Concentration of the spectral norm of Erdős-Rényi random graphs *

Gábor Lugosi ${ }^{+1}$ Shahar Mendelson ${ }^{\mathbb{I}}$ Nikita Zhivotovskiy II

January 6, 2018

Abstract

We present results on the concentration properties of the spectral norm $\left\|A_{p}\right\|$ of the adjacency matrix A_{p} of an Erdős-Rényi random graph $G(n, p)$. We prove sharp sub-Gaussian moment inequalities for $\left\|A_{p}\right\|$ for all $p \in\left[c \log ^{3} n / n, 1\right]$ that improve the general bounds of Alon, Krivelevich, and Vu [1] for small values of p. We also consider the Erdős-Rényi random graph process and prove that $\left\|A_{p}\right\|$ is uniformly concentrated.

1 Introduction

An Erdős-Rényi random graph $G(n, p)$, named after the authors of the pioneering work [9], is a graph defined on the vertex set $[n]=\{1, \ldots, n\}$ in which any two vertices $i, j \in[n], i \neq j$, are connected by an edge independently, with probability p. Such a random graph is represented by its adjacency matrix $A_{p} . A_{p}$ is a symmetric

[^0]matrix whose entries are
\[

A_{i, j}^{(p)}= $$
\begin{cases}0 & \text { if } i=j \tag{1.1}\\ \mathbb{1}_{U_{i, j}<p} & \text { if } 1 \leq i<j \leq n \\ \mathbb{1}_{U_{i, j}<p} & \text { if } 1 \leq j<i \leq n,\end{cases}
$$
\]

where $\left(U_{i, j}\right)_{1 \leq i<j \leq n}$ are independent random variables, uniformly distributed on $[0,1]$ and $\mathbb{1}$ stands for the indicator function. We call the family of random matrices $\left(A_{p}\right)_{p \in[0,1]}$ the Erdős-Rényi random graph process.

Spectral properties of adjacency matrices of random graphs have received considerable attention, see Füredi and Komlós [11], Krivelevich and Sudakov [13], Vu [18], Erdős, Knowles, Yau, and Yin [10], Benaych-Georges, Bordenave, and Knowles [3, 4], Jung and Lee [12], Tran, Vu, and Wang [16], among many other papers.

In this paper we are primarily concerned with concentration properties of the spectral norm $\left\|A_{p}\right\|$ of the adjacency matrix. It follows from a general concentration inequality of Alon, Krivelevich, and Vu [1] for the largest eigenvalue of symmetric random matrices with bounded independent entries that for all $n \geq 1$, $p \in[0,1]$, and $t>0$,

$$
\begin{equation*}
\mathbb{P}\left\{\left|\left|A_{p}\|-\mathbb{E}\| A_{p} \|\right|>t\right\} \leq 2 e^{-t^{2} / 32}\right. \tag{1.2}
\end{equation*}
$$

In particular, $\operatorname{Var}\left(\left\|A_{p}\right\|\right) \leq C$ for a universal constant C. (One may take $C=16$, see [7, Example 3.14].) In this paper we strengthen (1.2) in two different ways. First we show that, for small values of $p,\left\|A_{p}\right\|$ is significantly more concentrated than what this bound suggests. Indeed, we prove that there exists a universal constant C such that

$$
\operatorname{Var}\left(\left\|A_{p}\right\|\right) \leq C p
$$

for all n and $p \geq C \log ^{3} n / n$. We also prove sub-Gaussian inequalities for moments of $\left\|A_{p}\right\|$ of higher order (up to order approximately $n p$). The precise statement is given in Theorem 1 in Section 2.1 below.

The other results of this paper concern uniform concentration of the spectral norm. In particular, we prove that there exists a universal constant C such that

$$
\mathbb{E} \sup _{p \geq C \log n / n}\left|\left\|A_{p}\right\|-\mathbb{E}\left\|A_{p}\right\|\right| \leq C
$$

(see Theorem 2below). We leave open the question whether the restriction to the range $p \in[C \log n / n, 1]$ is necessary for uniform concentration. For the entire range $p \in[0,1]$, we are able to prove the slightly weaker inequality

$$
\mathbb{E} \sup _{p \in[0,1]}\left|\left\|A_{p}\right\|-\mathbb{E}\left\|A_{p}\right\|\right| \leq C \sqrt{\log \log n}
$$

for a constant C (Theorem 3).
We also prove

$$
\mathbb{P}\left\{\sup _{p \geq C \log n / n}\left|\left\|A_{p}\right\|-\mathbb{E}\left\|A_{p}\right\|\right|>t\right\} \leq e^{-t^{2} / C}
$$

a uniform version of the sub-Gaussian inequality 1.2.
Note that it follows from the Perron-Frobenius theorem that the spectral norm of A_{p} equals the largest eigenvalue of A_{p}, that is, $\left\|A_{p}\right\|=\lambda_{p}$. We use both interchangeably throughout the paper, depending on the particular interpretation that is convenient.

The proof of both inequalities crucially hinges on the so-called delocalization property of the eigenvector corresponding to the largest eigenvalue (see Erdős, Knowles, Yau, and Yin [10], Mitra [15]), that is, the fact that the normalized eigenvector corresponding to the largest eigenvalue is close, in a certain sense, to the vector $(1 / \sqrt{n}, \ldots, 1 / \sqrt{n})$. We provide delocalization bounds for the top eigenvector of A_{p} tailored to our needs (Lemma 1p and a uniform delocalization inequality (Lemma 4).

The rest of the paper is organized as follows. In Section 2 we formalize and discuss the results of the paper, including the moment inequalities for $\left\|A_{p}\right\|$ and the uniform concentration results. The proofs are presented in Section 3 .

2 Results

2.1 Moment inequalities for the spectral norm

The first result of the paper shows that typical deviations of $\left\|A_{p}\right\|$ from its expected value are of the order of \sqrt{p}. This is in accordance with the asymptotic normality theorem of Füredi and Komlós [11]. However, while the result of [11] holds for fixed p as $n \rightarrow \infty$, the theorem below is non-asymptotic. In particular, it holds for $p=o(1)$ as long as $n p$ is at least of the order of $\log ^{3} n$. Note that the non-asymptotic concentration inequality of [1] only implies that typical deviations are $O(1)$.
Theorem 1. There exist constants $c, C, C^{\prime}, \kappa>0$ such that for all n and $p \geq \kappa \log ^{3}(n) / n$

$$
\operatorname{Var}\left(\left\|A_{p}\right\|\right) \leq C p
$$

Moreover, for every $k \in\left(2, \frac{\left(\frac{\log (n p)}{\log n}\right)^{2} p(n-1)-\log (8(n-1))}{\log \left(\frac{1}{p}\right)+\log \left(11^{5} / 4\right)}\right]$,

$$
\mathbb{E}\left[\left(\left\|A_{p}\right\|-\mathbb{E}\left\|A_{p}\right\|\right)_{+}\right]^{1 / k} \leq(C k p)^{\frac{1}{2}}
$$

and

$$
\mathbb{E}\left[\left(\left\|A_{p}\right\|-\mathbb{E}\left\|A_{p}\right\|\right)_{-}\right]^{1 / k} \leq\left(C^{\prime} k p\right)^{\frac{1}{2}}
$$

It is natural to ask whether the condition $p \geq \kappa \log ^{3}(n) / n$ is necessary. The fact that the inequality $\operatorname{Var}\left(\left\|A_{p}\right\|\right) \leq C p$ cannot hold for all values of p is easily seen by taking $p=c / n^{2}$ for a positive constant c. In this case, the probability that the graph $G(n, p)$ is empty is bounded away from zero. In that case $\left\|A_{p}\right\|=0$. On the other hand, with a probability bounded away from zero, the graph $G(n, p)$ contains a single edge, in which case $\left\|A_{p}\right\|=1$. Thus, for $p=c / n^{2}, \operatorname{Var}\left(\left\|A_{p}\right\|\right)=$ $\Omega(1)$, showing that the bound of [1] is sharp in this range. Understanding the concentration properties of $\left\|A_{p}\right\|$ in the range $n^{-2} \ll p \ll \log ^{3}(n) / n$ is an intriguing open question.

