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Abstract

In this paper we explore maximal deviations of large random structures from their typical
behavior. We introduce a model for a high-dimensional random graph process and ask
analogous questions to those of Vapnik and Chervonenkis for deviations of averages: how
“rich” does the process have to be so that one sees atypical behavior.

In particular, we study a natural process of Erdős-Rényi random graphs indexed by
unit vectors in Rd. We investigate the deviations of the process with respect to three
fundamental properties: clique number, chromatic number, and connectivity. In all cases
we establish upper and lower bounds for the minimal dimension d that guarantees the
existence of “exceptional directions” in which the random graph behaves atypically with
respect to the property. For each of the three properties, four theorems are established,
to describe upper and lower bounds for the threshold dimension in the subcritical and
supercritical regimes.
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1. Introduction

One of the principal problems in probability and statistics is the understanding of maximal
deviations of averages from their means. The revolutionary work of Vapnik and Chervo-
nenkis (1971, 1974, 1981) introduced a completely new combinatorial approach that opened
many paths and helped us understand this fundamental phenomena. Today, the Vapnik-
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Chervonenkis theory has become the theoretical basis of statistical machine learning, em-
pirical process theory, and has applications in a diverse array of fields.

The purpose of this paper is to initiate the exploration of maximal deviations of complex
random structures from their typical behavior. We introduce a model for a high-dimensional
random graph process and ask analogous questions to those of Vapnik and Chervonenkis
for deviations of averages: how “rich” does the process have to be so that one sees atypical
behavior. In particular, we study a process of Erdős-Rényi random graphs. In the G(n, p)
model introduced by Erdős and Rényi (1959, 1960), a graph on n vertices is obtained by
connecting each pair of vertices with probability p, independently, at random. The G(n, p)
model has been thoroughly studied and many of its properties are well understood—see,
e.g., the monographs of Bollobás (2001) and Janson et al. (2000).

In this paper we introduce a random graph process indexed by unit vectors in Rd, defined
as follows. For positive integer n, write [n] = {1, . . . , n}. For 1 ≤ i < j ≤ n, let Xi,j be
independent standard normal vectors in Rd. Denote by Xn = (Xi,j)1≤i<j≤n the collection
of these random points. For each s ∈ Sd−1 (where Sd−1 denotes the unit sphere in Rd) and
t ∈ R we define the random graph Γ(Xn, s, t) with vertex set v(Γ(Xn, s, t)) = [n] and edge
set e(Γ(Xn, s, t)) = {{i, j} : 〈Xi,j , s〉 ≥ t}, where 〈·, ·〉 denotes the usual inner product in
Rd.

For any fixed s ∈ Sd−1 and t ∈ R, Γ(Xn, s, t) is distributed as an Erdős-Rényi random
graph G(n, p), with p = 1−Φ(t) where Φ is the distribution function of a standard normal
random variable. In particular, Γ(Xn, s, 0) is a G(n, 1/2) random graph. With a slight
abuse of notation, we write Γ(Xn, s) for Γ(Xn, s, 0).

We study the random graph process

Gd,p(Xn) =
{

Γ(Xn, s,Φ
−1(1− p)) : s ∈ Sd−1

}
.

Gd,p(Xn) is a stationary process of G(n, p) random graphs, indexed by d-dimensional unit
vectors. For larger values of d, the process becomes “richer”. Our aim is to explore
how large the dimension d needs to be for there to exist random directions s for which
Γ(Xn, s,Φ

−1(1−p)) ∈ Gd,p(Xn) has different behavior from what is expected from a G(n, p)
random graph. Adapting terminology from dynamical percolation Steif (2009), we call such
directions exceptional rotations. More precisely, in analogy with the Vapnik-Chervonenkis
theory of studying atypical deviations of averages from their means, our aim is to develop a
VC theory of random graphs. In particular, we study three fundamental properties of the
graphs in the family Gd,p(Xn): the size of the largest clique, the chromatic number, and
connectivity. In the first two cases we consider p = 1/2 while in the study of connectivity
we focus on the case when p = c log n/n for some constant c > 0.

The graph properties we consider are all monotone, so have a critical probability p∗

at which they are typically obtained by G(n, p). For example, consider connectivity, and
suppose we first place ourselves above the critical probability in G(n, p), e.g., p = c log n/n
for c > 1, so that G(n, p) is with high probability connected. Then the question is how large
should d be to ensure that for some member graph in the class, the property (connectivity)
disappears. There is a threshold dimension d for this, and we develop upper and lower
bounds for that dimension. Secondly, consider the regime below the critical probability for
connectivity in G(n, p), e.g., p = c log n/n for c < 1. In this case, with high probability
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G(n, p) is not connected, and we ask how large d should be to ensure that for some member
graph in the class, the property (connectivity) appears. Again, we develop upper and lower
bounds for the threshold dimension d for this.

In all, for each of the three properties considered in this paper, clique number, chromatic
number, and connectivity, four theorems are needed, to describe upper and lower bounds
for the threshold dimension for exceptional behaviour in the subcritical regime (when the
property typically does not obtain) and in the supercritical regime (when the property
typically does obtain). In every case, our results reveal a remarkable asymmetry between
“upper” and “lower” deviations relative to this threshold.

Our techniques combine some of the essential notions introduced by Vapnik and Cher-
vonenkis (such as shattering, covering, packing, and symmetrization), with elements of
high-dimensional random geometry, coupled with sharp estimates for certain random graph
parameters.

The model considered in this paper uses subsets of the collection of halfspaces in
Rd to define the random graphs in the collection. A natural variant would be one in
which we associate with each edge {i, j} a uniformly distributed random vector on the
torus [0, 1]d, and consider a class parametrized by s ∈ [0, 1]d. Then define the edge set
e(Γ(Xn, s, t)) = {{i, j} : ‖Xi,j−s‖ ≤ t}. For general classes of sets of Rd, the complexity of
the classes will affect the behaviour of the collection of random graphs in a universal man-
ner. We can define the complexity of a class of graphs indexed in terms of the threshold
dimension needed to make certain graph properties appear or disappear in the subcritical
and supercritical regimes, respectively. It will be interesting to explore the relationship
between the combinatorial geometry of the class and these complexities.

Note that when d = 1, G1,p(Xn) only contains two graphs (when p = 1/2, one is the
complement of the other), and therefore the class is trivial. On the other extreme, when

d ≥
(
n
2

)
, with probability one, the collection Gd,1/2(Xn) contains all 2(n2) graphs on n

vertices. This follows from the following classical result on the “VC shatter coefficient” of
linear half spaces (see, e.g., Schläffli (1950), Cover (1965)) that determines the number of
different graphs in Gd,1/2(Xn) (with probability one).

Lemma 1 Given N ≥ d points x1, . . . , xN ∈ Rd in general position (i.e., every subset of
d points is linearly independent), the number of binary vectors b ∈ {0, 1}N of the form
b =

(
1{〈xi,s〉≥0}

)
i≤N for some s ∈ Sd−1 equals

C(N, d) = 2
d−1∑
k=0

(
N − 1

k

)
.

In particular, when N = d, all 2N possible dichotomies of the N points are realizable
by some linear half space with the origin on its boundary. In such a case we say that the
N points are shattered by half spaces.

Notation and Overview. Throughout the paper, log denotes natural logarithm. For a
sequence {An} of events, we say that An holds with high probability if limn→∞ P{An} = 1.

The paper is organized as follows. In Section 2 we study the clique number in the case
p = 1/2. The four parts of Theorem 2 establish upper and lower bounds for the critical
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dimension above which, with high probability, there exist graphs in Gd,1/2(Xn) whose
largest clique is significantly larger/smaller than the typical value, which is ≈ 2 log2 n −
2 log2 log2 n. We show that the critical dimension for which some graphs in Gd,1/2(Xn)

have a clique number at least, say, 10 log2 n is of the order of log2 n/ log logn.
In sharp contrast to this, d needs to be at least n2/ polylog n to find a graph in

Gd,1/2(Xn) with maximum clique size 3 less than the typical value. We study this func-
tional in Section 3. Theorem 3 summarizes the four statements corresponding to upper and
lower bounds in the sub-, and super-critical regime. Once again, the two regimes exhibit an
important asymmetry. While no graphs in Gd,1/2(Xn) have a chromatic number a constant
factor larger than typical unless d is is of the order of n2/ polylog n, there exist graphs with
a constant factor smaller chromatic number for d near n.

Finally, in Section 4, connectivity properties are examined. To this end, we place our-
selves in the regime p = c log n/n for some constant c. When c < 1, a typical graph G(n, p)
is disconnected, with high probability, while for c > 1 it is connected. In Theorem 6 we
address both cases. We show that for c > 1, the critical dimension above which one finds
disconnected graphs among Gd,c logn/n(Xn) is of the order of log n/ log logn. (Our upper
and lower bounds differ by a factor of 2.) We also show that when c < 1, d needs to be at
least roughly n1−c in order to find a connected graph Gd,c logn/n(Xn). While we conjecture
this lower bound to be sharp, we do not have a matching upper bound in this case. How-
ever, we are able to show that when d is at least of the order of n

√
log n, Gd,c logn/n(Xn)

not only contains some connected graphs but with high probability, for any spanning tree,
there exists s ∈ Sd−1 such that Γ(Xn, s, t) contains that spanning tree. This property holds
for even much smaller values of p.

