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Abstract

We present results on the concentration properties of the spectral norm
‖Ap‖ of the adjacency matrix Ap of an Erdős-Rényi random graph G(n,p). We
prove sharp sub-Gaussian moment inequalities for ‖Ap‖ for all p ∈ [c log3n/n,1]
that improve the general bounds of Alon, Krivelevich, and Vu [1] for small val-
ues of p. We also consider the Erdős-Rényi random graph process and prove
that ‖Ap‖ is uniformly concentrated.

1 Introduction

An Erdős-Rényi random graph G(n,p), named after the authors of the pioneering
work [9], is a graph defined on the vertex set [n] = {1, . . . ,n} in which any two
vertices i, j ∈ [n], i , j, are connected by an edge independently, with probability p.
Such a random graph is represented by its adjacency matrix Ap. Ap is a symmetric
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matrix whose entries are

A
(p)
i,j =


0 if i = j
1Ui,j<p if 1 ≤ i < j ≤ n
1Ui,j<p if 1 ≤ j < i ≤ n ,

(1.1)

where (Ui,j)1≤i<j≤n are independent random variables, uniformly distributed on
[0,1] and 1 stands for the indicator function. We call the family of random matrices
(Ap)p∈[0,1] the Erdős-Rényi random graph process.

Spectral properties of adjacency matrices of random graphs have received
considerable attention, see Füredi and Komlós [11], Krivelevich and Sudakov [13],
Vu [18], Erdős, Knowles, Yau, and Yin [10], Benaych-Georges, Bordenave, and
Knowles [3, 4], Jung and Lee [12], Tran, Vu, and Wang [16], among many other
papers.

In this paper we are primarily concerned with concentration properties of
the spectral norm ‖Ap‖ of the adjacency matrix. It follows from a general con-
centration inequality of Alon, Krivelevich, and Vu [1] for the largest eigenvalue of
symmetric random matrices with bounded independent entries that for all n ≥ 1,
p ∈ [0,1], and t > 0,

P
{∣∣∣‖Ap‖ −E‖Ap‖∣∣∣ > t} ≤ 2e−t

2/32 . (1.2)

In particular, Var(‖Ap‖) ≤ C for a universal constant C. (One may take C = 16, see
[7, Example 3.14].) In this paper we strengthen (1.2) in two different ways. First
we show that, for small values of p, ‖Ap‖ is significantly more concentrated than
what this bound suggests. Indeed, we prove that there exists a universal constant
C such that

Var(‖Ap‖) ≤ Cp

for all n and p ≥ C log3n/n. We also prove sub-Gaussian inequalities for moments
of ‖Ap‖ of higher order (up to order approximately np). The precise statement is
given in Theorem 1 in Section 2.1 below.

The other results of this paper concern uniform concentration of the spectral
norm. In particular, we prove that there exists a universal constant C such that

E sup
p≥C logn/n

∣∣∣‖Ap‖ −E‖Ap‖∣∣∣ ≤ C
(see Theorem 2 below). We leave open the question whether the restriction to the
range p ∈ [C logn/n,1] is necessary for uniform concentration. For the entire range
p ∈ [0,1], we are able to prove the slightly weaker inequality

E sup
p∈[0,1]

∣∣∣‖Ap‖ −E‖Ap‖∣∣∣ ≤ C√
loglogn
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for a constant C (Theorem 3).

We also prove

P

 sup
p≥C logn/n

∣∣∣‖Ap‖ −E‖Ap‖∣∣∣ > t
 ≤ e−t2/C ,

a uniform version of the sub-Gaussian inequality (1.2).

Note that it follows from the Perron-Frobenius theorem that the spectral
norm of Ap equals the largest eigenvalue of Ap, that is, ‖Ap‖ = λp. We use both
interchangeably throughout the paper, depending on the particular interpretation
that is convenient.

The proof of both inequalities crucially hinges on the so-called delocaliza-
tion property of the eigenvector corresponding to the largest eigenvalue (see Erdős,
Knowles, Yau, and Yin [10], Mitra [15]), that is, the fact that the normalized eigen-
vector corresponding to the largest eigenvalue is close, in a certain sense, to the
vector (1/

√
n, . . . ,1/

√
n). We provide delocalization bounds for the top eigenvector

of Ap tailored to our needs (Lemma 1) and a uniform delocalization inequality
(Lemma 4).

The rest of the paper is organized as follows. In Section 2 we formalize and
discuss the results of the paper, including the moment inequalities for ‖Ap‖ and
the uniform concentration results. The proofs are presented in Section 3.

2 Results

2.1 Moment inequalities for the spectral norm

The first result of the paper shows that typical deviations of ‖Ap‖ from its expected
value are of the order of

√
p. This is in accordance with the asymptotic normality

theorem of Füredi and Komlós [11]. However, while the result of [11] holds for
fixed p as n→∞, the theorem below is non-asymptotic. In particular, it holds for
p = o(1) as long as np is at least of the order of log3n. Note that the non-asymptotic
concentration inequality of [1] only implies that typical deviations are O(1).

Theorem 1. There exist constants c,C,C′,κ > 0 such that for all n and p ≥ κ log3(n)/n

Var(‖Ap‖) ≤ Cp .