The proof of Theorem 1 is presented in Section 3.1. The proof reveals that for the values of the constants one may take $\kappa=2 \times 835^{2}, C=966306, C^{\prime}=$ 1339945, and $c=1 / 9408$. However, these values have not been optimized. In the rest of this discussion we assume these numerical values.

Using the moment bound with $k=t^{2} /(2 C p)$, Markov's inequality implies that for all $0<t \leq 2 \sqrt{C c} p \sqrt{n-1} \log (n p) /(\log n \log (1 / p))$,

$$
\mathbb{P}\left\{\left\|A_{p}\right\|>\mathbb{E}\left\|A_{p}\right\|+t\right\} \leq 2^{-t^{2} /(2 C p)}
$$

The proof is based on general moment inequalities of Boucheron, Bousquet, Lugosi, and Massart [6] (see also [7, Theorems 15.5 and 15.7]) that state that if $Z=$ $f\left(X_{1}, \ldots, X_{n}\right)$ is a real random variable that is a function of the independent random variables X_{1}, \ldots, X_{n}, then for all $k \geq 2$,

$$
\begin{equation*}
\mathbb{E}\left[(Z-\mathbb{E} Z)_{+}^{k}\right]^{1 / k} \leq \sqrt{3 k}\left(\mathbb{E}\left[V_{+}^{k / 2}\right]\right)^{1 / k}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[(Z-\mathbb{E} Z)_{-}^{k}\right]^{1 / k} \leq \sqrt{4.16 k}\left(\left(\mathbb{E}\left[V_{+}^{k / 2}\right]\right)^{1 / k} \vee \sqrt{k}\left(\mathbb{E}\left[M^{k}\right]\right)^{1 / k}\right) \tag{2.2}
\end{equation*}
$$

where the random variable V_{+}is defined as

$$
V_{+}=\mathbb{E}^{\prime} \sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)_{+}^{2}
$$

Here $Z_{i}^{\prime}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)$ with $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ being independent copies of X_{1}, \ldots, X_{n} and \mathbb{E}^{\prime} denotes expectation with respect to $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$. Moreover,

$$
M=\max _{i}\left(Z-Z_{i}^{\prime}\right)_{+} .
$$

Recall also that, by the Efron-Stein inequality (e.g., (see also [7] Theorem 3.1])

$$
\operatorname{Var}(Z) \leq \mathbb{E} V_{+} .
$$

The proof of Theorem 1 is based on (2.1), applied for the random variable $Z=$ $\left\|A_{p}\right\|$. In order to bound moments of the random variable V_{+}, we make use of the fact that the eigenvector of A_{p} corresponding to the largest eigenvalue is nearly uniform. An elegant way of proving such results appears in Mitra [15]. We follow Mitra's approach though we need to modify his arguments in order to achieve stronger probabilistic guarantees for weak ℓ_{∞} delocalization bounds. In Lemma 1 we provide the bound we need for the proof of Theorem 1 .

2.2 Uniform concentration for the Erdős-Rényi random graph process

Next we state our inequalities for the uniform concentration of the spectral norm $\left\|A_{p}\right\|$-or, equivalently, for the largest eigenvalue λ_{p} of the adjacency matrix A_{p} defined by (1.1). Our first result shows that

Theorem 2. There exists a constant C such that, for all n,

$$
\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq C .
$$

Moreover, for all $t \geq 2 C$,

$$
\mathbb{P}\left\{\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \geq t\right\} \leq \exp \left(-t^{2} / 128\right) .
$$

For the numerical constant, our proof provides the (surely suboptimal) value $C=5 \times 10^{8}$. Once again, our proof is based on the fact that the normalized eigenvector corresponding to the largest eigenvalue of A_{p} stays close to the vector $(1 / \sqrt{n}, \ldots, 1 / \sqrt{n})$. In Lemma 4 we prove an ℓ_{2} bound that holds uniformly over intervals of the form $[q, 2 q]$ when $q \in[4 \log n / n, 1 / 2]$. It is because of the restriction of the range of q in the uniform delocalization lemma that we need to impose $p \geq 64 \log n / n$ in Theorem 2, We do not know whether the uniform concentration bound holds over the entire interval $p \in[0,1]$. However, we are able to prove the following, only slightly weaker bound.

Theorem 3. There exists a constant C^{\prime} such that, for all n,

$$
\mathbb{E} \sup _{p \in[0,1]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq C^{\prime} \sqrt{\log \log n}
$$

The proof of Theorem 3 uses direct approximation arguments to handle the interval $p \in[0,64 \log n / n]$. In particular, we show that

$$
\mathbb{E} \sup _{p \in[0,64 \log n / n]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq 5 \sqrt{16+2 \log \log n}
$$

which, combined with Theorem 2 implies Theorem 3 ,

3 Proofs

3.1 Proof of Theorem 1

Let v_{p} denote an eigenvector corresponding to the largest eigenvalue of A_{p} such that $\left\|v_{p}\right\|=1$. Recall that $\kappa=2 \times 835^{2}$ and $c=1 / 9408$. One of the key elements of the proof is the following variant of a delocalization inequality of Mitra [15].

Lemma 1. Let $n \geq 7$ and $p \geq \kappa \log ^{3}(n) / n$. Let v_{p} denote an eigenvector corresponding to the largest eigenvalue λ_{p} of A_{p} with $\left\|v_{p}\right\|_{2}=1$. Then, with probability at least

$$
\begin{gathered}
1-4(n-1) \exp \left(-2 c\left(\frac{\log (n p)}{\log n}\right)^{2}(n-1) p\right), \\
\left\|v_{p}\right\|_{\infty} \leq \frac{11}{\sqrt{n}}
\end{gathered}
$$

The lemma is proved in Section 3.3 below. Based on this lemma, we may prove Theorem 1 :

Proof of Theorem 1. We apply 2.1 for the random variable $Z=\left\|A_{p}\right\|$, as a function of the $\binom{n}{2}$ independent Bernoulli random variables $A_{i, j}=A_{i, j}^{(p)}, 1 \leq i<j \leq n$. Let E_{1} denote the event $\left\|v_{p}\right\|_{\infty} \leq 11 / \sqrt{n}$. By Lemma 1 .

$$
\mathbb{P}\left\{E_{1}\right\} \geq 1-4(n-1) \exp \left(-\frac{1}{4704}\left(\frac{\log (n p)}{\log n}\right)^{2}(n-1) p\right)
$$

For $1 \leq i<j \leq n$, denote by $\lambda_{i, j}^{\prime}$ the largest eigenvalue of the adjacency matrix obtained by replacing $A_{i, j}$ (and $A_{j, i}$) by an independent copy $A_{i, j}^{\prime}$ and keeping all other entries unchanged. If the components of the eigenvector v_{p} (corresponding to the eigenvalue $\left.\lambda_{p}\right)$ are $\left(v_{1}, \ldots, v_{n}\right)$, then

$$
V_{+}=\mathbb{E}^{\prime} \sum_{i<j}^{n}\left(\lambda_{p}-\lambda_{i, j}^{\prime}\right)_{+}^{2} \leq 4 \sum_{i<j}^{n} \mathbb{E}^{\prime}\left[v_{i}^{2} v_{j}^{2}\left(A_{i, j}-A_{i, j}^{\prime}\right)^{2}\right]=4 \sum_{i<j}^{n} v_{i}^{2} v_{j}^{2}\left(p+(1-2 p) A_{i, j}\right)_{+} .
$$