In the Appendix we gather some technical estimates required for the proofs. Before
diving into the proofs we make one final remark regarding the proof techniques. Fix an
increasing graph property P. One natural way to show that with high probability there
exists a direction s for which Γ(Xn, s, t) has P is as follows. Fix p in (0, 1) such that G(n, p)
has property P with high probability; then show that with high probability there exists a
direction s for which Γ(Xn, s, t) has at least p

(
n
2

)
edges. This type of argument, and its

obvious analogue for decreasing graph properties, maximally decouple geometric and graph
theoretic considerations. For the lower tail of the clique number, our results, Theorem 2
(i) and (ii), leave open the possibility that such an argument could yield tight bounds for
threshold dimensions. For the remaining properties we consider, our results rule this out –
the dimensional thresholds cannot be explained by edge density alone.

2. Clique number

In this section we consider p = 1/2 and investigate the extremes of the clique number
amongst the graphs Γ(Xn, s), s ∈ Sd−1. Denote by cl(Xn, s) the size of the largest clique
in Γ(Xn, s).

The typical behavior of the clique number of a G(n, 1/2) random graph is quite accu-
rately described by Matula’s classical theorem (Matula, 1972) that states that for any fixed
s ∈ Sd−1, for any ε > 0,

cl(Xn, s) ∈ {bω − εc, bω + εc}

with probability tending to 1, where ω = 2 log2 n− 2 log2 log2 n+ 2 log2 e− 1.
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Here we are interested in understanding the values of d for which graphs with atypical
clique number appear. We prove below that while for moderately large values of d some
graphs Γ(Xn, s) have a significantly larger clique number than ω, one does not find graphs
with significantly smaller clique number unless d is nearly quadratic in n.

Observe first that by Lemma 1 for any k, if d ≥
(
k
2

)
, then, with probability one,

cl(Xn, s) ≥ k for some s ∈ Sd−1. (Just fix any set of k vertices; all 2k graphs on
these vertices is present for some s, including the complete graph.) For example, when
d ∼ (9/2)(log2 n)2, cl(Xn, s) ≥ 3 log2 n for some s ∈ Sd−1, a quite atypical behavior. In
fact, with a more careful argument we show below that when d is a sufficiently large con-
stant multiple of (log n)2/ log log n, then, with high probability, there exists s ∈ Sd−1 such
that cl(Xn, s) ≥ 3 log2 n. We also show that no such s exists for d = o((log n)2/ log logn).
Perhaps more surprisingly, clique numbers significantly smaller than the typical value only
appear for huge values of d. The next theorem shows the surprising fact that in order to
have that for some s ∈ Sd−1, cl(Xn, s) < ω− 3, the dimension needs to be n2−o(1). (Recall
that for d =

(
n
2

)
the point set Xn is shattered and one even has cl(Xn, s) = 1 for some s.

Our findings on the clique number are summarized in the following theorem.

Theorem 2 (clique number.) If cl(Xn, s) denotes the clique number of Γ(Xn, s), then,
with high probability the following hold:

(i) (subcritical; necessary.) If d = o(n2/(log n)9), then for all s ∈ Sd−1, cl(Xn, s) >
bω − 3c .

(ii) (subcritical; sufficient.) If d ≥
(
n
2

)
, then there exists s ∈ Sd−1 such that

cl(Xn, s) = 1 .

(iii) (supercritical; necessary.) For any c > 2 there exists c′ > 0 such that if d ≤
c′ log2 n/ log logn, then for all s ∈ Sd−1, we have cl(Xn, s) ≤ c log2 n.

(iv) (supercritical; sufficient.) For any c > 2 and c′ > c2/(2 log 2), if d ≥ c′ log2 n/ log log n,
then there exists s ∈ Sd−1 such that cl(Xn, s) ≥ c log2 n .

The event described in (ii) holds with probability one for all n.

Proof To prove part (i), let k = bω − 3c and let Nk(s) denote the number of cliques of
size k in Γ(Xn, s). Let η ∈ (0, 1] and let Cη be a minimal η-cover of Sd−1. Then

P
{
∃s ∈ Sd−1 : Nk(s) = 0

}
= P

{
∃s′ ∈ Cη and ∃s ∈ Sd−1 : ‖s− s′‖ ≤ η : Nk(s) = 0

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
where s0 = (1, 0, . . . , 0) and the last inequality follows from the union bound. Consider the
graph Γ(Xn, s0,−η

√
1− η2/4) in which vertex i and vertex j are connected if and only if

the first component of Xi,j is at least −η
√

1− η2/4
The proof of Lemma 12 implies that the event

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
is included in the event that Γ(Xn, s0,−η

√
1− η2/4) does not have any clique of size k.
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By Lemma 12, the probability of this is bounded by the probability that an Erdős-Rényi

random graph G(n, 1/2 − αn) does not have any clique of size k where αn = η
√
d√

2π
. If we

choose (say) η = 1/n2 then for d ≤ n2 we have αn ≤ 1/n and therefore, by Lemma 17
below,

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
≤ exp

(
−C ′n2

(log2 n)8

)
for some numerical constant C ′. Thus, using Lemma 10,

P
{
∃s ∈ Sd−1 : Nk(s) = 0

}
≤ (4n2)d exp

(
−C ′n2

(log2 n)8

)
= o(1)

whenever d = o(n2/(log n)9).

Part (ii) follows from the simple fact that, by Lemma 1, with d =
(
n
2

)
even the empty graph

appears among the Γ(Xn, s).

The proof of part (iii) proceeds similarly to that of part (i). Let k = c log2 n. Then

P
{
∃s ∈ Sd−1 : Nk(s) ≥ 1

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) ≥ 1

}
.

Similarly to the argument of (i), we note that the event
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) ≥ 1

}
is included in the event that Γ(Xn, s0,−η

√
1− η2/4) has a clique of size k, which is bounded

by the probability that an Erdős-Rényi random graph G(n, 1/2 +αn) has a clique of size k

where αn = η
√
d√

2π
. Denoting p = 1/2+αn, this probability is bounded by

(
n
k

)
p(
k
2) ≤

(
npk/2

)k
.

We may choose η = 4/d. Then, for d sufficiently large, αn ≤ (c/2−1) log 2 and, using Lemma
10, we have

P
{
∃s ∈ Sd−1 : Nk(s) ≥ 1

}
≤ (4/η)d

(
np(c/2) log2 n

)c log2 n

≤ ed log d
(
n1+(c/2) log2(1/2+αn)

)c log2 n

≤ ed log d
(
n1−c/2+cαn/ log 2

)c log2 n

≤ ed log dn(1−c/2)c(log2 n)/2

= ed log d−(c−2)c(log2 n)2 log 2/4 ,

and the statement follows.

It remains to prove part (iv). The proof relies on the second moment method. Let c > 2,
c′ > c2/(2 log 2), and assume that d ≥ c′ log2 n/ log log n. Let K be a constant satisfying
K > 2/

√
c′ and define θ = K

√
log logn/ log n. Let A be a subset of Sd−1 of cardinality at

least (d/16)θ−(d−1) such that for all distinct pairs s, s′ ∈ A, we have 〈s, s′〉 ≥ cos(θ). Such
a set exists by Lemma 11. Also, let C be the family of all subsets of [n] of cardinality k =
bc log2 nc. For s ∈ A and γ ∈ C, denote by Zs,γ the indicator that all edges between vertices
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in γ are present in the graph Γ(Xn, s). Our aim is to show that limn→∞ P{Z > 0} = 1
where

Z =
∑
s∈A

∑
γ∈C

Zs,γ .

To this end, by the second moment method (see, e.g., Alon and Spencer (1992)), it suffices
to prove that EZ →∞ and that E[Z2] = (EZ)2(1 + o(1).

To bound EZ note that

EZ = |A|
(
n

k

)
EZs,γ

≥ (d/16)θ−(d−1)

(
n

k

)
2−(k2)

= exp

(
(log n)2

(
c′ − c2

2 log 2
+

c

log 2
+ o(1)

))
→∞ .

On the other hand,

E[Z2] =
∑
s,s′∈A

∑
γ,γ′∈C

E[Zs,γZs′,γ′ ]

=
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≤1

E[Zs,γZs′,γ′ ] +
∑
s∈A

∑
γ,γ′∈C

E[Zs,γZs,γ′ ]

+
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≥2

E[Zs,γZs′,γ′ ]

def
= I + II + III .

For the first term note that if γ and γ′ intersect in at most one vertex then Zs,γ and Zs′,γ′

are independent and therefore

I =
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≤1

EZs,γEZs′,γ′ ≤ (EZ)2 .