Moreover, for every k ∈

2,
c
(

log(np)
logn

)2
p(n−1)−log(8(n−1))

log( 1
p )+log(115/4)

,
E
[(
‖Ap‖ −E‖Ap‖

)
+

]1/k
≤ (Ckp)

1
2
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and
E
[(
‖Ap‖ −E‖Ap‖

)
−

]1/k
≤ (C′kp)

1
2 .

It is natural to ask whether the condition p ≥ κ log3(n)/n is necessary. The
fact that the inequality Var(‖Ap‖) ≤ Cp cannot hold for all values of p is easily
seen by taking p = c/n2 for a positive constant c. In this case, the probability
that the graph G(n,p) is empty is bounded away from zero. In that case ‖Ap‖ = 0.
On the other hand, with a probability bounded away from zero, the graph G(n,p)
contains a single edge, in which case ‖Ap‖ = 1. Thus, for p = c/n2, Var(‖Ap‖) =
Ω(1), showing that the bound of [1] is sharp in this range. Understanding the
concentration properties of ‖Ap‖ in the range n−2� p� log3(n)/n is an intriguing
open question.

The proof of Theorem 1 is presented in Section 3.1. The proof reveals that
for the values of the constants one may take κ = 2 × 8352, C = 966306, C′ =
1339945, and c = 1/9408. However, these values have not been optimized. In
the rest of this discussion we assume these numerical values.

Using the moment bound with k = t2/(2Cp), Markov’s inequality implies
that for all 0 < t ≤ 2

√
Ccp
√
n− 1log(np)/(logn log(1/p)),

P
{
‖Ap‖ > E‖Ap‖+ t

}
≤ 2−t

2/(2Cp) .

The proof is based on general moment inequalities of Boucheron, Bousquet, Lu-
gosi, and Massart [6] (see also [7, Theorems 15.5 and 15.7]) that state that if Z =
f (X1, . . . ,Xn) is a real random variable that is a function of the independent random
variables X1, . . . ,Xn, then for all k ≥ 2,

E
[
(Z −EZ)k+

]1/k
≤
√

3k
(
E
[
V+

k/2
])1/k

, (2.1)

and
E
[
(Z −EZ)k−

]1/k
≤
√

4.16k
((
E
[
V+

k/2
])1/k

∨
√
k
(
E
[
Mk

])1/k
)
, (2.2)

where the random variable V+ is defined as

V+ = E′
n∑
i=1

(Z −Z ′i )
2
+ .

Here Z ′i = f (X1, . . . ,Xi−1,X
′
i ,Xi+1, . . . ,Xn) with X ′1, . . . ,X

′
n being independent copies

of X1, . . . ,Xn and E′ denotes expectation with respect to X ′1, . . . ,X
′
n. Moreover,

M = max
i

(Z −Z ′i )+ .
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Recall also that, by the Efron-Stein inequality (e.g., (see also [7, Theorem 3.1])

Var(Z) ≤ EV+ .

The proof of Theorem 1 is based on (2.1), applied for the random variable Z =
‖Ap‖. In order to bound moments of the random variable V+, we make use of the
fact that the eigenvector of Ap corresponding to the largest eigenvalue is nearly
uniform. An elegant way of proving such results appears in Mitra [15]. We follow
Mitra’s approach though we need to modify his arguments in order to achieve
stronger probabilistic guarantees for weak `∞ delocalization bounds. In Lemma 1
we provide the bound we need for the proof of Theorem 1.

2.2 Uniform concentration for the Erdős-Rényi random graph process

Next we state our inequalities for the uniform concentration of the spectral norm
‖Ap‖—or, equivalently, for the largest eigenvalue λp of the adjacency matrix Ap
defined by (1.1). Our first result shows that

Theorem 2. There exists a constant C such that, for all n,

E sup
p∈

[ 64logn
n ,1

]
∣∣∣λp −Eλp∣∣∣ ≤ C .

Moreover, for all t ≥ 2C ,

P

 sup
p∈

[ 64logn
n ,1

]
∣∣∣λp −Eλp∣∣∣ ≥ t

 ≤ exp(−t2/128) .

For the numerical constant, our proof provides the (surely suboptimal) value
C = 5 × 108. Once again, our proof is based on the fact that the normalized
eigenvector corresponding to the largest eigenvalue of Ap stays close to the vec-
tor (1/

√
n, . . . ,1/

√
n). In Lemma 4 we prove an `2 bound that holds uniformly over

intervals of the form [q,2q] when q ∈ [4logn/n,1/2]. It is because of the restric-
tion of the range of q in the uniform delocalization lemma that we need to impose
p ≥ 64logn/n in Theorem 2. We do not know whether the uniform concentration
bound holds over the entire interval p ∈ [0,1]. However, we are able to prove the
following, only slightly weaker bound.

Theorem 3. There exists a constant C′ such that, for all n,

E sup
p∈[0,1]

∣∣∣λp −Eλp∣∣∣ ≤ C′√loglogn .
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The proof of Theorem 3 uses direct approximation arguments to handle the
interval p ∈ [0,64logn/n]. In particular, we show that

E sup
p∈[0,64logn/n]

|λp −Eλp| ≤ 5
√

16 + 2loglogn ,

which, combined with Theorem 2 implies Theorem 3.

