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Abstract

We present general sufficient conditions for the almost sure L1-consistency of his-

togram density estimates based on data-dependent partitions. Analogous condi-

tions guarantee the almost-sure risk consistency of histogram classification schemes

based on data-dependent partitions. Multivariate data is considered throughout.

In each case, the desired consistency requires shrinking cells, subexponential

growth of a combinatorial complexity measure, and sub-linear growth of the num-

ber of cells. It is not required that the cells of every partition be rectangles with

sides paralles to the coordinate axis, or that each cell contain a minimum number

of points. No assumptions are made concerning the common distribution of the

training vectors.

We apply the results to establish the consistency of several known partitioning

estimates, including the kn-spacing density estimate, classifiers based on statisti-

cally equivalent blocks, and classifiers based on multivariate clustering schemes.
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1 Introduction

A natural method of estimating local properties of data in nonparametric statistics is

to partition the space of observations into cells, and then compute statistics locally

within each cell. This leads to histogram estimates of an unknown density, and to

partition-based classification rules. The simplest histogram methods partition the space

into congruent intervals or cubes whose size and position depends on the number of

available data points, but not on the data itself. These methods provide estimates

that are consistent, regardless of the underlying distribution of the data. Abou-Jaoude

(1976a), (1976c) gave necessary and sufficient conditions under which a sequence of

regular partitions gives rise to L1-consistent estimates for every density (see also Devroye

and Györfi (1985)). A similar result for classification and regression estimates based on

cubic partitions was obtained by Devroye and Györfi (1983). The weak (in-probability)

consistency of these schemes can also be deduced from the general result of Stone (1977).

Statistical practice suggests that histogram estimators based on data-dependent par-

titions will provide better performance than those based on a fixed sequence of partitions.

Theoretical evidence for this superiority was given by Stone (1985). The simplest data-

dependent partitioning methods are based on statistically equivalent blocks (Anderson

(1966), Patrick and Fisher (1967)), in which each cell contains the same number of

points. In one dimensional problems statistically equivalent blocks reduce to k-spacing

estimates (Mahalanobis (1961), Parthasarathy and Bhattacharya (1961), Van Ryzin

(1973)), where the k-th, 2k-th, ... order statistics determine the partition of the real

line.

Many other data-dependent partitioning schemes have been introduced in the litera-

ture (cf. Devroye (1988)). In many cases the partition is described by a binary tree, each

of whose leaves corresponds to a cell of the partition. The tree structure makes com-

putation of the corresponding classification rule or density estimate fast, and provides

a ready interpretation of the estimate. The consistency of tree-structured classification

and regression was investigated by Gordon and Olshen (1978), (1980), (1984) in a general

framework, and was extended by Breiman, Friedman, Olshen and Stone (1984).

Existing conditions for the consistency of histogram classification and density esti-
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mation using data-dependent partitions require significant restrictions. The conditions

of Breiman et al. (1984) for consistent classification require that each cell of every par-

tition belongs to a fixed Vapnik-Chervonenkis class of sets, and that every cell must

contain at least kn points, where kn/ log n → ∞ as the sample size n tends to infinity.

Chen and Zhao (1987), and Zhao, Krishnaiah, and Chen (1990) restrict their attention

to density estimates based rectangular partitions.

This paper presents general sufficient conditions for the almost-sure L1 consistency

of histogram classification and density estimates that are based on data-dependent par-

titions. Analogous conditions for the consistency of histogram regression estimates are

addressed in Nobel (1994).

In the next section two combinatorial properties of partition families are defined,

and a Vapnik-Chervonenkis type large deviation inequality is established. In Section

3, common features of the estimates investigated in the paper are defined. Sections 4

and 5 are devoted to the consistency results for density estimation and classification,

respectively.