Hence, it suffices to prove that II + III = o((EZ)2). To deal with II, we have

II

(EZ)2
=

1

|A| ·
(
n
k

) k∑
`=0

2(`2)
(
n− k
k − `

)(
k

`

)

≤ 1

|A|

k∑
`=0

2(`2)
k2`

(n− 2k)``!

≤ 1

|A|
2(`2)

∞∑
`=0

(
k2

n− 2k

)`
1

`!

= exp
(
−(log n)2

(
c′ + o(1)− c2/(2 log 2)

))
→ 0 .

We now take care of III. To this end, we bound

max
s,s′∈A:s 6=s′
γ,γ′:|γ∩γ′|=`

E[Zs,γZs′,γ′ ]
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by

2(`2)−2(k2)+1P
{〈

N

‖N‖
, s0

〉
≥ sin(θ/2)

}(`2)
,

where N is a standard normal vector in Rd. To see this, note that 2
(
k
2

)
−
(
`
2

)
edges of the

two cliques occur independently, each with probability 1/2. The remaining
(
`
2

)
edges must

be in both Γ(Xn, s) and Γ(Xn, s
′). A moment of thought reveals that this probability is

bounded by the probability that the angle between a random normal vector and a fixed
unit vector (say s0) is less than π/2− θ/2. This probability may be bounded as

P {〈N/‖N‖, s0〉 ≥ sin(θ/2)} =
1

2
P
{
B ≥ sin2(θ/2)

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

≤ EB
2 sin2(θ/2)

=
1

2d sin2(θ/2)

=
2 + o(1)

dθ2
=

2 + o(1)

c′K2
.

Via the same counting argument used in handling II, we have

III

(EZ)2
≤

k∑
`=2

2(`2)
(

2 + o(1)

c′K2

)(`2)
(

k2

n− 2k

)`
1

`!
.

Since c′K2 > 4, we have, for n large enough,

III

(EZ)2
≤

k∑
`=2

(
k2

n− 2k

)`
1

`!
= O

(
(log n)2

n2

)
as required. This concludes the proof of the theorem.

We conclude the section by remarking that the above proof extends straightforwardly to
G(n, p) for any constant p ∈ (0, 1).

3. Chromatic number

A proper coloring of vertices of a graph assigns a color to each vertex such that no pair of
vertices joined by an edge share the same color. The chromatic number χ(G) of a graph G
is the smallest number of colors for which a proper coloring of the graph exists.

Here we study the fluctuations of the chromatic numbers χ(Γ(Xn, s)) from its typical
behavior as s ∈ Sd−1. Once again, for simplicity of the presentation, we consider p = 1/2.
The arguments extend easily to other (constant) values of p.

For a fixed s, a celebrated result of Bollobás (1988) implies that

n

2 log2 n
≤ χ(Γ(Xn, s)) ≤

n

2 log2 n
(1 + o(1))
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with high probability.
In this section we derive estimates for the value of the dimension d for which there exist

random graphs in the collection Gd,1/2(Xn) whose chromatic number differs substantially
(i.e., by a constant factor) from that of a typical G(n, 1/2) graph. Similar to the case of
the clique number studied in Section 2, we find that upper and lower deviations exhibit a
different behavior—though in a less dramatic way. With high probability, one does not see a
graph with a clique number larger than (1 + ε)n/(2 log2 n) unless d is at least n2/ polylog n.
On the other hand, when d is roughly linear in n, there are graphs is Gd,1/2(Xn) with
chromatic number at most (1 − ε)n/(2 log2 n). Below we make these statements rigorous
and also show that they are essentially tight.

Theorem 3 (chromatic number.) Let ε ∈ (0, 1/2). If χ(Γ(Xn, s)) denotes the chro-
matic number of Γ(Xn, s), then, with high probability the following hold:

(i) (subcritical; necessary.) If d = o(n/(log n)3), then for all s ∈ Sd−1, χ(Γ(Xn, s)) ≥
(1− ε)n/(2 log2 n).

(ii) (subcritical; sufficient.) If d ≥ 2n log2 n/(1 − 2ε), then there exists s ∈ Sd−1

such that χ(Γ(Xn, s)) ≤ (1− ε)n/(2 log2 n).

(iii) (supercritical; necessary.) If d = o(n2/(log n)6), then for all s ∈ Sd−1, χ(Γ(Xn, s)) ≤
(1 + ε)n/(2 log2 n).

(iv) (supercritical; sufficient.) If d ≥ .5 [(1 + ε)n/(2 log2 n)]2, then there exists s ∈
Sd−1 such that χ(Γ(Xn, s)) ≥ (1 + ε)n/(2 log2 n).

Part (i) of Theorem 3 follows from the following “uniform concentration” argument.

Proposition 4 If d = o(n/(log n)3), we have

sup
s∈Sd−1

∣∣∣∣χ(Γ(Xn, s))−
n

2 log2 n

∣∣∣∣ = op

(
n

log2 n

)
,

Proof A classical result of Shamir and Spencer (1987) shows that for any fixed s ∈ Sd−1,

|χ(Γ(Xn, s))− E (χ(Γ(Xn, s)))| = Op(n
1/2) .

In fact, one may easily combine the above-mentioned results of Bollobás and Shamir and
Spencer to obtain that

Eχ(Γ(Xn, s))

n/(2 log2 n)
→ 1 .

The proof of the proposition is based on combining the Shamir-Spencer concentration ar-
gument with Vapnik-Chervonenkis-style symmetrization.

For each s ∈ Sd−1 and i = 2, . . . , n, define Yi,s = (1{〈Xi,j ,s〉≥0}})j=1,...,i−1 ∈ {0, 1}i−1 as
the collection of indicators of edges connecting vertex i smaller-labeled vertices in Γ(Xn, s).
As Shamir and Spencer, we consider the chromatic number Γ(Xn, s) as a function of these
variables and define the function f :

∏n
i=2{0, 1}i−1 → N by

f(Y2,s, . . . , Yn,s) = χ(Γ(Xn, s)) .

9
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By Markov’s inequality, it suffices to show that

E

[
sup

s∈Sd−1

|f(Y2,s, . . . , Yn,s)− Ef(Y2,s, . . . , Yn,s)|

]
= o

(
n

log n

)
.

Let X ′n = (X ′i,j)1≤i<j≤n be an independent copy of Xn. Denote by E′ conditional expecta-

tion given Xn. We write Y ′i,s = (1{〈X′i,j ,s〉≥0}})j=1,...,i−1 ∈ {0, 1}i−1.

Also introduce random “swap operators” ε2, . . . , εn defined by

εi(Yi,s, Y
′
i,s) =

{
Yi,s with probability 1/2
Y ′i,s with probability 1/2

where the εi are independent of each other and of everything else.

E

[
sup

s∈Sd−1

|f(Y2,s, . . . , Yn,s)− Ef(Y2,s, . . . , Yn,s)|

]

= E

[
sup

s∈Sd−1

∣∣E′ (f(Y2,s, . . . , Yn,s)− f(Y ′2,s, . . . , Y
′
n,s)
)∣∣]

≤ E

[
sup

s∈Sd−1

∣∣f(Y2,s, . . . , Yn,s)− f(Y ′2,s, . . . , Y
′
n,s)
∣∣]

= E

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− f(ε2(Y ′2,s, Y2,s), . . . , εn(Y ′n,s, Yn,s))

∣∣] .

Introduce now the expectation operator Eε that computes expectation with respect to the
random swaps only. Then we can further bound the expectation above by

2EEε

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))

∣∣] .

Next we bound the inner expectation. Note that for fixed Xn,X
′
n, by Lemma 1, there

are at most n2d different dichotomies of the 2
(
n
2

)
points in Xn ∪X ′n by hyperplanes in-

cluding the origin and therefore there are not more than n2d random variables of the form
f(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s)) as s varies over Sd−1. On the other hand, for any fixed s,

the value of f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s)) can change by at most 1 if one flips the value

of one of the εi(Yi,s, Y
′
i,s) (i = 2, . . . , n), since such a flip amounts to changing the edges

incident to vertex i and therefore can change the value of the chromatic number by at most
one. Thus, by the bounded differences inequality (see, e.g., (Boucheron et al., 2013, Section
6.1)), for all s ∈ Sd−1 and λ > 0,

Eε
[
exp

(
λ(f(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s)))

)]
≤ exp

(
(n− 1)λ2

2

)
.

10
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Therefore, by a standard maximal inequality for sub-Gaussian random variables (Boucheron
et al., 2013, Section 2.5),

Eε

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))

∣∣]
≤
√

4(n− 1)d log n .

Since the upper bound is o(n/ log n) for d = o(n/ log3 n), the result follows.

Parts (ii) and (iv) of Theorem 3 follow from the next, straingforward proposition by
setting k = b(1− ε)n/(2 log2 n)c and k′ = d(1 + ε)n/(2 log2 n)e.