3 Proofs

3.1 Proof of Theorem 1

Let vp denote an eigenvector corresponding to the largest eigenvalue of Ap such
that ‖vp‖ = 1. Recall that κ = 2× 8352 and c = 1/9408. One of the key elements of
the proof is the following variant of a delocalization inequality of Mitra [15].

Lemma 1. Let n ≥ 7 and p ≥ κ log3(n)/n. Let vp denote an eigenvector corresponding
to the largest eigenvalue λp of Ap with ‖vp‖2 = 1. Then, with probability at least

1− 4(n− 1)exp

−2c
(

log(np)
logn

)2

(n− 1)p

 ,
∥∥∥vp∥∥∥∞ ≤ 11

√
n
.

The lemma is proved in Section 3.3 below. Based on this lemma, we may
prove Theorem 1:

Proof of Theorem1. We apply (2.1) for the random variableZ = ‖Ap‖, as a function

of the
(n

2
)

independent Bernoulli random variables Ai,j = A(p)
i,j , 1 ≤ i < j ≤ n. Let E1

denote the event ‖vp‖∞ ≤ 11/
√
n. By Lemma 1,

P{E1} ≥ 1− 4(n− 1)exp

− 1
4704

(
log(np)

logn

)2

(n− 1)p

 .
For 1 ≤ i < j ≤ n, denote by λ′i,j the largest eigenvalue of the adjacency matrix
obtained by replacing Ai,j (and Aj,i ) by an independent copy A′i,j and keeping all
other entries unchanged. If the components of the eigenvector vp (corresponding
to the eigenvalue λp) are (v1, . . . ,vn), then

V+ = E′
n∑
i<j

(λp −λ′i,j)
2
+ ≤ 4

n∑
i<j

E′
[
v2
i v

2
j (Ai,j −A′i,j)

2
]

= 4
n∑
i<j

v2
i v

2
j (p+ (1− 2p)Ai,j)+ .

6



Since (Ai,j −A′i,j)
2 ≤ 1 and

∑
i v

2
i = 1, we always have V+ ≤ 4. On the event E1, we

have a better control:

V+1E1
≤ 4 · 114

n2


(
n
2

)
p+ (1− 2p)

∑
i<j

Ai,j

 .
Let E2 denote the event that

n∑
i<j
Ai,j ≤ pn(n − 1). By Bernstein’s inequality, P{E2} ≥

1− exp(−3pn(n−1)
8 ). Then

V+1E1∩E2
≤ 115p .

Thus,

E
[
(V+)

k
2

]
= E

[
(V+)

k
21E1∩E2

]
+E

[
(V+)

k
2
(
1E1

+1E2

)]
≤

(
115p

)k/2
+ 4k/2

(
P{E1}+P{E2}

)
≤ 2

(
115p

)k/2
,

whenever P{E1}+P{E2} ≤
(
115p/4

)k/2
. This holds whenever

8(n− 1)exp

− 1
4704

(
log(np)

logn

)2

(n− 1)p

 ≤ (
115p/4

)k/2
,

guaranteed by assumption on k. The proof of the bound for the upper tail follows
from (2.1). The bound for the variance follows from the Efron-Stein inequality.

For the bound for the lower tail we use (2.2). Note that

max
i<j

(λp −λ′i,j)+1E1
≤ 2(vivj(Ai,j −A′i,j))+1E1

≤ 72
n
,

and therefore

Emax
i<j

(vivj(Ai,j −A′i,j))
k
+1E1

≤
(72
n

)k
.

Moreover,

Emax
i<j

(vivj(Ai,j −A′i,j))
k
+1E1

≤ P
{
E1

}
≤ 4(n− 1)exp

− 1
4704

(
log(np)
log(n)

)2

(n− 1)p

 .
We require (72

n

)k
≥ 4(n− 1)exp

− 1
4704

(
log(np)
log(n)

)2

(n− 1)p


7



which holds whenever

k ≤
1

4704

( log(np)
log(n)

)2
(n− 1)p − log(4(n− 1))

log( n72 )
.

Under this condition (
Emax

i<j
(vivj(Ai,j −A′i,j))

k
+

) 1
k

≤ 144
n

.

Under our conditions for k, we have k(144/n)2 ≤ 2·115p and therefore (2.2) implies
the last inequality of Theorem 1.

3.2 Proof of Theorem 2

We begin by noting that, if p ≤ q, then Aq is element-wise greater than or equal to
Ap and therefore ‖Ap‖ ≤ ‖Aq‖ whenever p ≤ q. (see Corollary 1.5 in [5]).

We start with a lemma for the expected spectral norm for a sparse Erdős-
Rényi graph. Since the largest eigenvalue of the adjacency matrix is always bounded
by the maximum degree of the graph, E‖A 1

n
‖ is at most of the order logn. The next

lemma improves this naive bound to O(
√

logn). With more work, it is possible

to improve the rate to
√

logn
loglogn (see the asymptotic result in [13]). However, this

slightly weaker version is sufficient for our purposes.

