cf. Whittingham et al. 2006). In contrast, applying
model selection to Ordinary Least Squares models
resulted in less substantial change in model perfor-
mance – this is notably the case in Scenarios 5 and 6.
We note also that the three-stage process of initially
using Ordinary Least Squares methods, applying model
selection and then using a Generalized Least Squares-S
method on the significant variables did not reliably
improve on the performance of the Ordinary Least
Squares methods in the more complex scenarios.

(3) Methods that modelled space in the residuals always
had lower Type I error rates than Ordinary Least
Squares. The "true Generalized Least Squares models! –
that is, models fitted by Generalized Least Squares
where the autocorrelation structure is set to the actual
structure used in the simulations rather than being
estimated from the data – have Type I error rates close
to 5% for four of the first six scenarios. In these ideal
case methods such as Generalized Least Squares where
correlation structures can be fixed are consistently the
most accurate, but clearly this can never be applied in
real situations and the increased Type I error rate
associated with incorrect specification of the error
structure is evident from our simulations.

(4) As described by others (e.g. Burnham & Anderson
2003), including only the correct covariates consistently
resulted in better parameter estimates for the remaining
parameters: it is not enough to rely on the data to give
an answer if a priori knowledge of likely factors is
available.

(5) With the exception of scenario 8, spatial filters and
simple autoregressive models were generally poor.

In summary, there appear to be a suite of methods giving
comparable absolute bias and RMSE performance measures
in the absence of model selection for the first six scenarios,
including Generalized Least Squares-S, BCA, Simultaneous
Autoregressive Models Generalized Additive Mixed Models
and Generalized Additive Models, with Ordinary Least
Squares performing rather less well. Relative to these
performance measures, performance of all these methods
was generally improved by model selection, the gains made
by Ordinary Least Squares being least marked due to high
Type I error rates. Generalized Additive Models and
Generalized Least Squares-S had the next highest Type I
error rates, those of Simultaneous Autoregressive Models
and (where it convereged) Generalized Additive Mixed
Models were on average close to 5%, whilst that of BCA,
which had the lowest values for comparable absolute bias
and RMSE after model selection, lay between 1 and 2%.

Data partitioning and detrending

One potential problem with spatial analysis is that model
fitting can involve unreasonably large computation times.
The main reason for this is that for some methods, the
computation time depends on the number of possible
pairwise interactions between points. For such methods,
one way of dealing with the combinatorial problem is to
split the data and analyse the subsets (Davies et al. 2007;
Gaston et al. 2007). We consider two ways of splitting a data
set: (1) random partition (randomly allocating each square to
one of two equal size groups); and (2) simple blocking via
two contiguous blocks. We can then fit spatial models and

Figure 4 An example showing the results of models (described in Table 2) fitted to 1000 simulations of Scenario 1 (described in Table 1).
Plots (a–f) illustrate boxplots of the 1000 parameter estimates for the 1000 realizations of Scenario 1 for each of the different modelling
methods with the true parameter value for each covariate indicated by the vertical line [true value = 0 for (b and f), 0.5 for (a, c, d and e)].
Panels (b–f) are the parameter estimates for the six covariates with varying scales and strength of autocorrelation and correlations among each
other. All covariates are autocorrelated, cross-correlations exist between two pairs of covariates (a) with (b) and (d) with (e). See main text and
Supporting Information for further details. Type I and Type II error rates are illustrated in (g) and (h) respectively (NB there were essentially
no Type II errors in this scenario, hence this figure appears empty). The average root mean squared error (i.e. difference between the
parameter estimate and the true value) of all six parameter values in each of the 1000 realizations of the scenario (i) and the overall bias (i.e.
systematic error from the true parameter value) (j) are also illustrated (note log scale). In each plot, non-spatial models are pale grey, spatial
models with spatial effects modelled as covariates are intermediate shade and spatial models with spatial effects modelled in the errors are
dark grey. Note that precision and bias are consistently low for spatial models with space in the errors and for these models model selection
results in more accurate estimates. Abbreviations identify the modelling method and are explained in Table 2. A complete set of figures for
the remaining seven scenarios are provided as Supporting Information.
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compare bias and precision for the two partition methods.
This shows that method (2) considerably reduces compu-
tation time (Fig. S12) at no cost to the precision of
parameter estimation (Fig. S13). In contrast, method (1)
results in far less precise parameter estimates because the
number of cells in each group with very close neighbours in
the same group (important for correct estimation of the
covariance matrix) is much reduced in this case.