Since $\left(A_{i, j}-A_{i, j}^{\prime}\right)^{2} \leq 1$ and $\sum_{i} v_{i}^{2}=1$, we always have $V_{+} \leq 4$. On the event E_{1}, we have a better control:

$$
V_{+} \mathbb{1}_{E_{1}} \leq \frac{4 \cdot 11^{4}}{n^{2}}\left(\binom{n}{2} p+(1-2 p) \sum_{i<j} A_{i, j}\right)
$$

Let E_{2} denote the event that $\sum_{i<j}^{n} A_{i, j} \leq p n(n-1)$. By Bernstein's inequality, $\mathbb{P}\left\{E_{2}\right\} \geq$ $1-\exp \left(-\frac{3 p n(n-1)}{8}\right)$. Then

$$
V_{+} \mathbb{1}_{E_{1} \cap E_{2}} \leq 11^{5} p
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[\left(V_{+}\right)^{\frac{k}{2}}\right] & =\mathbb{E}\left[\left(V_{+}\right)^{\frac{k}{2}} \mathbb{1}_{E_{1} \cap E_{2}}\right]+\mathbb{E}\left[\left(V_{+}\right)^{\frac{k}{2}}\left(\mathbb{1}_{\bar{E}_{1}}+\mathbb{1}_{\bar{E}_{2}}\right)\right] \\
& \leq\left(11^{5} p\right)^{k / 2}+4^{k / 2}\left(\mathbb{P}\left\{\bar{E}_{1}\right\}+\mathbb{P}\left\{\bar{E}_{2}\right\}\right) \\
& \leq 2\left(11^{5} p\right)^{k / 2},
\end{aligned}
$$

whenever $\mathbb{P}\left\{\bar{E}_{1}\right\}+\mathbb{P}\left\{\bar{E}_{2}\right\} \leq\left(11^{5} p / 4\right)^{k / 2}$. This holds whenever

$$
8(n-1) \exp \left(-\frac{1}{4704}\left(\frac{\log (n p)}{\log n}\right)^{2}(n-1) p\right) \leq\left(11^{5} p / 4\right)^{k / 2},
$$

guaranteed by assumption on k. The proof of the bound for the upper tail follows from (2.1). The bound for the variance follows from the Efron-Stein inequality.

For the bound for the lower tail we use (2.2). Note that

$$
\max _{i<j}\left(\lambda_{p}-\lambda_{i, j}^{\prime}\right)_{+} \mathbb{1}_{E_{1}} \leq 2\left(v_{i} v_{j}\left(A_{i, j}-A_{i, j}^{\prime}\right)\right)_{+} \mathbb{1}_{E_{1}} \leq \frac{72}{n},
$$

and therefore

$$
\mathbb{E} \max _{i<j}\left(v_{i} v_{j}\left(A_{i, j}-A_{i, j}^{\prime}\right)\right)_{+}^{k} \mathbb{1}_{E_{1}} \leq\left(\frac{72}{n}\right)^{k}
$$

Moreover,

$$
\mathbb{E} \max _{i<j}\left(v_{i} v_{j}\left(A_{i, j}-A_{i, j}^{\prime}\right)\right)_{+}^{k} \mathbb{1}_{\bar{E}_{1}} \leq \mathbb{P}\left\{\bar{E}_{1}\right\} \leq 4(n-1) \exp \left(-\frac{1}{4704}\left(\frac{\log (n p)}{\log (n)}\right)^{2}(n-1) p\right)
$$

We require

$$
\left(\frac{72}{n}\right)^{k} \geq 4(n-1) \exp \left(-\frac{1}{4704}\left(\frac{\log (n p)}{\log (n)}\right)^{2}(n-1) p\right)
$$

which holds whenever

$$
k \leq \frac{\frac{1}{4704}\left(\frac{\log (n p)}{\log (n)}\right)^{2}(n-1) p-\log (4(n-1))}{\log \left(\frac{n}{72}\right)}
$$

Under this condition

$$
\left(\mathbb{E} \max _{i<j}\left(v_{i} v_{j}\left(A_{i, j}-A_{i, j}^{\prime}\right)\right)_{+}^{k}\right)^{\frac{1}{k}} \leq \frac{144}{n} .
$$

Under our conditions for k, we have $k(144 / n)^{2} \leq 2 \cdot 11^{5} p$ and therefore 2.2 implies the last inequality of Theorem 1 .

3.2 Proof of Theorem 2

We begin by noting that, if $p \leq q$, then A_{q} is element-wise greater than or equal to A_{p} and therefore $\left\|A_{p}\right\| \leq\left\|A_{q}\right\|$ whenever $p \leq q$. (see Corollary 1.5 in [5]).

We start with a lemma for the expected spectral norm for a sparse ErdősRényi graph. Since the largest eigenvalue of the adjacency matrix is always bounded by the maximum degree of the graph, $\mathbb{E}\left\|A_{\frac{1}{n}}\right\|$ is at most of the order $\log n$. The next lemma improves this naive bound to $O(\sqrt[n]{\log n})$. With more work, it is possible to improve the rate to $\sqrt{\frac{\log n}{\log \log n}}$ (see the asymptotic result in [13]). However, this slightly weaker version is sufficient for our purposes.
Lemma 2. For all n,

$$
\mathbb{E}\left\|A_{\frac{1}{n}}\right\| \leq 173 \sqrt{\log n}
$$

Proof. First write

$$
\mathbb{E}\left\|A_{\frac{1}{n}}\right\| \leq \mathbb{E}\left\|A_{\frac{1}{n}}-\mathbb{E} A_{\frac{1}{n}}\right\|+\left\|\mathbb{E} A_{\frac{1}{n}}\right\| \leq \mathbb{E}\left\|A_{\frac{1}{n}}-\mathbb{E} A_{\frac{1}{n}}\right\|+1
$$

Denote $B=A_{\frac{1}{n}}-\mathbb{E} A_{\frac{1}{n}}$ and let B^{\prime} be an independent copy of B. Denoting by \mathbb{E}^{\prime} the expectation operator with respect to B^{\prime}, note that $\mathbb{E}^{\prime} B^{\prime}=0$ and therefore, by Jensen's inequality,

$$
\mathbb{E}\|B\|=\mathbb{E}\left\|B-\mathbb{E}^{\prime} B^{\prime}\right\| \leq \mathbb{E}\left\|B-B^{\prime}\right\|
$$

The matrix $B-B^{\prime}$ is zero mean, its non-diagonal entries have a symmetric distribution with variance $(2 / n)(1-1 / n)$ and all entries have absolute value bounded by 2. Now, applying Corollary 3.6 of Bandeira and van Handel [2] with $\alpha=3$,

$$
\mathbb{E}\left\|B-B^{\prime}\right\| \leq e^{\frac{2}{3}}(2 \sqrt{2}+84 \sqrt{\log n}) \leq 6+164 \sqrt{\log n} .
$$

Thus,

$$
\mathbb{E}\left\|A_{\frac{1}{n}}\right\| \leq 7+164 \sqrt{\log n} \leq 173 \sqrt{\log n}
$$

The next lemma and the uniform delocalization inequality of Lemma 4 (presented in Section 3.3) are the crucial building blocks of the proof of Theorem 2.