Lemma 2. For all n,
E‖A 1

n
‖ ≤ 173

√
logn .

Proof. First write

E‖A 1
n
‖ ≤ E‖A 1

n
−EA 1

n
‖+ ‖EA 1

n
‖ ≤ E‖A 1

n
−EA 1

n
‖+ 1 .

Denote B = A 1
n
− EA 1

n
and let B′ be an independent copy of B. Denoting by E′

the expectation operator with respect to B′, note that E′B′ = 0 and therefore, by
Jensen’s inequality,

E‖B‖ = E‖B−E′B′‖ ≤ E‖B−B′‖ .
The matrix B − B′ is zero mean, its non-diagonal entries have a symmetric distri-
bution with variance (2/n)(1−1/n) and all entries have absolute value bounded by
2. Now, applying Corollary 3.6 of Bandeira and van Handel [2] with α = 3,

E‖B−B′‖ ≤ e
2
3 (2
√

2 + 84
√

logn) ≤ 6 + 164
√

logn .

Thus,
E‖A 1

n
‖ ≤ 7 + 164

√
logn ≤ 173

√
logn .
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The next lemma and the uniform delocalization inequality of Lemma 4
(presented in Section 3.3) are the crucial building blocks of the proof of Theorem
2.

Lemma 3. For all n and q ∈ [logn/n, 1
2 ],

P

 sup
p∈[q,2q]

‖Ap −EAp‖ > 420
√
nq

 ≤ e−nq/64 .

Proof. By (1.2), for each fixed p and for all t > 0, we have

P
{
‖Ap −EAp‖ −E‖Ap −EAp‖ > t

}
≤ e−t

2/32 .

On the other hand, using the same symmetrization trick as in Lemma 2, Corollary
3.6 of Bandeira, van Handel [2] implies that for any p ≥ logn/n,

E‖Ap −EAp‖ ≤ e
2
3 (2

√
2np+ 84

√
logn) ≤ 170

√
np .

These two results imply

P
{
‖Ap −EAp‖ > 172

√
np

}
≤ e−np/8 .

Let now q ≥ logn/n and for i = 0,1, . . . ,dnqe, define pi = q+ i/n. Then

sup
p∈[pi ,pi+1]

(
‖Ap −EAp‖ − ‖Api −EApi‖

)
≤ sup

p∈[pi ,pi+1]

(
‖Ap −Api‖+ ‖EAp −EApi‖

)
= sup

p∈[pi ,pi+1]

(
‖Ap −Api‖+ ‖EAp−pi‖

)
= ‖Api+1

−Api‖+ ‖EA1/n‖
≤ ‖Api+1

−Api‖+ 1

= E‖A1/n‖+
(
‖Api+1

−Api‖ −E‖Api+1
−Api‖

)
+ 1

≤ 1 + 173
√

logn+
√
nq

≤ 176
√
nq

with probability at least 1 − e−nq/32, where we used Lemma 2 and (1.2). Thus, by
the union bound, with probability at least 1−nqe−nq/32 −nqe−np/8 ≥ 1− e−nq/64,

sup
p∈[q,2q]

‖Ap −EAp‖ ≤ max
i∈{0,...,dnqe}

‖Api −EApi‖+ 176
√
nq

≤ 172
√

2nq+ 176
√
nq

≤ 420
√
nq.

as desired.
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Proof of Theorem 2. Denote by 1 ∈ Rn the vector whose components are all equal
to 1. Let Bn2 = {x ∈ Rn : ‖x‖2 ≤ 1} be the unit Euclidean ball. Define the event E1

that vp ∈ 1√
n

+ 2896√
np B

n
2 for all p ∈ [64logn/n,1]. By Lemma 4 (see Section 3.3 below),

for n ≥ 7,

P{E1} ≥ 1− 4
∞∑
j=0

exp
(
−2j logn

)
≥ 1− 4

∞∑
j=0

(1
n

)2j

≥ 1− 4
n

∞∑
j=0

(1
7

)j
= 1− 32

7n
.

Now define the event E2 that for all p ∈
[64logn

n ,1
]
, ‖Ap−EAp‖ ≤ 420

√
2np. Similarly

to the calculation above, by Lemma 3, P{E2} ≥ 1− 32
7n .

Denoting by Sn−1 = {x ∈ Rn : ‖x‖2 = 1} the Euclidean unit sphere in Rn,
define

λp = sup
x∈Sn−1

xTApx1E1∩E2
and Ap = Ap1E2

.

Then we may write the decomposition

λp = sup
x∈ 1√

n
+ 2896√

np B
n
2

xTApx =
1
√
n
Ap

1
√
n

+ 2 sup
z∈ 2896√

np B
n
2

zTAp

(
1
√
n

+
z
2

)
.