Proposition 5 Let k, k′ ≤ n be positive integers. If d ≥ k
(dn/ke

2

)
, then, with probability

one, there exists s ∈ Sd−1 such that χ(Γ(Xn, s)) ≤ k. On the other hand, if d ≥
(
k′

2

)
, then,

with probability one, there exists s ∈ Sd−1 such that χ(Γ(Xn, s)) ≥ k′.

Proof Partition the vertex set [n] into k disjoint sets of size at most dn/ke each. If for
some s ∈ Sd−1 each of these sets is an independent set (i.e., contain no edge joining two
vertices within the set) in Γ(Xn, s), then the graph Γ(Xn, s) is clearly properly colorable
with k colors. Let A be the set of pairs of vertices (i, j) such that i and j belong to the same
set of the partition. By Lemma 1, if d ≥ k

(dn/ke
2

)
≥ |A|, the set of points {Xi,j : (i, j) ∈ A}

is shattered by half spaces. In particular, there exists an s ∈ Sd−1 such that 〈Xi,j , s〉 < 0
for all (i, j) ∈ A and therefore Γ(Xn, s) has no edge between any two vertices in the same
set. The first statement follows.

To prove the second statement, simply notice that is a graph has a clique of size k then
its chromatic number at least k. But if d ≥

(
k
2

)
, then, by Lemma 1, for some s ∈ Sd−1, the

vertex set {1, . . . , k} forms a clique.

It remains to prove Part (iii) of Theorem 3. To this end, we combine the covering
argument used in parts (i) and (iii) of Theorem 2 with a result of Alon and Sudakov (2010)
(see Proposition 18 below) that bounds the “resilience” of the chromatic number of a random
graph.

Let Cη be a minimal η-cover of Sd−1 where we take η = cε2/(
√
d log2 n) for a sufficiently

small positive constant c. Then

P
{
∃s ∈ Sd−1 : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
where s0 = (1, 0, . . . , 0). By the argument used in the proof of parts (i) and (iii) of Theorem
2, ⋃

s∈Sd−1:‖s−s0‖≤η

Γ(Xn, s) ⊂ Γ(Xn, s0) ∪ E

11
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where E is a set of Bin(
(
n
2

)
, αn) edges where, αn = η

√
d√

2π
. By our choice of η, we have

αn ≤ c2ε
2n2/(log2 n)2 where c2 is the constant appearing in Proposition 18. Thus, by the

Chernoff bound,

P
{
|E| > c2ε

2n2

(log2 n)2

}
≤ exp

(
−c2(log 2− 1/2)ε2n2

(log2 n)2

)
.

Hence, by Proposition 18,

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
≤ exp

(
−c2(log 2− 1/2)ε2n2

(log2 n)2

)
+ exp

(
− c1n

2

(log2 n)4

)
.

Combining this bound with Lemma 10 implies the statement. �

4. Connectivity

In this section we study connectivity of the random graphs in Gd,p(Xn). It is well known
since the pioneering work of Erdős and Rényi (1960) that the threshold for connectivity for
a G(n, p) random graph is when p = c log n/n. For c < 1, the graph is disconnected and
for c > 1 it is connected, with high probability. In this section we investigate both regimes.
In particular, for c > 1 we establish lower and upper bounds for the smallest dimension d
such that some graph in Gd,c logn/n(Xn) is disconnected. We prove that this value of d is of
the order of (c− 1) log n/ log log n. For the regime c < 1 we also establish lower and upper
bounds for the smallest dimension d such that some graph in Gd,c logn/n(Xn) is connected.
As in the case of the clique number and chromatic number, here as well we observe a large
degree of asymmetry. In order to witness some connected graphs in Gd,c logn/n(Xn), the
dimension d has to be at least of the order of n1−c. While we suspect that this bound
is essentially tight, we do not have a matching upper bound. However, we are able to
show that when d is of the order of n log n, the family Gd,c logn/n(Xn) not only contains
connected graphs, but also, with high probability, for every spanning tree of the vertices
[n], there exists an s ∈ Sd−1 such that Γ(Xn, s, t) contains the spanning tree. (Recall that
t is such that p = 1− Φ(t).)

Theorem 6 (connectivity.) Assume p = c log n/n and let t = Φ−1(1 − p). Then with
high probability the following hold:

(i) (subcritical; necessary.) If c < 1 then for any ε > 0, if d = O(n1−c−ε), then for
all s ∈ Sd−1, Γ(Xn, s, t) is disconnected.

(ii) (subcritical; sufficient.) There exists an absolute constant C such that if d ≥
Cn
√

log n, then there exists an s ∈ Sd−1 such that Γ(Xn, s, t) is connected.

(iii) (supercritical; necessary.) If c > 1 then for any ε > 0, if d ≤ (1 − ε)(c −
1) log n/ log log n, then for all s ∈ Sd−1, Γ(Xn, s, t) is connected.

(iv) (supercritical; sufficient.) If c > 1 then for any ε > 0, if d ≥ (2 + ε)(c −
1) log n/ log log n, then for some s ∈ Sd−1, Γ(Xn, s, t) is disconnected.

12
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Proof of Theorem 6, part (i).

To prove part (i), we show that when d = O(n1−c−ε), with high probability, all graphs
Γ(Xn, s, t) contain at least one isolated point. The proof of this is based on a covering
argument similar those used in parts of Theorems 2 and 3, combined with a sharp estimate
for the probability that G(n, c log n/n) has no isolated vertex. This estimate, given in
Lemma 19 below, is proved by an elegant argument of O’Connell (1998).

Let η ∈ (0, 1] to be specified below and let Cη be a minimal η-cover of Sd−1. If N(s)
denotes the number of isolated vertices (i.e., vertices of degree 0) in Γ(Xn, s, t), then

P
{
∃s ∈ Sd−1 : Γ(Xn, s, t) is connected

}
≤ P

{
∃s ∈ Sd−1 : N(s) = 0

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : N(s) = 0

}
where s0 = (1, 0, . . . , 0). It follows by the first half of Lemma 13 that there exists a constant
κ > 0 such that if η = κε/(t

√
d), then

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
≤ P {N = 0}

where N is the number of isolated vertices in a G(n, (c + ε/2) log n/n) random graph. By
Lemma 19, for n sufficiently large, this is at most exp(−n−(1−c−ε/2)/3). Bounding |Cη| by
Lemma 10 and substituting the chosen value of η proves part (i).

Proof of Theorem 6, part (ii).

Part (ii) of Theorem 6 follows from a significantly more general statement. Based on a
geometrical argument, we show that for any positive integer k, if d is at least a sufficiently
large constant multiple of kΦ−1(1− p), then with high probability, k independent standard
normal vectors in Rd are shattered by half spaces of the form {x : 〈x, s〉 ≥ t}. In particular,
by taking k = n− 1 and considering the normal vectors Xi,j corresponding to the edges of
any fixed spanning tree, one finds an s ∈ Sd−1 such that Γ(Xn, s, t) contains all edges of
the spanning tree, making the graph connected. Note that if d ≥ Cn

√
α log n then the same

statement holds whenever p = n−α regardless of how large α is. Thus, for d � n
√

log n,
some Γ(Xn, s, t) are connected, even though for a typical s, the graph is empty with high
probability.

Fix a set E of edges of the complete graph Kn. We say that Gd,p(Xn) shatters E if
{e(G) : G ∈ Gd,p(Xn)} shatters E (where e(G) denotes the set of edges of a graph G).
In other words, Gd,p(Xn) shatters E if for all F ⊂ E there is G ∈ Gd,p(Xn) such that
e(G) ∩ E = F .

Proposition 7 Fix n ∈ N, k ∈ {1, 2, . . . ,
(
n
2

)
}, and a set E = {e1, . . . , ek} of edges of the

complete graph Kn. There exist universal constants b, c > 0 such that for d ≥ (4/c) · k ·
Φ−1(1− p) we have

P (Gd,p(Xn) shatters E) ≥ 1− e−bd .

13
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Proof Given points x1, . . . , xk in Rd, the affine span of x1, . . . , xk is the set {
∑k

i=1 ciXi :∑k
i=1 ci = 1}. Fix E = {e1, . . . , ek} ∈ Sk and let PE be the affine span of Xe1 , . . . , Xek .

Also, let t = Φ−1(1− p).

First suppose that min{‖y‖ : y ∈ PE} > t. Then we may shatter E as follows. First,
almost surely, PE is a (k − 1)-dimensional affine subspace in Rd. Assuming this occurs,
then E is shattered by halfspaces in PE : in other words, for any F ⊂ E there is a (k − 2)-
dimensional subspace H contained within PE such that F and E \ F lie on opposite sides
of H in PE (i.e., in different connected components of PE \H).