Lemma 3. For all n and $q \in\left[\log n / n, \frac{1}{2}\right]$,

$$
\mathbb{P}\left\{\sup _{p \in[q, 2 q]}\left\|A_{p}-\mathbb{E} A_{p}\right\|>420 \sqrt{n q}\right\} \leq e^{-n q / 64}
$$

Proof. By (1.2), for each fixed p and for all $t>0$, we have

$$
\mathbb{P}\left\{\left\|A_{p}-\mathbb{E} A_{p}\right\|-\mathbb{E}\left\|A_{p}-\mathbb{E} A_{p}\right\|>t\right\} \leq e^{-t^{2} / 32}
$$

On the other hand, using the same symmetrization trick as in Lemma 2, Corollary 3.6 of Bandeira, van Handel [2] implies that for any $p \geq \log n / n$,

$$
\mathbb{E}\left\|A_{p}-\mathbb{E} A_{p}\right\| \leq e^{\frac{2}{3}}(2 \sqrt{2 n p}+84 \sqrt{\log n}) \leq 170 \sqrt{n p}
$$

These two results imply

$$
\mathbb{P}\left\{\left\|A_{p}-\mathbb{E} A_{p}\right\|>172 \sqrt{n p}\right\} \leq e^{-n p / 8}
$$

Let now $q \geq \log n / n$ and for $i=0,1, \ldots,\lceil n q\rceil$, define $p_{i}=q+i / n$. Then

$$
\begin{aligned}
\sup _{p \in\left[p_{i}, p_{i+1}\right]}\left(\left\|A_{p}-\mathbb{E} A_{p}\right\|-\left\|A_{p_{i}}-\mathbb{E} A_{p_{i}}\right\|\right) & \leq \sup _{p \in\left[p_{i}, p_{i+1}\right]}\left(\left\|A_{p}-A_{p_{i}}\right\|+\left\|\mathbb{E} A_{p}-\mathbb{E} A_{p_{i}}\right\|\right) \\
& =\sup _{p \in\left[p_{i}, p_{i+1}\right]}\left(\left\|A_{p}-A_{p_{i}}\right\|+\left\|\mathbb{E} A_{p-p_{i}}\right\|\right) \\
& =\left\|A_{p_{i+1}}-A_{p_{i}}\right\|+\left\|\mathbb{E} A_{1 / n}\right\| \\
& \leq\left\|A_{p_{i+1}}-A_{p_{i}}\right\|+1 \\
& =\mathbb{E}\left\|A_{1 / n}\right\|+\left(\left\|A_{p_{i+1}}-A_{p_{i}}\right\|-\mathbb{E}\left\|A_{p_{i+1}}-A_{p_{i}}\right\|\right)+1 \\
& \leq 1+173 \sqrt{\log n}+\sqrt{n q} \\
& \leq 176 \sqrt{n q}
\end{aligned}
$$

with probability at least $1-e^{-n q / 32}$, where we used Lemma 2 and 1.2 . Thus, by the union bound, with probability at least $1-n q e^{-n q / 32}-n q e^{-n p / 8} \geq 1-e^{-n q / 64}$,

$$
\begin{aligned}
\sup _{p \in[q, 2 q]}\left\|A_{p}-\mathbb{E} A_{p}\right\| & \leq \max _{i \in\{0, \ldots,\lceil n q\rceil\}}\left\|A_{p_{i}}-\mathbb{E} A_{p_{i}}\right\|+176 \sqrt{n q} \\
& \leq 172 \sqrt{2 n q}+176 \sqrt{n q} \\
& \leq 420 \sqrt{n q} .
\end{aligned}
$$

as desired.

Proof of Theorem 2. Denote by $\overline{1} \in \mathbb{R}^{n}$ the vector whose components are all equal to 1 . Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1\right\}$ be the unit Euclidean ball. Define the event E_{1} that $v_{p} \in \frac{\overline{1}}{\sqrt{n}}+\frac{2896}{\sqrt{n p}} B_{2}^{n}$ for all $p \in[64 \log n / n, 1]$. By Lemma 4 (see Section 3.3 below), for $n \geq 7$,

$$
\mathbb{P}\left\{E_{1}\right\} \geq 1-4 \sum_{j=0}^{\infty} \exp \left(-2^{j} \log n\right) \geq 1-4 \sum_{j=0}^{\infty}\left(\frac{1}{n}\right)^{2^{j}} \geq 1-\frac{4}{n} \sum_{j=0}^{\infty}\left(\frac{1}{7}\right)^{j}=1-\frac{32}{7 n} .
$$

Now define the event E_{2} that for all $p \in\left[\frac{64 \log n}{n}, 1\right],\left\|A_{p}-\mathbb{E} A_{p}\right\| \leq 420 \sqrt{2 n p}$. Similarly to the calculation above, by Lemma 3, $\mathbb{P}\left\{E_{2}\right\} \geq 1-\frac{32}{7 n}$.

Denoting by $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$ the Euclidean unit sphere in \mathbb{R}^{n}, define

$$
\bar{\lambda}_{p}=\sup _{x \in S^{n-1}} x^{T} A_{p} x \mathbb{1}_{E_{1} \cap E_{2}} \quad \text { and } \quad \bar{A}_{p}=A_{p} \mathbb{1}_{E_{2}}
$$

Then we may write the decomposition

$$
\bar{\lambda}_{p}=\sup _{x \in \frac{\overline{1}}{\sqrt{n}}+\frac{2896}{\sqrt{n p}} B_{2}^{n}} x^{T} \bar{A}_{p} x=\frac{\overline{1}}{\sqrt{n}} \bar{A}_{p} \frac{\overline{1}}{\sqrt{n}}+2 \sup _{z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}} z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right) .
$$

Then

$$
\begin{align*}
& \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\bar{\lambda}_{p}-\mathbb{E} \bar{\lambda}_{p}\right| \\
& \leq \\
& \leq \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\sup _{\left\lvert\, z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}\right.}\left(z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)\right)-\mathbb{E} \sup _{z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}}\left(z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)\right)\right| \tag{3.1}\\
& \quad+\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\frac{\overline{1}^{T}}{\sqrt{n}} \bar{A}_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} \frac{\overline{1}^{T}}{\sqrt{n}} \bar{A}_{p} \frac{\overline{1}}{\sqrt{n}}\right| .
\end{align*}
$$

For the second term on the right-hand side of 3.1), since $A_{p}-\bar{A}_{p}=A_{p} \mathbb{1}_{\bar{E}_{2}}$ we have

$$
\begin{aligned}
& \mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\frac{\overline{1}^{T}}{\sqrt{n}} \bar{A}_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} \frac{\overline{1}^{T}}{\sqrt{n}} \bar{A}_{p} \frac{\overline{1}}{\sqrt{n}}\right| \\
& \quad \leq \mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} \frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}\right|+2 n P\left(\bar{E}_{2}\right) .
\end{aligned}
$$

Note that $\frac{\overline{1}}{\sqrt{n}}^{T} A_{p} \frac{\overline{1}}{\sqrt{n}}=(2 / n) \sum_{i<j} \mathbb{1}_{U_{i, j}<p}$. Thus, the first term on the right-hand side is just the maximum deviation between the cumulative distribution function of a
uniform random variable and its empirical counterpart based on $\binom{n}{2}$ random samples. This may be bounded by the classical Dvoretzky-Kiefer-Wolfowitz theorem [8]. Indeed, by Massart's version [14], we have

$$
\begin{aligned}
\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} \frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}\right| & \leq \mathbb{E} \sup _{p \in[0,1]}\left|\frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} \frac{\overline{1}^{T}}{\sqrt{n}} A_{p} \frac{\overline{1}}{\sqrt{n}}\right| \\
& \leq 4 \int_{t=0}^{\infty} \exp \left(-2 t^{2}\right) d t=\sqrt{2 \pi}
\end{aligned}
$$

Thus, the second term on the right-hand side of (3.1) is bounded by the absolute constant $\sqrt{2 \pi}+\frac{64}{7} \leq 12$ since $P\left(\bar{E}_{2}\right) \leq \frac{32}{7 n}$.