Then

sup
p∈

[ 64logn
n ,1

] |λp −Eλp|

≤ 2 sup
p∈

[ 64logn
n ,1

]
∣∣∣∣∣∣∣∣ sup
z∈ 2896√

np B
n
2

(zTAp(
1
√
n

+
z
2

))−E sup
z∈ 2896√

np B
n
2

(zTAp(
1
√
n

+
z
2

))

∣∣∣∣∣∣∣∣
+ sup
p∈

[ 64logn
n ,1

]
∣∣∣∣∣∣∣ 1
√
n

T

Ap
1
√
n
−E 1

T

√
n
Ap

1
√
n

∣∣∣∣∣∣∣ . (3.1)

For the second term on the right-hand side of (3.1), since Ap −Ap = Ap1E2
we have

E sup
p∈

[ 64logn
n ,1

]
∣∣∣∣∣∣∣ 1
√
n

T

Ap
1
√
n
−E 1

T

√
n
Ap

1
√
n

∣∣∣∣∣∣∣
≤ E sup

p∈
[ 64logn

n ,1
]
∣∣∣∣∣∣∣ 1
√
n

T

Ap
1
√
n
−E 1

T

√
n
Ap

1
√
n

∣∣∣∣∣∣∣+ 2nP (E2) .

Note that 1√
n

T
Ap

1√
n

= (2/n)
∑
i<j 1Ui,j<p. Thus, the first term on the right-hand side

is just the maximum deviation between the cumulative distribution function of a
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uniform random variable and its empirical counterpart based on
(n

2
)

random sam-
ples. This may be bounded by the classical Dvoretzky-Kiefer-Wolfowitz theorem
[8]. Indeed, by Massart’s version [14], we have

E sup
p∈

[ 64logn
n ,1

]
∣∣∣∣∣∣∣ 1
√
n

T

Ap
1
√
n
−E 1

T

√
n
Ap

1
√
n

∣∣∣∣∣∣∣ ≤ E sup
p∈[0,1]

∣∣∣∣∣∣∣ 1
√
n

T

Ap
1
√
n
−E 1

T

√
n
Ap

1
√
n

∣∣∣∣∣∣∣
≤ 4

∞∫
t=0

exp(−2t2)dt =
√

2π .

Thus, the second term on the right-hand side of (3.1) is bounded by the absolute
constant

√
2π+ 64

7 ≤ 12 since P (E2) ≤ 32
7n .

In order to bound the first term on the right-hand side of (3.1), we write

sup
p∈

[ 64logn
n ,1

]
∣∣∣∣∣∣∣∣ sup
z∈ 2896√

np B
n
2

zTAp

(
1
√
n

+
z
2

)
−E sup

z∈ 2896√
np B

n
2

zTAp

(
1
√
n

+
z
2

)∣∣∣∣∣∣∣∣
≤ sup

p∈
[ 64logn

n ,1
] sup
z∈ 2896√

np B
n
2

∣∣∣∣∣∣zTAp
(

1
√
n

+
z
2

)
−EzTAp

(
1
√
n

+
z
2

)∣∣∣∣∣∣
≤ sup

p∈
[ 64logn

n ,1
] 2896
√
np

sup
z∈ 2896√

np B
n
2

∥∥∥∥∥∥ 1
√
n

+
z
2

∥∥∥∥∥∥ · ‖Ap −EAp‖
≤ sup

p∈
[ 64logn

n ,1
]2896× 594

(
1 +

1448
√
np

)

≤ 2896× 594

1 +
1448√

64log(7)

 ≤ 4.5× 108 .

Finally, note that with probability at least 1 − 64
7n for all p ∈

[64logn
n ,1

]
we have

λp = λp. Moreover, for all p,

Eλp −Eλ′p ≤ E sup
x∈Sn−1

(xTApx(1−1E1∩E2
)) ≤ nP (E1 ∪E2) ≤ 64

7
.

Thus,

E sup
p∈

[ 64logn
n ,1

] |λp −Eλp| ≤ 128
7

+E sup
p∈

[ 64logn
n ,1

] |λp −Eλp| ≤ 5× 108 ,

proving the first inequality of the theorem.
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To prove the second inequality, we follow the argument of Example 3.14 in
[7]. Denote Z = sup

p∈
[ 64logn

n ,1
] |λp − Eλp| and Z ′i,j = sup

p∈
[ 64logn

n ,1
] |λ′p − Eλp| where

λ′p is the largest eigenvalue of the adjacency matrix A′p of the random graph that
is obtained from Ap by replacing Ui,j by an independent copy. Denoting the first
eigenvector of Ap by vp and the first eigenvector of A′p by v′p and the (random)
maximizer sup

p∈
[ 64logn

n ,1
] |vTp Apvp −Eλp| by p∗, we have

(Z −Z ′i,j)+ ≤

 sup
p∈

[ 64logn
n ,1

] |vTp Apvp −Eλp| − sup
p∈

[ 64logn
n ,1

] |v′Tp A′pv′p −Eλp|
1Z≥Z ′i,j

≤
∣∣∣vTp∗Ap∗vp∗ −Eλp∗ − v′Tp∗ A′p∗v′p∗ −Eλp∗ ∣∣∣1Z≥Z ′i,j

≤
∣∣∣vTp∗(Ap∗ −A′p∗)vp∗ ∣∣∣1Z≥Z ′i,j

≤ 4|vip∗v
j
p∗ | .