It is a common recommendation that any linear spatial
trends identified in the dependent variable are removed
before model fitting (Koenig 1999; Curriero et al. 2002). In
fact, this is automated in some model fitting software
(Bellier et al. 2007). To test the effects of this approach, we
can remove linear trends in the dependent variable and again
examine bias and precision. The result of detrending in this
manner can be further compared with the effect of
including x and y coordinates as additional covariates. We
found that detrending results in significant bias towards
parameter estimates of smaller magnitude (Fig. 6a) as it
removes meaningful variation when the covariates also
show linear trends. No such effect was observed when
coordinates were included as additional covariates (Fig. 6b).

D I SCUSS ION

The central theme to be drawn from the results of our
analysis comparing the various modelling methods is clear:
some methods consistently outperform others. This rein-
forces the notion that ignoring spatial autocorrelation when
analysing spatial data sets can give misleading results: in each
scenario, the difference in precision between our best and
worst performing methods is considerable. This overall
result is completely in agreement with previous, less wide-
ranging studies (e.g. Dormann et al. 2007; Carl & Kuhn
2008; Beguerı́a & Pueyo 2009). Methods with space in the
errors (Generalized Least Squares-S, Simultaneous Autore-
gressive Models, Generalized Additive Mixed Models,
Bayesian Conditional Autoregressive) generally performed
similarly and often considerably better than those with space
in the covariates (Simple Autoregressive, Wavelet Revised
Models, Spatial Filters) which are in turn generally better
than non-spatial methods (particularly Subsampling). Intro-
ducing model selection improves most methods but still
leaves the poorer methods lagging behind. For hypothesis
testing, the statistical error rates are most important. In
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Figure 5 Relative precision (a), Relative bias
(b), Type I statistical errors (c) and Type II
statistical errors (d) across all eight simula-
tion scenarios described in Table 1. In
drawing this figure, the median values of
absolute bias and RMSE for each method
have been divided by the corresponding
values for Generalized Least Squares-Tb
before pooling across scenarios (hence the
values are relative precision and bias, rather
than absolute). This process ensured an even
contribution from each scenario after stan-
dardization relative to a fully efficient
method. Error plots show median and
IQR. Asterisks indicate that Generalized
Additive Mixed Models models never con-
verged in Scenarios 7 and 8 (where other
methods performed worst) so may be lower
than expected.
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general, all methods suffered from inflated Type I error
rates in some scenarios, apart from Bayesian Conditional
Autoregressive, which was consistently below the nominal
5% rate set for the other tests. The type I errors for
Simultaneous Autoregressive Models, Generalized Least
Squares-S, Generalized Additive Mixed Models and Gener-
alized Additive Models were consistently better than those
for Ordinary Least Squares, Spatial Filters and Simple
Autoregressive. Note that the bias towards smaller para-
meter estimates in Spatial Filters and Simple Autoregressive
methods is distinct from the observation that on a single
data set spatial regression methods often result in smaller
estimates than non-spatial regression methods (Dormann
2007). The latter is explained by the increased precision of
spatial regression methods (Beale et al. 2007), the former is
probably explained by both spatial filters and a locally
smoothed dependent variable resulting in overfitting of the
spatial autocorrelation, leaving relatively little meaningful
variation to be explained by the true covariates. It is notable
that this consistency of model differences suggests that,
contrary to a recent suggestion otherwise (Bini et al. 2009),
differences between regression coefficients from different
models can be explained, but only when the true regression
coefficient is known (Bini et al. 2009 assume regression
coefficients from ordinary least squares form a gold-
standard and measure the difference between this and
estimates from other methods, a difference that depends
mainly on the unknown precision of the least squares
estimate, rather than the difference from the true regression
coefficient which is of course unavailable in real data sets

examples). The particularly poor results for the subsampling
methodology are entirely explained by the extremely low
precision of this method caused by throwing away much
useful information (see Beale et al. 2007 for a full
discussion). Overall, we found Bayesian Conditional Auto-
regressive models and Simultaneous Autoregressive models
to be among the best performing methods.