In order to bound the first term on the right-hand side of (3.1), we write

$$
\begin{aligned}
& \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\sup _{z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}} z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)-\mathbb{E} \sup _{z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}} z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)\right| \\
& \leq \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]} \sup _{z \in \frac{2896}{\sqrt{n p}} B_{2}^{n}}\left|z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)-\mathbb{E} z^{T} \bar{A}_{p}\left(\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right)\right| \\
& \leq \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]} \frac{2896}{\sqrt{n p}} \sup _{z \in \frac{2896}{\sqrt{n p} B_{2}^{n}}}\left\|\frac{\overline{1}}{\sqrt{n}}+\frac{z}{2}\right\| \cdot\left\|\bar{A}_{p}-\mathbb{E} \bar{A}_{p}\right\| \\
\leq & \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]} 2896 \times 594\left(1+\frac{1448}{\sqrt{n p}}\right) \\
\leq & 2896 \times 594\left(1+\frac{1448}{\sqrt{64 \log (7)}}\right) \leq 4.5 \times 10^{8} .
\end{aligned}
$$

Finally, note that with probability at least $1-\frac{64}{7 n}$ for all $p \in\left[\frac{64 \log n}{n}, 1\right]$ we have $\bar{\lambda}_{p}=\lambda_{p}$. Moreover, for all p,

$$
\mathbb{E} \lambda_{p}-\mathbb{E} \lambda_{p}^{\prime} \leq \mathbb{E} \sup _{x \in S^{n-1}}\left(x^{T} A_{p} x\left(1-\mathbb{1}_{E_{1} \cap E_{2}}\right)\right) \leq n P\left(\bar{E}_{1} \cup \bar{E}_{2}\right) \leq \frac{64}{7}
$$

Thus,

$$
\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq \frac{128}{7}+\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\bar{\lambda}_{p}-\mathbb{E} \bar{\lambda}_{p}\right| \leq 5 \times 10^{8},
$$

proving the first inequality of the theorem.

To prove the second inequality, we follow the argument of Example 3.14 in [7]. Denote $Z=\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}^{\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \text { and } Z_{i, j}^{\prime}=\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\lambda_{p}^{\prime}-\mathbb{E} \lambda_{p}\right| \text { where }}$ λ_{p}^{\prime} is the largest eigenvalue of the adjacency matrix A_{p}^{\prime} of the random graph that is obtained from A_{p} by replacing $U_{i, j}$ by an independent copy. Denoting the first eigenvector of A_{p} by v_{p} and the first eigenvector of A_{p}^{\prime} by v_{p}^{\prime} and the (random) maximizer $\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right|$ by p^{*}, we have

$$
\begin{aligned}
\left(Z-Z_{i, j}^{\prime}\right)_{+} & \leq\left(\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right|-\sup _{\left.p \in \in \frac{64 \log n}{n}, 1\right]}\left|v_{p}^{\prime T} A_{p}^{\prime} v_{p}^{\prime}-\mathbb{E} \lambda_{p}\right|\right) \mathbb{1}_{Z \geq Z_{i, j}^{\prime}} \\
& \leq\left|v_{p^{*}}^{T} A_{p^{*}} v_{p^{*}}-\mathbb{E} \lambda_{p^{*}}-v_{p^{*}}^{\prime} A_{p^{*}}^{\prime} v_{p^{*}}^{\prime}-\mathbb{E} \lambda_{p^{*}}\right| \mathbb{1}_{Z \geq Z_{i, j}^{\prime}} \\
& \leq\left|v_{p^{*}}^{T}\left(A_{p^{*}}-A_{p^{*}}^{\prime}\right) v_{p^{*}}\right| \mathbb{1}_{Z \geq Z_{i, j}^{\prime}} \\
& \leq 4\left|v_{p^{*}}^{i} v_{p^{*}}^{j}\right| .
\end{aligned}
$$

This implies $\sum_{1 \leq i \leq j \leq n}\left(Z-Z_{i, j}^{\prime}\right)_{+}^{2} \leq 16$. Thus, for any $t \geq 0$,

$$
\mathbb{P}\left\{\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right|-\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right| \geq t\right\} \leq \exp \left(-t^{2} / 32\right) .
$$

Using the bound $\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left(v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right) \leq 5 \times 10^{8}$, we have for $t^{\prime}=t+5 \times 10^{8}$

$$
\mathbb{P}\left\{\sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|v_{p}^{T} A_{p} v_{p}-\mathbb{E} \lambda_{p}\right| \geq t^{\prime}\right\} \leq \exp \left(-\left(t^{\prime}-5 \times 10^{8}\right)^{2} / 32\right) .
$$

For $t^{\prime} \geq 10^{9}$ the claim follows.

3.3 Delocalization bounds

In this section we prove the "delocalization" inequalities that state that the eigenvector v_{p} corresponding to the largest eigenvalue of A_{p} is close to the "uniform" vector $n^{-1 / 2} \overline{1}$. The following lemma is crucial in the proof of Theorem 2. This proof is based on an argument of Mitra [15]. However, we need to modify it to get uniformity and also significantly better concentration guarantees.
Lemma 4. Let $n \geq 7$ and $q \in\left[\frac{4 \log n}{n}, \frac{1}{2}\right]$. Then, with probability $1-4 \exp (-n q / 64)$,

$$
\sup _{p \in[q, 2 q]}\left\|v_{p}-\frac{\overline{1}}{\sqrt{n}}\right\|_{2} \leq \frac{2896}{\sqrt{n q}} .
$$

Proof.

First note that there exists a unique vector v_{p}^{\perp} with $\left(v_{p}^{\perp}, v_{p}\right)=0$ and $\left\|v_{p}^{\perp}\right\|_{2}=1$ such that

$$
\begin{equation*}
\overline{1} / \sqrt{n}=\alpha v_{p}+\beta v_{p}^{\perp} \tag{3.2}
\end{equation*}
$$

for some $\alpha, \beta \in \mathbb{R}$. By Lemma 3, with probability at least $1-\exp (-n q / 64)$,

$$
\sup _{p \in[q, 2 q]}\left\|A_{p}-\mathbb{E} A_{p}\right\| \leq 420 \sqrt{n q} .
$$