Fix F ⊂ E and H ⊂ PE as in the preceding paragraph. Then let K be a (d − 1)-
dimensional hyperplane tangent to tSd−1 = {x ∈ Rd : ‖x‖ = t}, intersecting PE only at
H, and separating the origin from F . In other words, K is such that K ∩ PE = H and
|K ∩ tSd−1| = 1, and also such that 0 and F lie on opposite sides of K of Rd \K. Since PE
has dimension k− 1 < d− 2, such a hyperplane K exists. Since F and E \F lie on opposite
sides of H, we also obtain that 0 and E \ F lie on the same side of K.

Let s ∈ Sd−1 be such that ts ∈ K. Then for e ∈ F we have 〈Xe, s〉 > t, and for e ∈ E \F
we have 〈Xe, s〉 < t. It follows that E ∩ Γ(X, s, t) = F . Since F ⊂ E was arbitrary, this
implies that

P(Gd,p(Xn) shatters E) ≥ P(min{‖y‖ : y ∈ PE} > Φ−1(1− p)) ,

In light of the assumption that d ≥ (4/c) · k ·Φ−1(1− p), the proposition is then immediate
from Lemma 8 below.

The key element of the proof of Proposition 7 is that the affine span of k ≤ 4d indepen-
dent standard normal vectors in Rd is at least at distance of the order of d/k from the origin.
This is made precise in the following lemma whose proof crucially uses a sharp estimate
for the smallest singular value of a d × k Wishart matrix, due to Rudelson and Vershynin
(2009).

Lemma 8 There exist universal constants b, c > 0 such that the following holds. Let
N1, . . . , Nk be independent standard normal vectors in Rd, let P be the affine span of
N1, . . . , Nk, and let D = min{‖y‖ : y ∈ P}. Then whenever d ≥ 4k, we have P(D ≤
cd/4k) < 2e−bd.
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Proof We use the notation y = (y1, . . . , yk). We have

D = min
y :

∑
yi=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

= min
y :

∑
yi=1
|y|2

∥∥∥∥∥
k∑
i=1

yi
‖y‖

Ni

∥∥∥∥∥
2

≥ min
y :

∑
yi=1

1

k

∥∥∥∥∥
k∑
i=1

yi
‖y‖

Ni

∥∥∥∥∥
2

≥ 1

k
min

y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

,

where the first inequality holds because if
∑k

i=1 yi = 1 then ‖y‖2 ≥ k−1 and the second by
noting that the vector (yi/‖y‖, 1 ≤ i ≤ k) has 2-norm 1.

Let N be the d × k matrix with columns N t
1, . . . , N

t
k, and write N = (Nij)ij∈[d]×[k].

Then

min
y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

=

(
min

y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
)2

=

(
min

y :|y|2=1
‖Xy‖

)2

.

The final quantity is just the square of the least singular value of X. Theorem 1.1 of
Rudelson and Vershynin (2009) states the existence of absolute constants b, B > 0 such
that for every ε > 0 we have

P
(

min
y :|y|=1

‖Xy‖ ≤ ε(
√
d−
√
k − 1)

)
≤ (Bε)(d−k+1) + e−bd .

If d ≥ 4(k − 1) then
√
d −
√
k − 1 ≥

√
d/2 and d − k + 1 > d. Combining the preceding

probability bound with the lower bound on D, if ε ≤ e−b/B we then obtain

P
(
D < ε2 d

4k

)
< 2e−bd.

Taking c = (e−b/B)2 completes the proof.

One may now easily use Proposition 7 to deduce part (ii) of Theorem 6:

Proposition 9 There are absolute constants b, C > 0 such that the following holds. For
all p ≤ 1/2, if d ≥ Cn

√
log(1/p) then with probability at least 1−e−bd there exists s ∈ Sd−1

such that Γ(X, s,Φ−1(1− p)) is connected.
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Proof Fix any tree T with vertices [n], and write E for the edge set of T . By Proposi-
tion 7, if d ≥ (4/c) ·k ·Φ−1(1−p) then with probability at least 1− e−bd there is s such that
Γ(X, s,Φ−1(1− p)) contains T , so in particular is connected. Now simply observe that for
p ≤ 1/2 we have Φ−1(1− p) ≤

√
2 log(1/p).

Observe that the exponentially small failure probability stipulated in Proposition 9
allows us to conclude that if d is at least a sufficiently large constant multiple of n(log n ∨√

log(1/p)), then, with high probability, for any spanning tree of the complete graph Kn

there exists s ∈ Sd−1 such that Γ(X, s,Φ−1(1− p)) contains that spanning tree.

Proof of Theorem 6, part (iii).

Let c > 1, ε ∈ (0, 1), and assume that d ≤ (1− ε)(c− 1) log n/ log logn. Let E be the event
that Γ(Xn, t, s) is disconnected for some s ∈ Sd−1. Let Cη be a minimal η-cover of Sd−1 for
η ∈ (0, 1] to be specified below. Then

E ⊆
⋃
s∈Cη

Es ,

where Es is the event that the graph
⋂
s′:‖s−s′‖≤η Γ(Xn, t, s

′) is disconnected. Let c′ =

c− (c−1)ε/2. Note that 1 < c′ < c. It follows from the second half of Lemma 13 that there
exists a constant κ > 0 such that if η = κ(1− c′/c)/(t

√
d), then

P {Es} ≤ P
{
G(n, c′ log n/n) is disconnected

}
≤ n1−c′(1 + o(1)) ,

where the second inequality follows from standard estimates for the probability that a
random graph is disconnected, see (Palmer, 1985, Section 4.3). Bounding |Cη| by Lemma
10, and using the fact that t =

√
2 log n(1 + o(1)), we obtain that

P{E} ≤ |Cη|n1−c′(1 + o(1))

≤ exp

(
d log logn

2
+
d log d

2
+O(d) + (1− c′) log n

)
→ 0 ,

as desired.

Proof of Theorem 6, part (iv).

Recall that p = c log n/n for c > 1 fixed, and that t = Φ−1(p). Let 0 < ε < 1, and assume
that d ≥ (2 + ε)(c − 1) log n/ log log n. Define θ ∈ (0, π/2) by θ = (log n)−1/(2+ε), so that
log(1/θ) = log log n/(2 + ε). Let P be a maximal θ-packing of Sd−1, that is, P ⊂ Sd−1 is
a set of maximal cardinality such that for all distinct s, s′ ∈ P we have 〈s, s′〉 ≤ cos θ. By
Lemma 11 we have that

|P| ≥ d

16
θ−(d−1) .

It suffices to prove that for some s ∈ P, Γ(Xn, s, t) contains an isolated vertex.
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For each s ∈ P, we write the number of isolated vertices in Γ(Xn, s, t) as

N(s) =
n∑
i=1

∏
j:j 6=i

Zi,j(s),

where Zi,j(s) equals 1 if {i, j} is not an edge in Γ(Xn, s, t) and is 0 otherwise. We use the

second moment method to prove that N
def
=
∑

s∈P N(s) > 0 with high probability. This
will establish the assertion of part (iv) since if N > 0 then there is s ∈ Sd−1 such that
Γ(Xn, s, t) contains an isolated vertex.

To show that N > 0 with high probability, by the second moment method it suffices to
prove that EN →∞ and that E[N2] = (EN)2(1 + o(1). First,

EN = |P| · n · P {vertex 1 is isolated in G(n, p)} = |P| · n(1− p)n−1.

The lower bound on |P| and the inequality 1− p ≤ e−p = n−c/n together imply

EN ≥ d

16
θ−(d−1)n1−c,

which tends to infinity by our choice of θ. We now turn to the second moment.

E[N2] =
∑
s,s′∈P

∑
i,j∈[n]

∏
k:k 6=i,`:`6=j

Zi,k(s)Zj,`(s
′) .

When s = s′, separating the inner sum into diagonal and off-diagonal terms yields the
identity∑
i,j

∏
k 6=i,` 6=j

Zi,k(s)Zj,`(s) = n(1−p)n−1+n(n−1)(1−p)2n−3 = n(1−p)n−1·[1+(n−1)(1−p)n−2] .

Let q = sups 6=s′,s,s′∈P P{Zi,j(s)Zi,j(s′) = 1} be the greatest probability that an edge is
absent in both Γ(Xn, s, t) and Γ(Xn, s

′, t). Then when s 6= s′, the inner sum is bounded
by

nqn−1 + n(n− 1) · q · (1− p)2n−4.

Combining these bounds, we obtain that

E[N2] ≤ |P|n(1−p)n−1 ·[1+(n−1)(1−p)n−2]+|P|(|P|−1)·[nqn−1+n(n−1)·q ·(1−p)2n−4] .

The first term on the right is at most EN(1 + EN/[(1− p)|P|]). The second is at most

|P|2n2(1−p)2(n−1)·
(

1

n

( q

(1− p)2

)n−1
+

q

(1− p)2

)
= (EN)2·

(
1

n

( q

(1− p)2

)n−1
+

q

(1− p)2

)
.

