Discussion on

Optimal External Debt and Default

Bernardo Guimaraes

Alberto Martin
CREI and Universitat Pompeu Fabra

May 2007
This paper

• Analyzes whether sovereign default can be interpreted as a contingency of optimal contracts

• Develops a small open economy model:
 – With capital accumulation
 – Without commitment
 – In which default generates permanent exclusion and permanent loss of output

• Model applied to the debt reduction obtained by Latin American countries within the Brady plan
Outline of this discussion

- Simple model to illustrate the mechanism
- Comment on theoretical results
- Comment on application to Brady plan
- No self-promotion
The Model

- Assume three-period world: \(t = 0, 1, 2 \)

- Small open economy,
 - maximizing \(u(c_2) \)
 - with investment opportunities at \(t = 0 \) and at \(t = 1 \) such that
 \[y_{t+1} = (I_t)^\alpha, \text{ where } \alpha \in (0, 1) \]
 - no endowments

- To finance investment, borrow from abroad
 - at \(t = 0 \), gross international rate is \(r \)
 - at \(t = 1 \), gross international rate is \(\left\{ \begin{array}{ll} r_H & \text{with probability } \frac{1}{2} \\
 r_L & \text{with probability } \frac{1}{2} \end{array} \right. \\

- The country cannot commit to repay, whenever it defaults it
 - loses fraction \(\gamma \) of output from there onwards
 - financial autarky

- Everything is observable
Timeline

<table>
<thead>
<tr>
<th>$t = 0$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>country borrows and invests $D_0 = I_0$</td>
<td>$r_i, i \in {L, H}$ realizes and country may EITHER:</td>
<td>country may EITHER:</td>
</tr>
<tr>
<td></td>
<td>REPAY</td>
<td>REPAY</td>
</tr>
<tr>
<td></td>
<td>- repays I_0r</td>
<td>- repays D_ir_i</td>
</tr>
<tr>
<td></td>
<td>- borrows D_i</td>
<td>- $c_2 = (I_0^a - I_0r + D_i)^a - D_ir_i$</td>
</tr>
<tr>
<td></td>
<td>- invests $(I_0^a - I_0r + D_i)$</td>
<td>DEFAULT</td>
</tr>
<tr>
<td></td>
<td>DEFAULT</td>
<td>- invests $(1 - \gamma)(I_0^a)$</td>
</tr>
</tbody>
</table>
Equilibrium

- Assume borrowing constraints are always binding
- Assume repayment at $t = 1$ is NOT contingent
- Starting at $t = 2$, the IC constraint pins down D_i,
 \[\gamma \cdot y_2 = \gamma \cdot (I_0^\alpha - rI_0 + D_i)^\alpha \geq r_i D_i \]
 so that $D_L > D_H$

- Going back to $t = 1$, the IC constraint is that, for all $i \in \{H, L\}$
 \[(1 - \gamma) \cdot (I_0^\alpha - rI_0 + D_i)^\alpha \geq (1 - \gamma) \cdot ((1 - \gamma) \cdot I_0^\alpha)^\alpha \]
 \[\iff \gamma I_0^\alpha + D_i \geq rI_0 \]
- What goes on?
 - when $i = H$, IC binding (few fresh funds from abroad)
 - when $i = L$, country could pay back more (IC slack)
cost and benefit of default

benefit of default

rI_0

I_0
The graph shows the cost and benefit of default, with the cost of default D_H and the benefit of default rI_0. The x-axis represents I_0, and the y-axis represents the cost and benefit of default.
cost and benefit of default

$\text{cost of default}_{L}$

$\text{cost of default}_{H}$

rI_0 → benefit of default

I_0

D_L

D_H
cost and benefit of default

no default default₇₀ always default

cost of default₇₀

cost of default₇₀

benefit of default

D_L

D_H

I_0
cost and benefit of default

no default default_H always default

max \{I_0\}

D_L

D_H

rI_0

benefit of default

cost of default_L

cost of default_H
What can be done?

- Since the IC constraint binds when r is high, the country can:
 - promise to pay less $(I_H < rI_0)$ when $i = H$
 - promise to pay more when $(I_L > rI_0)$ $i = L$
 - while satisfying 0 profits for creditors

- I_0 expands until constraints bind in all states

- In this model, $I_L - I_H$,
 - increases with $r_H - r_L$ (which increases $D_H - D_L$)
 - increases with the persistence of the shock
 - the paper also analyzes the relationship with k which is ambiguous

- Bernardo considers shocks to productivity at $t = 1$, which are
 - qualitatively the same
 - quantitatively of a lower order of magnitude (not very clear why)
Application to Brady Plan

- The model is calibrated and predicts:
 - a reduction of approximately 18% in debt in response to
 - an increase of 4% in the real interest rate

- The paper claims that this is consistent with Brady plan
 - debt reduction of 29% for Latin America in 1989
 - “in response” to increase in r in early 80’s
Application to Brady Plan: comment 1

- Simple comments on the calibration:
 - More info on interest rate process (why average persistence of 10 years?)
 - Same for productivity shock (same persistence as interest rates?)
Application to Brady Plan: comment II

• From a broader perspective, Brady agreements implied many other things;
 – “commitment” to undertake reforms
 – change from bank- to market- based system of lending

• To interpret this debt reduction as optimal contract, the numerical exercise should be tighter
 – either tailor the model to Brady circumstances, or
 – look at other instances where debt reduction follows increase in \(r \)
Conclusions

- This is a very interesting paper

- The theoretical model is:
 - well-crafted and contains robust insights
 - it would be nice to deepen the analysis on interest rates vs. productivity shocks

- The application to the Brady debt reduction, though, I find less convincing:
 - more thorough numerical exercise

- Perhaps an interesting avenue to pursue is on the design of optimal indexed assets