This implies
∑

1≤i≤j≤n
(Z −Z ′i,j)

2
+ ≤ 16. Thus, for any t ≥ 0,

P

 sup
p∈

[ 64logn
n ,1

] |vTp Apvp −Eλp| −E sup
p∈

[ 64logn
n ,1

] |vTp Apvp −Eλp| ≥ t
 ≤ exp(−t2/32) .

Using the bound Esup
p∈

[ 64logn
n ,1

](vTp Apvp−Eλp) ≤ 5×108, we have for t′ = t+5×108

P

 sup
p∈

[ 64logn
n ,1

] |vTp Apvp −Eλp| ≥ t′
 ≤ exp(−(t′ − 5× 108)2/32) .

For t′ ≥ 109 the claim follows.

3.3 Delocalization bounds

In this section we prove the “delocalization” inequalities that state that the eigen-
vector vp corresponding to the largest eigenvalue of Ap is close to the “uniform”
vector n−1/21. The following lemma is crucial in the proof of Theorem 2. This
proof is based on an argument of Mitra [15]. However, we need to modify it to get
uniformity and also significantly better concentration guarantees.

Lemma 4. Let n ≥ 7 and q ∈ [4logn
n , 1

2 ]. Then, with probability 1− 4exp(−nq/64),

sup
p∈[q,2q]

∥∥∥∥∥∥vp − 1
√
n

∥∥∥∥∥∥
2

≤ 2896
√
nq

.
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Proof.

First note that there exists a unique vector v⊥p with (v⊥p ,vp) = 0 and ‖v⊥p ‖2 = 1 such
that

1/
√
n = αvp + βv⊥p (3.2)

for some α,β ∈ R. By Lemma 3, with probability at least 1− exp(−nq/64),

sup
p∈[q,2q]

‖Ap −EAp‖ ≤ 420
√
nq .

Notice that EAp = pn 1√
n

1
T
√
n
−pIn, where In is an identity n×nmatrix. Since the graph

with adjacency matrixAq is connected with probability at least 1−(n−1)exp(−nq/2)
(see, e.g., [17, Section 5.3.3]), by monotonicity of the property of connectedness,
the same holds simultaneously for all graphs Ap for p ∈ [q,2q]. Also, by the Perron-
Frobenius theorem, if the graph is connected, the components of vp are all nonneg-

ative for all p ∈ [q,2q]. Using that α =
(

1√
n
,vp

)
,

(Ap −EAp)vp = λpvp − pn
1
√
n

1
T

√
n
vp + pvp

= λpvp − pnα
1
√
n

+ pvp

= λpvp − pnα(αvp + βv⊥p ) + pvp

= (λp + p − pnα2)vp − pnαβv⊥p .

This leads to
(λp + p − pnα2)2 ≤ 4202nq . (3.3)

Since α ∈ [0,1], this implies that, with probability at least 1 − exp(−nq/64) − (n −
1)exp(−nq/2), simultaneously for all p ∈ [q,2q]

λp ≤ p(n− 1) + 420
√
nq . (3.4)

We may get a lower bound for λp by noting that

λp ≥
1
n

1
T
Ap1 =

2
n

n∑
i<j

1Uij<p .

Applying Massart’s version of the Dvoretzky-Kiefer-Wolfowitz theorem [14], we
have, for all t ≥ 0,

P

 sup
p∈[0,1]

∣∣∣∣∣∣∣∣2n
n∑
i<j

1Uij<p − (n− 1)p

∣∣∣∣∣∣∣∣ ≥ (n− 1)t

 ≤ 2exp
(
−n(n− 1)t2

)
.

13



Choosing t =
√
nq

n−1 , we have, with probability at least 1− 2exp(−nq/2),

λp ≥ p(n− 1)−√nq . (3.5)

This lower bound, together with (3.3) gives

α ≥ α2 ≥
λp + p

pn
−

420
√
nq

pn
≥ 1− 421

√
nq

(3.6)

with probability at least 1 − exp(−nq/64) − (n − 1)exp(−nq/2) − 2exp(−nq/2) ≥ 1 −
4(n− 1)exp(−nq/64). For the rest of the proof, we denote this event by E.

Next, write∥∥∥∥∥∥ 1
√
n
− vp

∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥Apλp 1
√
n
− vp

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥Apλp 1
√
n
− 1
√
n

∥∥∥∥∥∥
2

. (3.7)

We analyze both terms on the right-hand side. Observe that EAp 1√
n

= (n−1)p1√
n

. The
second term on the right-hand side of (3.7) may be bounded on the event E, for all
p ∈ [q,2q], as∥∥∥∥∥∥Apλp 1

√
n
− 1
√
n

∥∥∥∥∥∥
2

≤ 1
λp

∥∥∥∥∥∥Ap 1
√
n
−

(n− 1)p1
√
n

∥∥∥∥∥∥
2

+
1
λp

∥∥∥∥∥∥((n− 1)p −λp)1
√
n

∥∥∥∥∥∥
2

=
1
λp

∥∥∥∥∥∥Ap 1
√
n
−EAp

1
√
n

∥∥∥∥∥∥
2

+
|(n− 1)p −λp|

λp

≤

∥∥∥Ap −EAp∥∥∥+ |(n− 1)p −λp|
λp

≤
420
√
nq+ 420

√
nq

p(n− 1)−√nq

≤ 1640
√
nq

.