Notice that $\mathbb{E} A_{p}=p n \frac{\overline{1}}{\sqrt{n}} \frac{\overline{1}^{T}}{\sqrt{n}}-p I_{n}$, where I_{n} is an identity $n \times n$ matrix. Since the graph with adjacency matrix A_{q} is connected with probability at least $1-(n-1) \exp (-n q / 2)$ (see, e.g., [17, Section 5.3.3]), by monotonicity of the property of connectedness, the same holds simultaneously for all graphs A_{p} for $p \in[q, 2 q]$. Also, by the PerronFrobenius theorem, if the graph is connected, the components of v_{p} are all nonnegative for all $p \in[q, 2 q]$. Using that $\alpha=\left(\frac{\overline{1}}{\sqrt{n}}, v_{p}\right)$,

$$
\begin{aligned}
\left(A_{p}-\mathbb{E} A_{p}\right) v_{p} & =\lambda_{p} v_{p}-p n \frac{\overline{1}}{\sqrt{n}} \frac{\overline{1}^{T}}{\sqrt{n}} v_{p}+p v_{p} \\
& =\lambda_{p} v_{p}-p n \alpha \frac{\overline{1}}{\sqrt{n}}+p v_{p} \\
& =\lambda_{p} v_{p}-p n \alpha\left(\alpha v_{p}+\beta v_{p}^{\perp}\right)+p v_{p} \\
& =\left(\lambda_{p}+p-p n \alpha^{2}\right) v_{p}-p n \alpha \beta v_{p}^{\perp}
\end{aligned}
$$

This leads to

$$
\begin{equation*}
\left(\lambda_{p}+p-p n \alpha^{2}\right)^{2} \leq 420^{2} n q . \tag{3.3}
\end{equation*}
$$

Since $\alpha \in[0,1]$, this implies that, with probability at least $1-\exp (-n q / 64)-(n-$ 1) $\exp (-n q / 2)$, simultaneously for all $p \in[q, 2 q]$

$$
\begin{equation*}
\lambda_{p} \leq p(n-1)+420 \sqrt{n q} . \tag{3.4}
\end{equation*}
$$

We may get a lower bound for λ_{p} by noting that

$$
\lambda_{p} \geq \frac{1}{n} \overline{1}^{T} A_{p} \overline{1}=\frac{2}{n} \sum_{i<j}^{n} \mathbb{1}_{U_{i j}<p} .
$$

Applying Massart's version of the Dvoretzky-Kiefer-Wolfowitz theorem [14], we have, for all $t \geq 0$,

$$
\mathbb{P}\left\{\sup _{p \in[0,1]}\left|\frac{2}{n} \sum_{i<j}^{n} \mathbb{1}_{U_{i j}<p}-(n-1) p\right| \geq(n-1) t\right\} \leq 2 \exp \left(-n(n-1) t^{2}\right)
$$

Choosing $t=\frac{\sqrt{n q}}{n-1}$, we have, with probability at least $1-2 \exp (-n q / 2)$,

$$
\begin{equation*}
\lambda_{p} \geq p(n-1)-\sqrt{n q} \tag{3.5}
\end{equation*}
$$

This lower bound, together with (3.3) gives

$$
\begin{equation*}
\alpha \geq \alpha^{2} \geq \frac{\lambda_{p}+p}{p n}-\frac{420 \sqrt{n q}}{p n} \geq 1-\frac{421}{\sqrt{n q}} \tag{3.6}
\end{equation*}
$$

with probability at least $1-\exp (-n q / 64)-(n-1) \exp (-n q / 2)-2 \exp (-n q / 2) \geq 1-$ $4(n-1) \exp (-n q / 64)$. For the rest of the proof, we denote this event by E.

Next, write

$$
\begin{equation*}
\left\|\frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{2} \leq\left\|\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{2}+\left\|\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}-\frac{\overline{1}}{\sqrt{n}}\right\|_{2} . \tag{3.7}
\end{equation*}
$$

We analyze both terms on the right-hand side. Observe that $\mathbb{E} A_{p} \frac{\overline{1}}{\sqrt{n}}=\frac{(n-1) p \overline{1}}{\sqrt{n}}$. The second term on the right-hand side of (3.7) may be bounded on the event E, for all $p \in[q, 2 q]$, as

$$
\begin{aligned}
\left\|\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}-\frac{\overline{1}}{\sqrt{n}}\right\|_{2} & \leq \frac{1}{\lambda_{p}}\left\|A_{p} \frac{\overline{1}}{\sqrt{n}}-\frac{(n-1) p \overline{1}}{\sqrt{n}}\right\|_{2}+\frac{1}{\lambda_{p}}\left\|\frac{\left((n-1) p-\lambda_{p}\right) \overline{1}}{\sqrt{n}}\right\|_{2} \\
& =\frac{1}{\lambda_{p}}\left\|A_{p} \frac{\overline{1}}{\sqrt{n}}-\mathbb{E} A_{p} \frac{\overline{1}}{\sqrt{n}}\right\|_{2}+\frac{\left|(n-1) p-\lambda_{p}\right|}{\lambda_{p}} \\
& \leq \frac{\left\|A_{p}-\mathbb{E} A_{p}\right\|+\left|(n-1) p-\lambda_{p}\right|}{\lambda_{p}} \\
& \leq \frac{420 \sqrt{n q}+420 \sqrt{n q}}{p(n-1)-\sqrt{n q}} \\
& \leq \frac{1640}{\sqrt{n q}} .
\end{aligned}
$$

Thus, on the event E, for all $p \in[q, 2 q]$,

$$
\left\|\frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{2} \leq\left\|\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{2}+\frac{1640}{\sqrt{n q}} .
$$

For each p, we may write $v_{p}^{\perp}=\sum_{i=2}^{n} \gamma_{i} v_{p}^{i}$, where v_{p}^{i} is the i-th orthonormal eigenvector of A_{p}. Then

$$
\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}=\alpha v_{p}+\beta \sum_{i=2}^{n} \frac{\gamma_{i} \lambda_{i} v_{p}^{i}}{\lambda_{p}},
$$

where λ_{i} is i-th eigenvalue of A_{p}. By the Perron-Frobenius theorem, we have $\left|\lambda_{i}\right| \leq$ λ_{p} for all $i=2, \ldots, n$. Moreover, from Füredi and Komlós [11, Lemmas 1 and 2], for all $t \in \mathbb{R}$ we have that $\left|\lambda_{i}\right| \leq\left\|A_{p}-t \frac{\overline{1}}{\sqrt{n}} \frac{\overline{1}^{T}}{\sqrt{n}}\right\|$ for $i \geq 2$. Choosing $t=n p$ we obtain $\left|\lambda_{i}\right| \leq\left\|A_{p}-\mathbb{E} A_{p}\right\|+p\left\|I_{n}\right\| \leq 420 \sqrt{n q}+p \leq 422 \sqrt{n q}$. Thus, using (3.6), on the event E,

$$
\left\|\frac{A_{p}}{\lambda_{p}} \frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{2} \leq 1-\alpha+\beta \max _{i \geq 2} \frac{\left|\lambda_{i}\right|}{\lambda_{p}}+\frac{1640}{\sqrt{n q}} \leq \frac{2061}{\sqrt{n q}}+\frac{422 \sqrt{n q}}{(n-1) p-\sqrt{n q}} \leq \frac{2896}{\sqrt{n q}},
$$

as desired.
We close this section by proving the "weak" delocalization bound of Lemma 1.