We will show below that q ≤ (1− p)2 · (1 + o(p)). Assuming this, the upper bounds on
the two terms on the right together give

E[N2]

[EN ]2
≤ 1

EN

(
1 +

EN
(1− p)|P|

)
+ no(1)−1 +

(1− ε) log n

n
→ 1 ,
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as required.

To prove the bound on q, fix s, s′ ∈ P such that q = P{Zi,j(s)Zi,j(s′) = 1}. Using the
definition of Zi,j(s) and Zi,j(s

′), we have

q = P
{
{i, j} 6∈ Γ(Xn, s, t), {i, j} 6∈ Γ(Xn, s

′, t),
}
.

We may apply Lemma 14 to this quantity, noting that in our case θ = (lnn)1/(2+ε), t =
O(
√

lnn) and ln(1/t p) = (1 + o(1)) lnn � θ−2. This means that the Remark after the
statement of the Lemma applies, and this gives precisely that q ≤ (1 − p)2 (1 + o(p)), as
desired. �
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Appendix A. Appendix

Here we gather some of the technical tools used in the paper. In the first section we
summarize results involving covering and packing results of the unit sphere that are essential
in dealing with the random graph process Gd,1/2(Xn). In Section A.2 we describe analogous
results needed for studying Gd,p(Xn) for small values of p. These lemmas play an important
role in the proof of Theorem 6. Finally, in Section A.3 we collect some results on G(n, p)
random graphs needed in our proofs.

A.1 Covering and packing

Let B(a, b) =
∫ 1

0 t
a−1(1 − t)b−1dt be the beta function, and let Ix(a, b) be the incomplete

beta function,

Ix(a, b) =

∫ x
0 t

a−1(1− t)b−1dt

B(a, b)
.

For α ∈ [0, π] and s ∈ Sd−1, let

Cα(s) = {s′ ∈ Sd−1 :
〈
s, s′

〉
≥ cosα}

18
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be the cap in Sd−1 consisting of points at angle at most α from s. For α ≤ π/2 the area of
this cap (see, e.g., Li (2011)) is

|Cα(s)| = |S
d−1|
2
· Isin2 θ

(
d− 1

2
,
1

2

)
. (1)

We use the following standard estimate of the covering numbers of the Euclidean sphere
(see, e.g., (Matoušek, 2002, Lemma 13.1.1)).

Lemma 10 For any η ∈ (0, 1] there exists a subset Cη of Sd−1 of size at most (4/η)d such
that for all s ∈ Sd−1 there exists s′ ∈ Cη with ‖s− s′‖ ≤ η.

We now provide a rough lower bound on the number of points that can be packed in Sd−1

while keeping all pairwise angles large.

Lemma 11 For any θ ∈ (0, π/2) there exists a subset Pθ of Sd−1 of size at least

d

16
θ−(d−1)

such that for all distinct s, s′ ∈ Pθ we have 〈s, s′〉 ≤ cos θ.

Proof
First note that it suffices to consider θ < 1/2 because otherwise the first bound domi-

nates. Consider N independent standard normal vectors X1, . . . , XN . Then Ui = Xi/‖Xi‖
(i = 1, . . . , N) are independent, uniformly distributed on Sd−1. Let

Z =

N∑
i=1

1{minj:j 6=i |〈Ui,Uj〉|≤cos(θ)}.

Denoting P{| 〈Ui, Uj〉 | > cos(θ)} = φ,

EZ = N(1− φ)N ≥ N(1− φN) ≥ N/2

whenever φN ≤ 1/2. Since Z ≤ N , this implies that

P
{
Z ≥ N

4

}
≥ EZ −N/4

N −N/4
≥ 1

3

and therefore there exists a packing set A of cardinality |A| ≥ N/4 as long as φN ≤ 1/2.
To study φ, note that

φ = P

{∑d
j=1 YjY

′
j

‖Y ‖ · ‖Y ′‖
> cos(θ)

}
where Y = (Y1, . . . , Yd), Y

′ = (Y ′1 , . . . , Y
′
d) are independent standard normal vectors. By

rotational invariance, we may replace Y ′ by (‖Y ′‖, 0, . . . , 0), and therefore

φ = P
{
Y 2

1

‖Y ‖
> cos2(θ)

}
= P

{
B ≤ cos2(θ)

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

≥ 2θd−1

d− 1
.
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The result follows.

The next lemma is used repeatedly in the proof of Theorem 2 and 3.

Lemma 12 Fix s′ ∈ Sd−1 and η ∈ (0, 1] and assume that d ≥ 12. The probability that
there exists s ∈ Sd−1 with ‖s − s′‖ ≤ η such that vertex 1 and vertex 2 are connected in
Γ(Xn, s) but not in Γ(Xn, s

′) is at most

η

√
d

2π
.

Proof Without loss of generality, assume that s′ = (1, 0, . . . , 0). Observe that the event
that there exists s′ ∈ Sd−1 with ‖s− s′‖ ≤ η such that vertex 1 and vertex 2 are connected
in Γ(Xn, s) but not in Γ(Xn, s

′) is equivalent to X1,2/‖X1,2‖ having its first component
between −η

√
1− η2/4 and 0 (see Figure 1). Letting Z = (Z1, . . . , Zd) be a standard normal

vector in Rd, the probability of this is

P
{
Z1

‖Z‖
∈
(
−η
√

1− η2/4, 0
)}

≤ P
{
Z1

‖Z‖
∈ (−η, 0)

}
=

1

2
P
{
B ≤ η2

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

=
1

2
Iη2(1/2, (d− 1)/2)

≤ 1

2B(1/2, (d− 1)/2)

∫ η2

0
x−1/2dx

=
η

2B(1/2, (d− 1)/2)

≤ η

√
d− 1

2π
.

A.2 Auxiliary results for Gd,p(Xn)

In this section we develop some of the main tools for dealing with the random graph process
Gd,p(Xn). We assume throughout the section that

p := 1− Φ(t) ≤ 1

2
. (2)

Recall from the start of Section A.1 that Cα(s) denotes the spherical cap consisting of all
unit vectors with an angle of ≤ α with s. We will use the following expressions for Cα(s):

Cα(s) = {s′ ∈ Sd−1 : ‖s− s′‖2 ≤ 2 (1− cosα)}
= {s cos θ + w sin θ : w ∈ Sd−1 ∩ {v}⊥, 0 ≤ θ ≤ α}. (3)

We are interested in studying the graphs Γ(Xn, s
′, t), for all s′ ∈ Cα(s) simultaneously.
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η/2

x

α

α

Figure 1: Since sin(α) = η/2, the height of the spherical cap that only includes points at
distance at least η from the equator is 1− sin(2α) = 1− η

√
1− (η/2)2.

Lemma 13 There exists a constant c > 0 such that, for all ε ∈ (0, 1/2), if t ≥ 0 and p are
as in (2),

0 ≤ α ≤ π

2
, tanα ≤ ε

(t ∨ 1)
√
d− 1

,

then, for some universal c > 0, if we define ε′ := ε+ c (ε2 + ε/(t2 ∨ 1)),

1. the union Γ+ :=
⋃
s′∈Cα(s) Γ(Xn, s

′, t) is stochastically dominated by G(n, (1 + ε′) p);

2. the intersection Γ− :=
⋂
s′∈Cα(s) Γ(Xn, s

′, t) stochastically dominates by G(n, (1 −
ε′) p).

Proof The first step in this argument is to note that the edges of both Γ+ and Γ− are
independent. To see this, just notice that, for any {i, j} ∈

(
[n]
2

)
, the event that {i, j} is an

edge in Γ± depends on Xn only through Xi,j . More specifically,

{i, j} ∈ Γ+ ⇔ ∃s′ ∈ Cα(s) :
〈
Xi,j , s

′〉 ≥ t;
{i, j} ∈ Γ− ⇔ ∀s′ ∈ Cα(s) : 〈Xi,j , s〉 ≥ t.