Thus, on the event E, for all p ∈ [q,2q],∥∥∥∥∥∥ 1
√
n
− vp

∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥Apλp 1
√
n
− vp

∥∥∥∥∥∥
2

+
1640
√
nq

.

For each p, we may write v⊥p =
n∑
i=2
γiv

i
p, where vip is the i-th orthonormal eigenvector

of Ap. Then
Ap
λp

1
√
n

= αvp + β
n∑
i=2

γiλiv
i
p

λp
,
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where λi is i-th eigenvalue of Ap. By the Perron-Frobenius theorem, we have |λi | ≤
λp for all i = 2, . . . ,n. Moreover, from Füredi and Komlós [11, Lemmas 1 and 2] ,

for all t ∈ R we have that |λi | ≤ ‖Ap − t 1√
n

1
T
√
n
‖ for i ≥ 2. Choosing t = np we obtain

|λi | ≤ ‖Ap−EAp‖+p‖In‖ ≤ 420
√
nq+p ≤ 422

√
nq . Thus, using (3.6), on the event E,∥∥∥∥∥∥Apλp 1

√
n
− vp

∥∥∥∥∥∥
2

≤ 1−α + βmax
i≥2

|λi |
λp

+
1640
√
nq
≤ 2061
√
nq

+
422
√
nq

(n− 1)p −√nq
≤ 2896
√
nq

,

as desired.

We close this section by proving the “weak” delocalization bound of Lemma
1.

Proof of Lemma 1. We use the notation introduced in the proof of Lemma 4. Here
we fix p ≥ κ log3n/n. Fix ` ∈ N and write

∥∥∥vp∥∥∥∞ ≤
∥∥∥∥∥∥∥
(
Ap
λp

)` 1
√
n
− vp

∥∥∥∥∥∥∥∞ +

∥∥∥∥∥∥∥
(
Ap
λp

)` 1
√
n

∥∥∥∥∥∥∥∞ . (3.8)

We bound both terms on the right-hand side. We start with the second term and
rewrite it as ∥∥∥∥∥∥∥

(
Ap
λp

)` 1
√
n

∥∥∥∥∥∥∥∞ =
1
√
n

∣∣∣∣∣∣(n− 1)p
λp

∣∣∣∣∣∣`
∥∥∥∥∥∥∥
(

Ap
(n− 1)p

)`
1

∥∥∥∥∥∥∥∞ .

Denote by Di =
n∑
j=1
Ai,j the degree of vertex i. By standard tail bounds for the

binomial distribution we have, for a fixed i and 0 ≤ ∆ ≤ 1,

P {Di < p(n− 1)− p(n− 1)∆} ≤ exp
(
−∆2p(n− 1)

2

)
and

P {Di > p(n− 1) + p(n− 1)∆} ≤ exp
(
−

3∆2p(n− 1)
8

)
.

Using the union bound, we have

P
{
max
i
|Di − p(n− 1)| > p(n− 1)∆

}
≤ 2(n− 1)exp

(
−

3∆2p(n− 1)
8

)
.

We denote the event
max
i
|Di − p(n− 1)| ≤ p(n− 1)∆

by E1. Observe that when E1 holds we have Di ≤ p(n−1)(1+∆) and Di ≥ p(n−1)(1−
∆) for all i.
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Assume that u ∈ Rn is such that

‖u − 1‖∞ ≤ 2t∆ (3.9)

for some t ≤ `. In what follows we choose ` =
⌊21logn

log(np)

⌋
and ∆ = log(np)

42logn . Observe that

`∆ ≤ 1
2 . Since t∆2 ≤ `∆2 ≤ 1

2∆, we have ∆+ 2t∆2 ≤ 2∆. Thus, on the event E1, using
the last inequality together with (3.9),(

Ap
(n− 1)p

u

)
i

≤
p(n− 1)(1 +∆)(1 + 2t∆)

(n− 1)p
= 1 +∆+ 2t∆+ 2t∆2 ≤ 1 + 2(t + 1)∆ . (3.10)

Now consider the term
∣∣∣∣ (n−1)p

λp

∣∣∣∣`. Using (3.5) we have, with probability at least

1− 2exp(−np/2) (denote the corresponding event by E2),∣∣∣∣∣∣(n− 1)p
λp

∣∣∣∣∣∣` ≤
1− 1√

p(n− 1)

−` .
Since ` ≤

√
p(n− 1), we obtain

∣∣∣∣ (n−1)p
λp

∣∣∣∣` ≤ e. Thus, applying (3.10) ` times for vectors
satisfying (3.9), on the event E1 ∩E2, we have, for all i,(Apλp

)`
1


i

=

∣∣∣∣∣∣(n− 1)p
λp

∣∣∣∣∣∣`
( Ap

(n− 1)p

)`
1


i

≤ e(1 + 2`∆) ≤ 2e .