Proof of Lemma 1. We use the notation introduced in the proof of Lemma 4. Here we fix $p \geq \kappa \log ^{3} n / n$. Fix $\ell \in \mathbb{N}$ and write

$$
\begin{equation*}
\left\|v_{p}\right\|_{\infty} \leq\left\|\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{\infty}+\left\|\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}\right\|_{\infty} \tag{3.8}
\end{equation*}
$$

We bound both terms on the right-hand side. We start with the second term and rewrite it as

$$
\left\|\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}\right\|_{\infty}=\frac{1}{\sqrt{n}}\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell}\left\|\left(\frac{A_{p}}{(n-1) p}\right)^{\ell} \overline{1}\right\|_{\infty} .
$$

Denote by $D_{i}=\sum_{j=1}^{n} A_{i, j}$ the degree of vertex i. By standard tail bounds for the binomial distribution we have, for a fixed i and $0 \leq \Delta \leq 1$,

$$
\mathbb{P}\left\{D_{i}<p(n-1)-p(n-1) \Delta\right\} \leq \exp \left(\frac{-\Delta^{2} p(n-1)}{2}\right)
$$

and

$$
\mathbb{P}\left\{D_{i}>p(n-1)+p(n-1) \Delta\right\} \leq \exp \left(-\frac{3 \Delta^{2} p(n-1)}{8}\right)
$$

Using the union bound, we have

$$
\mathbb{P}\left\{\max _{i}\left|D_{i}-p(n-1)\right|>p(n-1) \Delta\right\} \leq 2(n-1) \exp \left(-\frac{3 \Delta^{2} p(n-1)}{8}\right)
$$

We denote the event

$$
\max _{i}\left|D_{i}-p(n-1)\right| \leq p(n-1) \Delta
$$

by E_{1}. Observe that when E_{1} holds we have $D_{i} \leq p(n-1)(1+\Delta)$ and $D_{i} \geq p(n-1)(1-$ $\Delta)$ for all i.

Assume that $u \in \mathbb{R}^{n}$ is such that

$$
\begin{equation*}
\|u-\overline{1}\|_{\infty} \leq 2 t \Delta \tag{3.9}
\end{equation*}
$$

for some $t \leq \ell$. In what follows we choose $\ell=\left\lfloor\frac{21 \log n}{\log (n p)}\right\rfloor$ and $\Delta=\frac{\log (n p)}{42 \log n}$. Observe that $\ell \Delta \leq \frac{1}{2}$. Since $t \Delta^{2} \leq \ell \Delta^{2} \leq \frac{1}{2} \Delta$, we have $\Delta+2 t \Delta^{2} \leq 2 \Delta$. Thus, on the event E_{1}, using the last inequality together with (3.9),

$$
\begin{equation*}
\left(\frac{A_{p}}{(n-1) p} u\right)_{i} \leq \frac{p(n-1)(1+\Delta)(1+2 t \Delta)}{(n-1) p}=1+\Delta+2 t \Delta+2 t \Delta^{2} \leq 1+2(t+1) \Delta . \tag{3.10}
\end{equation*}
$$

Now consider the term $\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell}$. Using (3.5) we have, with probability at least $1-2 \exp (-n p / 2)$ (denote the corresponding event by $\left.E_{2}\right)$,

$$
\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell} \leq\left(1-\frac{1}{\sqrt{p(n-1)}}\right)^{-\ell}
$$

Since $\ell \leq \sqrt{p(n-1)}$, we obtain $\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell} \leq e$. Thus, applying (3.10) ℓ times for vectors satisfying (3.9), on the event $E_{1} \cap E_{2}$, we have, for all i,

$$
\left(\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \overline{1}\right)_{i}=\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell}\left(\left(\frac{A_{p}}{(n-1) p}\right)^{\ell} \overline{1}\right)_{i} \leq e(1+2 \ell \Delta) \leq 2 e .
$$

We may similarly derive a lower bound since, for any vector satisfying (3.9),

$$
\begin{equation*}
\left(\frac{A_{p}}{(n-1) p} u\right)_{i} \geq \frac{p(n-1)(1-\Delta)(1-2 t \Delta)}{(n-1) p}=1-\Delta-2 t \Delta+2 t \Delta^{2} \geq 1-2(t+1) \Delta \tag{3.11}
\end{equation*}
$$

Analogously, applying (3.11) ℓ times, on the event $E_{1} \cap E_{2}$, we have

$$
\left(\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \overline{1}\right)_{i}=\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell}\left(\left(\frac{A_{p}}{(n-1) p}\right)^{\ell} \overline{1}\right)_{i} \geq\left|\frac{(n-1) p}{\lambda_{p}}\right|^{\ell}(1-2 \ell \Delta) \geq 0 .
$$

Hence, on the event $E_{1} \cap E_{2}$,

$$
\begin{equation*}
\left\|\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}\right\|_{\infty} \leq \frac{2 e}{\sqrt{n}} . \tag{3.12}
\end{equation*}
$$

Next we bound the first term on the right-hand side of (3.8). Recall that for the decomposition $\overline{1} / \sqrt{n}=\alpha v_{p}+\beta v_{p}^{\perp}$ from (3.6) we have $\alpha \geq 1-\frac{421}{\sqrt{n p}}$ on an event E_{3} of probability at least $1-4(n-1) \exp (-n p / 64)$. As before, we may write $v_{p}^{\perp}=\sum_{i=2}^{n} \gamma_{i} v_{p}^{i}$,
where v_{p}^{i} is the i-th orthonormal eigenvector of A_{p}. Using $\overline{1} / \sqrt{n}=\alpha v_{p}+\beta v_{p}^{\perp}$, we have

$$
\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}=\alpha v_{p}+\beta \sum_{i=2}^{n} \gamma_{i} v_{p}^{i}\left(\frac{\lambda_{i}}{\lambda_{p}}\right)^{\ell}
$$

where λ_{i} is i-th eigenvalue of A_{p}. Using Füredi and Komlós [11, Lemmas 1 and 2] once again, for all $t \in \mathbb{R}$ we have that $\left|\lambda_{i}\right| \leq\left\|A_{p}-t \frac{\overline{1}}{\sqrt{n}} \frac{\overline{1}^{T}}{\sqrt{n}}\right\|$ for $i \geq 2$. Choosing $t=n p$ we obtain $\left|\lambda_{i}\right| \leq\left\|A_{p}-\mathbb{E} A_{p}\right\|+p\left\|I_{n}\right\| \leq 420 \sqrt{n p}+p \leq 422 \sqrt{n p}$ on an event E_{4} of probability at least $1-4(n-1) \exp (-n p / 64)$. Thus, on E_{4} we have $\frac{\left|\lambda_{i}\right|}{\lambda_{p}} \leq \frac{835}{\sqrt{n p}}$ for $i \geq 2$, and therefore

$$
\begin{equation*}
\left\|\left(\frac{A_{p}}{\lambda_{p}}\right)^{\ell} \frac{\overline{1}}{\sqrt{n}}-v_{p}\right\|_{\infty} \leq(1-\alpha)\left\|v_{p}\right\|_{\infty}+\beta \max _{i \geq 2}\left(\frac{\left|\lambda_{i}\right|}{\lambda_{p}}\right)^{\ell} . \tag{3.13}
\end{equation*}
$$

Define $\kappa_{1}=\frac{\log (835)}{\log \left(2 \times 835^{2}\right)}$. Observe that $\kappa_{1}<\frac{1}{2}$. Using $n p \geq 2 \times 835^{2}=\kappa$,

$$
\begin{aligned}
\beta \max _{i \geq 2}\left(\frac{\left|\lambda_{i}\right|}{\lambda_{p}}\right)^{\ell} & \leq \beta\left(\frac{835}{\sqrt{n p}}\right)^{\ell} \\
& \leq\left(\frac{835}{(n p)^{\kappa_{1}}}\right)^{\ell} \exp \left(\left(\frac{1}{2}-\kappa_{1}\right) \log \left(\frac{1}{n p}\right) \frac{21 \log n}{\log (n p)}\right) \\
& \leq \exp \left(-21\left(\frac{1}{2}-\kappa_{1}\right) \log n\right) \leq \frac{1}{\sqrt{n}},
\end{aligned}
$$

where we used $\left(\frac{835}{(n p)^{\kappa_{1}}}\right)^{\ell} \leq 1$ and the inequality $21\left(\frac{1}{2}-\kappa_{1}\right)>\frac{1}{2}$. Finally, on the event $E_{1} \cap E_{2} \cap E_{3} \cap E_{4}$ we have, using the decomposition (3.8) combined with (3.12) and (3.13), that

$$
\left\|v_{p}\right\|_{\infty} \leq \frac{1}{\alpha}\left(\frac{1+2 e}{\sqrt{n}}\right) \leq \frac{1}{1-\frac{421}{\sqrt{n p}}}\left(\frac{1+2 e}{\sqrt{n}}\right) \leq \frac{11}{\sqrt{n}} .
$$