We analysed the effects of removing spatial trends in the y
variable before analysis and the effect of splitting spatial data
sets to reduce computation times. Our results do not
support the removal of spatial trends in the y variable as a
matter of course. If only local-scale variation is of interest it
may be valid to include spatial coordinates as covariates
within the full regression model provided there is evidence
of broad global trends. We found that if large data sets are
split spatially before analysis the accuracy and precision of
parameter estimates are not unreasonably reduced.

Despite there being good reasons for anticipating
autocorrelated errors in ecological data, it has often been
suggested that testing residuals for spatial autocorrelation
after ordinary regression is sufficient to establish model
reliability. This is often carried out as a matter of course,
with the assumption that if the residuals do not show
significant autocorrelation the model results are reliable and
vice versa (Zhang et al. 2005; Barry & Elith 2006; Segurado
et al. 2006; Dormann et al. 2007; Hawkins et al. 2007).
However, caution is required here, as the failure to
demonstrate a statistically significant spatial signature in
the residuals does not demonstrate absence of potentially
influential autocorrelation. As our simulation study has
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Figure 6 The effect on parameter estimates of removing linear spatial trends in the dependent variable (detrending) before statistical model
fitting. All plots show parameters estimated from the same 1000 simulations, each with an autocorrelated x variable and autocorrelated errors
in the response variable, where the true regression coefficient is 0.5 (dashed grey line). Ordinary Least Squares = blue, Wavelet Revised
Models = black [not present in panel (c) where the model could not be fitted], Simultaneous Autoregressive Models = green (usually hidden
under red line), Generalized Least Squares = red. In plot (a), the dependent variable was detrended before analysis, in plot (b) the uncorrected
dependent variable was used and in plot (c) the x and y coordinates were included as covariates. Note both the clear bias in some parameter
estimates and the skew caused by detrending [not evident in (c)], most evident in estimates from Ordinary Least Squares and Wavelet Revised
Models methods but present regardless of model type.
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demonstrated, even weak autocorrelation can have dramatic
effects on parameter estimation, so it is unwise to rely solely
on this type of post hoc test when assessing model fit.
Moreover, correctly fitted spatially explicit models will often
show autocorrelated residuals (Fig. 3) so this test should
certainly not be considered as identifying a problem with
such models.

Whilst we designed our simulations to explore a wide
range of complexity likely in real data, they do not cover all
possible complications. In particular, all our simulated
covariates and residuals have an exponential structure as a
consequence of needing to simulate cross-correlated vari-
ables, yet real-world environmental variables may have a
range of different autocorrelation structures. Although
empirically our results are limited to the cases we
considered, we found consistent patterns that are likely to
remain generally true: we found that the differences in
model performance in simple scenarios were only exagger-
ated in the more complex scenarios where a number of
model assumptions were violated. Once suitable simulation
methods are developed, future work could usefully explore
alternative autocorrelation structures and confirm that
similar results are also found under these conditions.
Compared with previous, more restricted simulation studies
(e.g. Dormann et al. 2007; Carl & Kuhn 2008; Kissling &
Carl 2008 Beguerı́a & Pueyo 2009), we find the same overall
result – that spatially explicit methods outperform non-
spatial methods – but our results show that the differences
between modelling methods when faced with assumption
violations and cross-correlation are less distinct; several
methods that modelled space in the errors were more or less
equally good.

Faced with a real data set, it is difficult to determine
a priori which of the scenarios we simulated are most similar
to the real data set. As we found that all the methods applied
to certain scenarios (e.g. Scenario 8) were very misleading, it
is important to determine whether the fitted model is
appropriate and, if necessary, try fitting alternative model
structures; in the case of Scenario 8, including spatial
coordinates as covariates would dramatically improve model
performance. This is a very important point: if model
assumptions are badly violated, no regression method,
spatial or non-spatial, will perform well, no matter how
sophisticated. It is therefore vital that, within the limitations
of any data set, model assumptions are tested as part of the
modelling process. Thus, whilst in the context of our
simulation study it was appropriate to carry out automated
implementations of the methods, in practice a considerable
amount of time may be required exploring the data,
residuals from initial model fits, and fitting further models
on the basis of such investigations (in this case, for example,
it would rapidly become evident that an exponential
covariance structure for the Generalized Least Squares

implementation would be an improvement). In a Bayesian
context, this might also involve hands-on tuning or
convergence checking as is usual in a single analysis.