The main consequence of independence is that we will be done once we show that

(1− ε′) p ≤ P{{i, j} ∈ Γ−} ≤ P{{i, j} ∈ Γ+} ≤ (1 + ε′) p. (4)

As a second step in our proof, we analyze the inner product of Xi,j with s′ = s cos θ +
w sin θ ∈ Cα(s) (with the same notation as in (3)). Note that〈

s′, Xi,j

〉
= N cos θ +

〈
w,X⊥i,j

〉
sin θ = cos θ

(
N +

〈
w,X⊥i,j

〉
tan θ

)
,

where N := 〈Xi,j , s〉 and X⊥i,j is the component of Xi,j that is orthogonal to s. Crucially,
the fact that Xi,j is a standard Gaussian random vector implies that N is a standard
normal random variable and X⊥i,j is an independent standard normal random vector in s⊥.
Moreover,

∀w ∈ Sd−1|
〈
w,X⊥i,j

〉
| ≤ χ := ‖X⊥i,j‖.
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Since “θ 7→ tan θ” is increasing in [0, α], we conclude

∀s′ ∈ Cα(s) :
〈
s′, Xi,j

〉
= cos θ

(
N + ∆(s′)

)
, where |∆(s′)| ≤ (tanα)χ. (5)

Our third step is to relate the above to the events {{i, j} ∈ Γ±}. On the one hand,

{i, j} ∈ Γ+ ⇔ max
s′∈Cα(s)

〈
s′, Xi,j

〉
≥ t

⇒ N + max
s′∈Cα(s)

∆(s′) ≥ t (use (5) and 0 ≤ cos θ ≤ 1)

⇒ N ≥ t− (tanα)χ,

and we conclude (using the independence of N and χ) that

P{{i, j} ∈ Γ+} ≤ 1− E[Φ(t− (tanα)χ)]. (6)

Similarly,

{i, j} ∈ Γ− ⇔ min
s′∈Cα(s)

〈
s′, Xi,j

〉
≥ t

⇔ N + min
s′∈Cα(s)

∆(s′) ≥ t

cosα
(by (5) and cos θ ≥ cosα > 0)

⇐ N ≥ t

cosα
+ (tanα)χ,

and we conclude

P{{i, j} ∈ Γ−} ≥ E
[
1− Φ

(
t

cosα
+ (tanα)χ

)]
. (7)

The remainder of the proof splits into two cases, depending on whether or not

e
5t2

8 (1− Φ(t)) ≥ 1 (8)

Note that this condition holds if and only if t ≥ C for some C > 0, as 1−Φ(t) = e−(1+o(1))t2/2

when t→ +∞ and e
5t2

8 (1− Φ(t)) = 1/2 < 1 when t = 0.

Last step when (8) is violated. In this case t is bounded above, so p > c0 for some positive
constant c0 > 0. We combine (6) and (7) with the fact that Φ(t) is (2π)−1/2-Lipschitz. The
upshot is that

|1− Φ(t)− P{{i, j} ∈ Γ±}| ≤
1√
π

∣∣∣∣1− 1

cosα

∣∣∣∣ t+ E[χ] tanα.

Now χ is the norm of a d − 1 dimensional standard normal random vector, so E[χ] ≤√
E[χ2] =

√
d− 1. The choice of α implies:∣∣∣∣1− 1

cosα

∣∣∣∣ = O(sinα) = O

(
ε2

d− 1

)
, and tanα ≤ ε√

d− 1
.
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So

|1− Φ(t)− P{{i, j} ∈ Γ±}| ≤
1√
2π

(c ε2 + ε) ≤
[
ε+ c

(
ε2 +

ε

t2

)]
p

for some universal c > 0.

Last step when (8) is satisfied. We start with (7) and note that we can apply Lemma 16
with r := t and

h :=

(
1

cosα
− 1

)
t+ (tanα)χ ≤ O((tanα)2) t+ (tanα)χ.

After simple calculations, this gives

P{{i, j} ∈ Γ−}
1− Φ(t)

≥ E [exp (−X)] ,

where

X := O((tanα)2) (t2 + 1)− (t+ t−1) (tanα)χ− (tanα)2 ξ2 −O((tanα)2)t2.

By Jensen’s inequality, E[e−X ] ≥ e−E[X]. Since E[χ]2 ≤ E[χ2] = d−1 and tanα = ε/t
√
d− 1

in this case,

E[X] ≤ O
(

ε2

d− 1

)
+ (1 +O(ε+ t−2)) ε.

In other words, if we choose c > 0 in the statement of the theorem to be large enough, we
can ensure that

P{{i, j} ∈ Γ−}
1− Φ(t)

≥ (1− ε′).

We now turn to (6). Applying Lemma 16 below with r := t− χ tanα when r ≥ t/2, we get

1− Φ(t− (tanα)χ) ≤ e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 (1− Φ(t)). (9)

In fact, the same inequality holds when r < t/2, i.e., (tanα)χ > t/2, for in that case the

right-hand side is ≥ e
5t2

8 (1 − Φ(t)) ≥ 1 (recall that we are under the assumption (8)). So
(9) always holds, and integration over χ gives

P{{i, j} ∈ Γ+}
1− Φ(t)

≤ E[e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 ]. (10)

It remains to estimate the moment generating function on the right-hand side. The first
step is to note that, since E[ξ] is the norm of a d− 1 dimensional standard normal vector,
E[χ] ≤ E[χ2]1/2 =

√
d− 1. So by Cauchy Schwartz,

e−(t+ 2
t ) (tanα)

√
d−1 E[e(t+

2
t ) (tanα)χ+

(tan α)2 χ2

2 ]

≤ E[e(t+
2
t ) (tanα) (χ−E[χ])+

(tan α)2 χ2

2 ]

≤
√

E[e(2t+ 4
t ) (tanα) (χ−E[χ])]E[e(tan α)2 χ2 ]. (11)
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Next we estimate each of the two expectations on the right-hand side of the last line. In
the first case we have the moment generating function of χ−E[χ], where χ is a 1-Lipschitz
function of a standard Gaussian vector. A standard Gaussian concentration argument and
our definition of α give

E[e(2t+ 4
t ) (tanα) (χ−E[χ])] ≤ e

(2t+4
t )

2
(tanα)2

2 ≤ 1 + c0ε
2

for some universal constant c0 > 0. The second tem in (11) is the moment generating
function of χ2, a chi-squared random variable with d−1 degrees of freedom. Since (tanα)2 ≤
ε2/(d− 1) ≤ 1/2 under our assumptions, one can compute explicitly

E[e(tan α)2 χ2
] =

(
1

1− 2(tan α)2

)d/2
≤ 1 + c0 ε

2

for a (potentially larger, but still universal c0 > 0). Plugging the two estimates back into
(11), we obtain

E[e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 ] ≤ e(t+
2
t ) (tanα)

√
d−1 (1 + c0 ε

2),

and the fact that t (tanα)
√
d− 1 = ε implies that the right-hand side is ≤ 1+ε+c (t−2ε+ε2)

for some universal c > 0. Going back to (10) we see that this finishes our upper bound for
P{{i, j} ∈ Γ+}.

Correlations between edges and non-edges

In this case we consider s, s′ ∈ Sd−1 and look at correlations of “edge events.”

Lemma 14 For any t ≥ 1, 0 < θ < π, define

ξ := 1− cos θ, γ :=
(1− cos θ)2

sin θ
.

Then there exists a universal constant C > 0 such that for s, s′ ∈ Sd−1 such that 〈s, s′〉 ≤
cos θ, we have

P{〈Xij , s〉 ≥ t,
〈
Xij , s

′〉 ≥ t} ≤ p [(C p t)2ξ+ξ2 + e
γ (1−γ) t2+ γ

1−γ+ γ2 t2

2 p]. (12)

P{〈Xij , s〉 < t,
〈
Xij , s

′〉 < t} ≤ 1− 2p+ p [(C p t)2 ξ+ξ2 + e
γ (1−γ) t2+ γ

1−γ+ γ2 t2

2 p]

Remark 15 (nearly equal vectors.) Suppose p = o(1) and θ = o(1). One may check
that γ = (1 + o(1)) θ3/4 and ξ = (1 + o(1)) θ2/2. This means that if θ3 t2 = o(ln(1/p)) and
θ2 ln(1/t p) = ω(1), then

P{〈Xij , s〉 < t,
〈
Xij , s

′〉 < t} ≤ 1− 2p+ o(p) = (1− p)2 (1 + o(p)).

This is used in the proof of Theorem 6, part (iv) above.
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Proof We focus on the inequalities in (12), from which the other inqualities follow. For
convenience, we write η := cos θ and note that

η = 1− ξ, so γ = 1− 1− (1 + ξ)η√
1− η2

. (13)

Moreover, 0 < γ < 1: the first inequality is obvious, and the second follows from the fact
that

0 < θ <
π

2
⇒ 0 < γ =

(1− cos θ)2

sin θ
<

(1− cos θ) (1 + cos θ)

sin θ
=

1− cos2 θ

sin θ
= sin θ < 1.

Let E denote the event in (12). The properties of standard Gaussian vectors imply

P{E} = P({N1 ≥ t} ∩ {η N1 +
√

1− η2N2 ≥ t})

where N1, N2 are independent standard normal random variables. In particular, we can
upper bound

P{E} ≤ P{N1 ≥ (1 + ξ) t}+ P{N1 ≥ t}P

{
N2 ≥

(
1− (1 + ξ)η√

1− η2

)
t

}
, (14)

The first term in the right-hand side is 1−Φ(t+ξt) ≤ e−
ξ2t
2
−ξt2 (1−Φ(t)) = e−

2ξ+ξ2

2
t2 (1−

Φ(t)) by Lemma 16. The fact that

lim
t→+∞

(1− Φ(t))

e−t2/2/(t
√

2π)
= 1,

implies that, for t > 1, the ratio e−t
2/2/p is bounded by a C t, C > 0 a constant. We

conclude
P{N1 ≥ (1 + ξ) t} ≤ p (e−t

2/2)2ξ+ξ2 ≤ p (C t p)2ξ+ξ2 . (15)

As for the second term in the right-hand side of (14), we apply Lemma 16 with

r :=
t (1− (1 + ξ)η)√

1− η2
= (1− γ) t and h := γ t.