3.4 Proof of Theorem 3

It suffices to prove that

$$
\mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq 5 \sqrt{16+2 \log \log n}
$$

Observe that

$$
\mathbb{E} \sup _{p \in[0,1]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq \mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right|+\mathbb{E} \sup _{p \in\left[\frac{64 \log n}{n}, 1\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right|
$$

Let $p_{0}, p_{1}, \ldots, p_{M}$ be such that $0=p_{0} \leq p_{1} \leq \cdots \leq p_{M}=\frac{64 \log n}{n}$ and $\mathbb{E}\left(\lambda_{p_{j}}-\lambda_{p_{j-1}}\right)=\varepsilon$ for some $\varepsilon>0$ to be specified later. Such a choice is possible since λ_{p} is nondecreasing in p. We have

$$
\begin{equation*}
\varepsilon M=\mathbb{E} \lambda_{M} \leq \mathbb{E}\left\|A_{p_{M}}-\mathbb{E} A_{p_{M}}\right\|+\left\|\mathbb{E} A_{p_{M}}\right\| \leq 170 \sqrt{n p_{M}}+n p_{M} \leq 1424 \log n \tag{3.14}
\end{equation*}
$$

Denote for $p \in\left[0, p_{M}\right]$ the value $\pi_{+}[p]=\min \left\{q \in\left\{p_{0}, p_{1}, \ldots, p_{M}\right\} \mid q \geq p\right\}$ and $\pi_{-}[p]=$ $\max \left\{q \in\left\{p_{0}, p_{1}, \ldots, p_{M}\right\} \mid p \geq q\right\}$. We have

$$
\begin{aligned}
\mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| & =\mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]} \max \left(\lambda_{p}-\mathbb{E} \lambda_{p}, \mathbb{E} \lambda_{p}-\lambda_{p}\right) \\
& \leq \mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]}^{\operatorname{sux}} \max \left(\lambda_{\pi_{+}[p]}-\mathbb{E} \lambda_{\pi_{+}[p]}+\varepsilon, \mathbb{E} \lambda_{\pi_{-}[p]}-\lambda_{\pi_{-}[p]}+\varepsilon\right) \\
& =\varepsilon+\mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]} \max \left(\lambda_{\pi_{+}[p]}-\mathbb{E} \lambda_{\pi_{+}[p]}, \mathbb{E} \lambda_{\pi_{-}[p]}-\lambda_{\pi_{-}[p]}\right) \\
& \leq \varepsilon+\mathbb{E} \sup _{q \in\left\{p_{0}, \ldots, p_{M}\right\}}\left|\lambda_{q}-\mathbb{E} \lambda_{q}\right| .
\end{aligned}
$$

Since for each p_{i}, the random variable $\left|\lambda_{q}-\mathbb{E} \lambda_{q}\right|$ has sub-Gaussian tails by (1.2), for their maximum we obtain the bound

$$
\mathbb{E} \sup _{q \in\left\{p_{0}, \ldots, p_{M}\right\}}\left|\lambda_{q}-\mathbb{E} \lambda_{q}\right| \leq 4 \sqrt{2 \log 2 M} .
$$

Finally, using (3.14)

$$
\mathbb{E} \sup _{p \in\left[0, \frac{64 \log n}{n}\right]}\left|\lambda_{p}-\mathbb{E} \lambda_{p}\right| \leq \inf _{\varepsilon>0}(\varepsilon+4 \sqrt{2 \log (2848 \log n / \varepsilon)}) \leq 5 \sqrt{2 \log (2848 \log n)},
$$

as desired.

References

[1] N. Alon, M. Krivelevich, and V.H. Vu. On the concentration of eigenvalues of random symmetric matrices. Israel Journal of Mathematics, 131:259-267, 2002.
[2] Afonso S Bandeira and Ramon van Handel. Sharp nonasymptotic bounds on the norm of random matrices with independent entries. The Annals of Probability, 44(4):2479-2506, 2016.
[3] Florent Benaych-Georges, Charles Bordenave, and Antti Knowles. Largest eigenvalues of sparse inhomogeneous erdos-renyi graphs. arXiv 1704.02953, 2017.
[4] Florent Benaych-Georges, Charles Bordenave, and Antti Knowles. Spectral radii of sparse random matrices. arXiv 1704.02945, 2017.
[5] Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the mathematical sciences. SIAM, 1994.
[6] S. Boucheron, O. Bousquet, G. Lugosi, and P. Massart. Moment inequalities for functions of independent random variables. The Annals Probability, 33:514-560, 2005.
[7] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013.
[8] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of a sample distribution function and of the classical multinomial estimator. Annals of Mathematical Statistics, 33:642-669, 1956.
[9] P. Erdős and A. Rényi. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, Ser. A, 5:17-61, 1960.
[10] László Erdős, Antti Knowles, Horng-Tzer Yau, Jun Yin, et al. Spectral statistics of Erdős-Rényi graphs I: local semicircle law. The Annals of Probability, 41(3B):2279-2375, 2013.
[11] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica, 1:233-241, 1981.
[12] Paul Jung and Jaehun Lee. Delocalization and limiting spectral distribution of Erdős-Rényi graphs with constant expected degree. arXiv 1710.07002, 2017.
[13] Michael Krivelevich and Benny Sudakov. The largest eigenvalue of sparse random graphs. Combinatorics, Probability and Computing, 12(1):61-72, 2003.
[14] P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Annals of Probability, 18:1269-1283, 1990.
[15] Pradipta Mitra. Entrywise bounds for eigenvectors of random graphs. Electronic Journal of Combinatorics, 16(1):R131, 2009.
[16] Linh V. Tran, Van H. Vu, and Ke Wang. Sparse random graphs: Eigenvalues and eigenvectors. Random Structures E Algorithms, 42(1):110-134, 2013.
[17] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1-2):1-230, 2015.
[18] Van H Vu. Spectral norm of random matrices. In Proceedings of the thirtyseventh annual ACM symposium on Theory of computing, pages 423-430. ACM, 2005.

[^0]: *Gábor Lugosi was supported by the Spanish Ministry of Economy and Competitiveness, Grant MTM2015-67304-P and FEDER, EU. Shahar Mendelson was supported in part by the Israel Science Foundation. Nikita Zhivotovskiy is supported in part by the Russian Science Foundation grant (project 14-50-00150).
 ${ }^{\dagger}$ Department of Economics and Business, Pompeu Fabra University, Barcelona, Spain, gabor.lugosi@upf.edu
 \ddagger ICREA, Pg. Llus Companys 23, 08010 Barcelona, Spain
 §Barcelona Graduate School of Economics
 ${ }^{I}$ Department of Mathematics, Technion, I.I.T, and Mathematical Sciences Institute, The Australian National University, shahar@tx.technion.ac.il
 ${ }^{\|}$Department of Mathematics, Technion, I.I.T, and Institute for Information Transmission Problems, on leave at Skoltech, nikita.zhivotovskiy@phystech.edu