Our analysis took a completely heuristic approach to
identifying the best methods for spatial regression analysis.
The reasons why the various methods performed differently
are ultimately a function of the particular mathematical
models that underlie the different methods and in some
cases are also the result of decisions we had to take about
how to implement these methods. For example, Generalized
Least Squares is likely to be precise and accurate so long as
the spatial covariance matrix can be accurately modelled, but
this can be difficult when, for example, the scale of
autocorrelation is large and the spatial domain small. We
chose to implement Generalized Least Squares in two ways,
firstly as Generalized Least Squares-S using the spherical
model for the error term, which miss-specifies the error
structure, and secondly using a one-parameter version
(Simultaneous Autoregressive Models) that has an implicit
exponential structure. The resulting misspecification and
uncertainty in parameter estimates, for Generalized Least
Squares-S explains the inflated Type I error rates given by
some Generalized Least Squares-S models in the presence
of large-scale spatial autocorrelation: in some realizations of
Scenarios 1 and 3 the actual scale of autocorrelation was
larger than the spatial domain and consequently the
covariance estimate was inaccurate. However, the loss of
performance of Generalized Least Squares-S in terms of
significance testing was not matched by a corresponding
loss of performance in terms of absolute bias and RMSE.
Note also that similarly, Generalized Additive Models and
GLMM are not single methods as such, because many
different types of smoother are available as well as the
choice of functional form assumed for the spatial correla-
tion term in Generalized Additive Mixed Models (Hastie &
Tibshirani 1990; Wood 2006). Methods like Simple Auto-
regressive and Spatial Filters emphasize local over global
patterns and necessarily perform poorly when assessed
against their ability to identify global relationships: indeed
Augustin et al. (1996) in their original formulation advised
against using this method for inference, a warning that has
frequently been ignored since [although in certain circum-
stances it may be local patterns that are ecologically
interesting and, if so, these methods and geographically
weighted regression may be appropriate (Brunsdon et al.
1996; Betts et al. 2009)]. In our implementation of the
Bayesian method (BCA), we had to establish a process for
model selection which involved comparing fits of models
with all combinations of covariates. This led to different
model selection properties compared with other methods,
with lower Type I errors than the nominal 5% rates set
elsewhere. For BCA, the low Type I error rates were not
associated with high Type II errors, whereas in additional
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unreported runs of other methods, setting the nominal
significance levels to 1% reduced the Type I error rates at
the cost of a considerable increase in the Type II error rates.

The computational cost of unnecessarily fitting a complex
model that includes spatial effects is negligible compared
with the dangers of ignoring potentially important autocor-
relations in the errors and, because spatial and non-spatial
methods are equivalent in the absence of spatial autocor-
relation in the errors, the precautionary principle suggests
models which incorporate spatial autocorrelation should be
fitted by default. One possible exception is when the
covariance structure of a general Generalized Least Squares
or Generalized Additive Mixed Models model is poorly
estimated, but this should be apparent from either standard
residual inspection or a study of the estimated correlation
function. Whilst likelihood ratio tests or AIC could be used
to assess the strength of evidence in the data for the
particular correlated error models, although these may have
low power with small numbers of observations. Note that,
strictly, these comments are most relevant when the
correlation model has several parameters. Other types of
spatial analysis, such as the Generalized Additive Models
and Simultaneous Autoregressive Models methods, use a
one-parameter "local smoothing! or "spatial neighbourhood!
approach and it is interesting to observe these models, with
a single parameter for the autocorrelation of the errors,
performing well compared with our implementation of
Generalized Least Squares-S with miss-specified error
structure.