We deduce:

P

{
N2 ≥

(
1− (1 + ξ)η√

1− η2

)
t

}
= 1− Φ(r) ≤ eγ (1−γ) t2+ γ

1−γ+ γ2 t2

2 (1− Φ(t)),

The proof finishes by combining the estimates for the right-hand side of (14).

Lemma 16 If ε ∈ (0, 1/2), r > 0 and h ≥ 0,

e−h r−
h
r
−h

2

2 ≤ 1− Φ(r + h)

1− Φ(r)
≤ e−h r−

h2

2 .
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Proof We first show the upper bound, namely:

∀r, h > 0 : 1− Φ(r + h) ≤ e−r h−
h2

2 (1− Φ(r)). (16)

To see this, we note that:

1− Φ(r + h) =

∫ +∞

0

e−
(x+r+h)2

2

√
2π

dx

=

∫ +∞

0

e−
(x+r)2

2

√
2π

e−(x+r+h
2 )h dx

≤
∫ +∞

0

e−
(x+r)2

2

√
2π

e−r h−
h2

2 dx

= [1− Φ(r)] e−r h−
h2

2 .

To continue, we go back to the formula

1− Φ(r + h) =

∫ +∞

0

e−
(x+r)2

2 e−(x+r)h

√
2π

dx

 e−
h2

2 ,

which is clearly related to

1− Φ(r) =

∫ +∞

0

e−
(x+r)2

2

√
2π

dx.

In fact, inspection reveals that

1− Φ(r + h)

1− Φ(r)
= e−

h2

2 E[e−hN | N ≥ r].

Using Jensen’s inequality, we have

1− Φ(r + h)

1− Φ(r)
≥ e−

h2

2 e−hE[N |N≥r],

and (16) means that P{N − r ≥ t | N ≥ r} ≤ e−t r, so E[N | N ≥ r] ≤ r + 1
r . We deduce:

1− Φ(r + h)

1− Φ(r)
≥ e−

h2

2 e−h r−
h
r ,

as desired.

A.3 Random graph lemmas

Here we collect some results on random graphs that we need in the arguments. In the
proof of Theorem 2 we use the following lower tail estimate of the clique number of an
Erdős-Rényi random graph that follows from a standard use of Janson’s inequality.
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Lemma 17 Let Nk denote the number of cliques of size k of a G(n, 1/2−αn) Erdős-Rényi
random graph where 0 ≤ αn ≤ 1/n and let δ > 2. Denote ω = 2 log2 n − 2 log2 log2 n +
2 log2 e− 1. If k = bω − δc, then there exists a constant C ′ such that for all n,

P {Nk = 0} ≤ exp

(
−C ′n2

(log2 n)8

)
.

Proof Write p = 1/2−αn and define ωp = 2 log1/p n− 2 log1/p log1/p n+ 2 log1/p(e/2) + 1.
We use Janson’s inequality ((Janson et al., 2000, Theorem 2.18)) which implies that

P {Nk = 0} ≤ exp

(
−(ENk)

2

∆

)
,

where ENk =
(
n
k

)
p(
k
2) and

∆ =

k∑
j=2

(
n

k

)(
k

j

)(
n− k
k − j

)
p2(k−j2 )−(j2)−2j(k−j) .

To bound the ratio ∆/(ENk)
2, we may repeat the calculations of Matula’s theorem on the

2-point concentration of the clique number (Matula (1972)), as in (Palmer, 1985, Section
5.3).

Let β = log1/p(3 log1/p n)/ log1/p n and define m = bβkc Then we split the sum

∆

(ENk)2
=

k∑
j=m

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) +
m−1∑
j=2

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) .

To bound the first term, we write

k∑
j=m

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) =
F (m)

ENk
,

where F (m) =
∑k

j=m

(
k
j

)(
n−k
k−j
)
p−(j2)+(k2). Now if k = bωp− δc for some δ ∈ (0, ωp), then the

computations in (Palmer, 1985, pp.77–78) show that

F (m) ≤
∞∑
j=0

(
kn
√

1/p

p−k(1+β)/2

)j
,

which is bounded whenever
kn
√

(1/p)

p−k(1+β)/2
= o(1) .

This is guaranteed by our choice of β = log1/p(3 log1/p n)/ log1/p n. Hence, the first term is
bounded by

F (m)

ENk
= O(1)

√
kpkδ/2 .
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For the second term, once again just like in Palmer (1985), note that

m−1∑
j=2

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) ≤ O(1)
m−1∑
j=2

k2j

nj
p−(j2)

≤ O(1)
m−1∑
j=2

(
kp−m/2

n

)j

≤ O(1)
m−1∑
j=2

(
2(log1/p n)4

n

)j

≤ O

(
(log1/p n)8

n2

)
.

Putting everything together, we have that there exist constants C,C ′ such that for k =
bωp − δc,

P {Nk = 0} ≤ exp

−C ((log1/p n)8

n2
+ pkδ/2

√
k

)−1
 ≤ exp

(
−C ′n2

(log2 n)8

)
,

whenever δ > 2. Noting that ωp = ω +O(αn log n) completes the proof.

Part (iii) of Theorem 3 crucially hinges on the following interesting result of Alon and
Sudakov (2010) on the “resilience” of the chromatic number of a G(n, 1/2) random graph.
The form of the theorem cited here does not explicitly appear in Alon and Sudakov (2010)
but the estimates for the probability of failure follow by a simple inspection of the proof of
their Theorem 1.2.

Proposition 18 (Alon and Sudakov, 2010, Theorem 1.2). There exist positive con-
stants c1, c2 such that the following holds. Let ε > 0 and let G be a G(n, 1/2) random
graph. With probability at least 1 − exp(c1n

2/(log n)4), for every collection E of at most
c2ε

2n2/(log2 n)2 edges, the chromatic number of G ∪ E is at most (1 + ε)n/(2 log2 n).

The final lemma is used in proving part (i) of Theorem 6.

Lemma 19 Fix c ∈ (0, 1). With p = c log n/n, let N be the number of isolated vertices in
G(n, p). Then for n large, P(N = 0) ≤ exp(−n1−c/3).

Proof The following approach is borrowed from O’Connell (1998). Fix q = 1 −
√

1− p
and let D(n, q) be the random directed graph with vertices [n] in which each oriented edge
ij appears independently with probability q. Write I for the number of vertices of D(n, q)
with no incoming edges, and M for the number of isolated vertices in D(n, q), with no
incoming or outgoing edges. Then M and N have the same distribution. Next, observe
that I has law Bin

(
n, (1− q)n−1

)
= Bin

(
n, (1− p)(n−1)/2

)
. Furthermore, conditional on I,

M
d
= Bin

(
I, (1− p)(n−I)/2

)
.
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It follows that

P(N = 0) = P(M = 0)

≤ P(|I − EI| > EI/2) + sup
k∈(1/2)EI,(3/2)EI

P(Bin
(
k, (1− p)(n−k)/2

)
= 0). (17)

For the first term, a Chernoff bound gives

P(|I − EI| > EI/2) ≤ 2e−EI/10 = 2e−n(1−p)(n−1)/2/10 = e−(1+o(1))n1−c/2/10 , (18)

where the last inequality holds since (1 − p)(n−1)/2 = (1 + o(1)n−c/2. Next, fix k as in the
above supremum. For such k we have p(n − k) = c log n + O(log n/nc/2). Using this fact
and that 1− p ≥ e−p−p2 for p small yields

P(Bin
(
k, (1− p)(n−k)/2

)
= 0) = (1− (1− p)(n−k)/2)k

≤ exp
(
−k(1− p)(n−k)/2

)
= exp

(
−ke−(p+p2)(n−k)/2

)
= exp

(
−(1 + o(1))kn−c/2

)
.

Using that 1− p ≥ e−p−p2 a second time gives

k ≥ EI/2 = n(1− p)(n−1)/2/2 ≥ (1 + o(1))ne−np/2/2 = (1 + o(1))n1−c/2/2.

The two preceding inequalities together imply that

P(Bin
(
k, (1− p)(n−k)/2

)
= 0) ≤ exp

(
−(1/2 + o(1)) · n1−c) .

Using this bound and (18) in the inequality (17), the result follows easily.
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P. Erdős and A. Rényi. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

S. Janson, T.  Luczak, and A. Ruciński. Random Graphs. John Wiley, New York, 2000.

S. Li. Concise formulas for the area and volume of a hyperspherical cap. Asian J.
Math. Stat., 4(1):66–70, 2011. ISSN 1994-5418. doi: 10.3923/ajms.2011.66.70. URL
http://dx.doi.org/10.3923/ajms.2011.66.70.
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L. Schläffli. Gesammelte Mathematische Abhandlungen. Birkhäuser-Verlag, Basel, 1950.
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