We may similarly derive a lower bound since, for any vector satisfying (3.9),(
Ap

(n− 1)p
u

)
i

≥
p(n− 1)(1−∆)(1− 2t∆)

(n− 1)p
= 1−∆− 2t∆+ 2t∆2 ≥ 1− 2(t + 1)∆ . (3.11)

Analogously, applying (3.11) ` times, on the event E1 ∩E2, we have(Apλp
)`

1


i

=

∣∣∣∣∣∣(n− 1)p
λp

∣∣∣∣∣∣`
( Ap

(n− 1)p

)`
1


i

≥
∣∣∣∣∣∣(n− 1)p

λp

∣∣∣∣∣∣` (1− 2`∆) ≥ 0 .

Hence, on the event E1 ∩E2, ∥∥∥∥∥∥∥
(
Ap
λp

)` 1
√
n

∥∥∥∥∥∥∥∞ ≤
2e
√
n
. (3.12)

Next we bound the first term on the right-hand side of (3.8). Recall that for the
decomposition 1/

√
n = αvp + βv⊥p from (3.6) we have α ≥ 1− 421√

np on an event E3 of

probability at least 1− 4(n− 1)exp(−np/64). As before, we may write v⊥p =
n∑
i=2
γiv

i
p,
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where vip is the i-th orthonormal eigenvector of Ap. Using 1/
√
n = αvp + βv⊥p , we

have (
Ap
λp

)` 1
√
n

= αvp + β
n∑
i=2

γiv
i
p

(
λi
λp

)`
,

where λi is i-th eigenvalue of Ap. Using Füredi and Komlós [11, Lemmas 1 and

2] once again, for all t ∈ R we have that |λi | ≤
∥∥∥∥Ap − t 1√

n
1
T
√
n

∥∥∥∥ for i ≥ 2. Choosing
t = np we obtain |λi | ≤ ‖Ap −EAp‖ + p‖In‖ ≤ 420

√
np + p ≤ 422

√
np on an event E4

of probability at least 1 − 4(n − 1)exp(−np/64). Thus, on E4 we have |λi |λp ≤
835√
np for

i ≥ 2, and therefore∥∥∥∥∥∥∥
(
Ap
λp

)` 1
√
n
− vp

∥∥∥∥∥∥∥∞ ≤ (1−α)‖vp‖∞ + βmax
i≥2

(
|λi |
λp

)`
. (3.13)

Define κ1 = log(835)
log(2×8352) . Observe that κ1 <

1
2 . Using np ≥ 2× 8352 = κ,

βmax
i≥2

(
|λi |
λp

)`
≤ β

(
835
√
np

)`
≤

(
835

(np)κ1

)`
exp

(
(
1
2
−κ1) log(

1
np

)
21logn
log(np)

)
≤ exp

(
−21(

1
2
−κ1) logn

)
≤ 1
√
n
,

where we used
(

835
(np)κ1

)`
≤ 1 and the inequality 21(1

2 −κ1) > 1
2 . Finally, on the event

E1∩E2∩E3∩E4 we have, using the decomposition (3.8) combined with (3.12) and
(3.13), that

‖vp‖∞ ≤
1
α

(
1 + 2e
√
n

)
≤ 1

1− 421√
np

(
1 + 2e
√
n

)
≤ 11
√
n
.

3.4 Proof of Theorem 3

It suffices to prove that

E sup
p∈[0, 64logn

n ]

|λp −Eλp| ≤ 5
√

16 + 2loglogn .

Observe that

E sup
p∈[0,1]

|λp −Eλp| ≤ E sup
p∈[0, 64logn

n ]

|λp −Eλp|+E sup
p∈[ 64logn

n ,1]

|λp −Eλp|
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Let p0,p1, . . . ,pM be such that 0 = p0 ≤ p1 ≤ · · · ≤ pM = 64logn
n and E(λpj −λpj−1

) = ε
for some ε > 0 to be specified later. Such a choice is possible since λp is nonde-
creasing in p. We have

εM = EλM ≤ E‖ApM −EApM‖+ ‖EApM‖ ≤ 170
√
npM +npM ≤ 1424logn . (3.14)

Denote for p ∈ [0,pM] the value π+[p] = min{q ∈ {p0,p1, . . . ,pM}| q ≥ p} and π−[p] =
max{q ∈ {p0,p1, . . . ,pM}| p ≥ q}. We have

E sup
p∈[0, 64logn

n ]

|λp −Eλp| = E sup
p∈[0, 64logn

n ]

max(λp −Eλp,Eλp −λp)

≤ E sup
p∈[0, 64logn

n ]

max(λπ+[p] −Eλπ+[p] + ε,Eλπ−[p] −λπ−[p] + ε)

= ε+E sup
p∈[0, 64logn

n ]

max(λπ+[p] −Eλπ+[p],Eλπ−[p] −λπ−[p])

≤ ε+E sup
q∈{p0,...,pM }

|λq −Eλq| .

Since for each pi , the random variable |λq−Eλq| has sub-Gaussian tails by (1.2), for
their maximum we obtain the bound

E sup
q∈{p0,...,pM }

|λq −Eλq| ≤ 4
√

2log2M .

Finally, using (3.14)

E sup
p∈[0, 64logn

n ]

|λp −Eλp| ≤ inf
ε>0

(ε+ 4
√

2log(2848logn/ε)) ≤ 5
√

2log(2848logn) ,

as desired.
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