Throughout this paper, we have focussed on the analysis
of data with normally distributed errors. This deliberate
choice reflects the fact that, despite the additional issues
introduced by analysis of response variables from other
distributions (e.g. presence ⁄ absence), all the issues described
here are relevant whatever the error distribution. While
Bayesian methods using Markov chain Monte Carlo (MCMC)
simulations potentially offer a long-term solution to some of
these additional issues, their complexities are beyond the
scope of this review and instead we refer interested readers to
Diggle & Ribeiro (2007). In the meantime, the use of spatial
methods that model spatial autocorrelation among the
covariates may be more immediately tractable, but equivalent
comparative analyses to those presented here would be useful
as new methods are developed to analyse spatial data with
non-normal distributions.

CONCLUS IONS

In the process of assessing the performance of spatial
regression methods, we have shown that some common
perceptions are mistaken. We showed that a successfully
fitted spatially explicit model may well have autocorrelated
residuals (Fig. 5): this does not necessarily indicate a

problem. Similarly, we saw that it is unwise to carry out
detrending on dependent variables alone before analysis
(Fig. 6). Our work represents an advance in comparative
analysis of methods for fitting regression models to spatial
data and so provides a more reliable evidence base to guide
choice of method than previously available. Whilst our
investigations have been far from exhaustive, we hope they
represent a step towards repeatable, simulation-based
comparisons of methods based on their properties when
used to model particular classes of data sets. We have also
answered a common question asked by ecologists: param-
eter estimates from spatially explicit regression methods are
usually smaller than those from non-spatial regression
methods because the latter are less precise (Fig. 1). Bearing
in mind the qualifications and caveats made earlier, we
summarize our empirical results by the statements:

(1) Due to their relatively low precision and high Type I
error rates, non-spatial regression methods – notably
Ordinary Least Squares regression – should not be used
on spatial data sets.

(2) Removing large-scale spatial trends in dependent
variables before analysis (detrending) is not recom-
mended.

(3) Generalized Least Squares-S, Simultaneous Autoregres-
sive Models, Generalized Additive Mixed Models and
Bayesian Conditional Autoregressive performed well in
terms of absolute bias and RMSE in the absence of
model selection.

(4) Whilst Type II error rates were generally not a problem
for these better performing methods, Generalized
Additive Mixed Models and Simultaneous Autoregres-
sive Models have Type I error rates closest to the
nominal 5% levels (model selection for BCA is
implemented differently and was usually well below
5%).

(5) After model selection, the performance of Generalized
Least Squares-S, Simultaneous Autoregressive Models,
Generalized Additive Mixed Models and Bayesian
Conditional Autoregressive all improved markedly,
with BCA performed best of all in terms of RMSE.

(6) When fitting large, computationally expensive spatial
regression models data partitioning can be effectively
utilized with little apparent loss of precision, although
one should still be cautious.
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Additional Supporting Information may be found in the
online version of this article:

Figure S1 Examples of correlated variables with difference
spatial scales generated using the custom-built correlated
pattern function.
Figure S2 The generation process for a variable with varying
scale (non-stationary) autocorrelation.
Figure S3 GLS regression coefficients for univariate and
multivariate models with pairs of cross-correlated covariates
where the expected regression coefficient for one covariate
is 0.5.
Figure S4 Scenario 1: Cross-correlations exist between two
pairs of covariates (a) with (b) and (d) with (e).
Figure S5 Scenario 2: Cross-correlations exist between two
pairs of covariates (a) with (b) and (d) with (e).
Figure S6 Scenario 3: Cross-correlations exist between two
pairs of covariates (a) with (b) and (d) with (e).
Figure S7 Scenario 4: Cross-correlations exist between two
pairs of covariates (a) with (b) and (d) with (e).
Figure S8 Scenario 5: Cross-correlations exist between
covariates (a) and (b).
Figure S9 Scenario 6: Cross-correlations exist between
covariates (a) and (b).
Figure S10 Scenario 7: Cross-correlations exist between
covariates (a) and (b).
Figure S11 Scenario 8: Cross-correlations exist between
covariates (a) and (b).
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Figure S12 Computation time for models of 100 simulations
where spatial covariance is either modelled across the whole
dataset ("Full! ), across (but not between) two even subsets
of the data ("Even Split! ) or two subsets of the data where
subset membership was randomly allocated across the
spatial domain ( "Random split! ).
Figure S13 The effect of splitting a dataset on precision of
parameter estimates for GLS models.
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