Our results establish consistency under significantly weaker conditions than those

imposed by Breiman et al. (1984) and Zhao, Krishnaiah, and Chen (1990), and are

readily applicable to a number of existing partitioning schemes. In Section 6 the results

are applied to establish the consistency kn-spacing density estimates, classifiers based

on statistically equivalent blocks, and classifiers based on clustering of the data.

2 A Vapnik-Chervonenkis Inequality for Partitions

Let IRd denote d-dimensional Euclidean space. An ordered sequence (x1, . . . , xn) ∈ IRn·d

will be denoted by xn
1 . By a partition of IRd we mean a finite collection π = {A1, . . . Ar} of

Borel-measurable subsets of IRd, referred to as cells, with the property that (i) ∪r
j=1Aj =

IRd and (ii) Ai ∩ Aj = ∅ if i 6= j. Let |π| denote the number of cells in π.

Let A be a (possibly infinite) family of partitions of IRd. The maximal cell count of

A is given by

m(A) = sup
π∈A

|π| .
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The complexity of A will be measured by a combinatorial quantity similar to the growth

function for classes of sets that was proposed by Vapnik and Chervonenkis (1971). Fix

n points x1, . . . , xn ∈ IRd and let B = {x1, . . . , xn}. Let ∆(A, xn
1 ) be the number of

distinct partitions

{A1 ∩B, . . . , Ar ∩B} (1)

of the finite set B that are induced by partitions {A1, . . . , Ar} ∈ A. Note that the

order of appearance of the individual sets in (1) is not important. It is easy to see that

∆(A, xn
1 ) ≤ m(A)n. Define the growth function of A as follows:

∆∗
n(A) = max

xn
1∈IRn·d

∆(A, xn
1 ) (2)

is the largest number of distinct partitions of any n point subset of IRd that can be

induced by the partitions in A.

Let X1, X2, . . . be i.i.d. random vectors in IRd with Xi ∼ µ and let µn denote the

empirical distribution of X1, . . . , Xn. We wish to establish a large deviations inequality

for random variables of the form

sup
π∈A

∑
A∈π

|µn(A)− µ(A)|, (3)

where A is an appropriate family of partitions. Our analysis relies on the well-known

inequality of Vapnik and Chervonenkis (1971). Consider a class C of subsets of IRd.

The shatter coefficient Sn(C) is defined to be the maximum cardinality of the collection

{B ∩ C : C ∈ C}, as B ranges over subsets of IRd containing n points. Vapnik and

Chervonenkis (1971) showed that for each n ≥ 1 and each ε > 0,

IP

{
sup
A∈C

|µn(A)− µ(A)| > ε

}
≤ 4 S2n(C) e−nε2/8. (4)

Remark: In order to insure measurability of the supremum in (3), it is necessary to

impose regularity conditions on uncountable collections of partitions. Suppose that

m(A) = r < ∞. Let Ω consist of all measurable functions f : IRd → {1, . . . , r}. Each

function in Ω corresponds to a measurable partition of IRd having at most r cells, and

each partition in A corresponds to a finite collection of functions in Ω. Let Ω′ ⊆ Ω be
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the collection of all such functions associated with partitions in A. It is assumed that

each family A considered here gives rise to a collection Ω′ that contains a countable

sub-collection Ω0 with the property that every function in Ω′ is the pointwise limit of a

sequence of functions in Ω0. It is easy to show (c.f. Pollard (1984), pp.38-39) that the

supremum in (3) is measurable when A has this property.

The following lemma presents a Vapnik-Chervonenkis inequality for partition fami-

lies. A similar inequality, for families of rectangular partitions, was established by Zhao,

Krishnaiah, and Chen (1990).

Lemma 1 Let A be any collection of partitions of IRd. For each n ≥ 1 and every ε > 0,

IP

{
sup
π∈A

∑
A∈π

|µn(A)− µ(A)| > ε

}
≤ 4 ∆∗

2n(A) 2m(A) e−nε2/32. (5)

Remark: A longer, but more general, proof can be found in Lugosi and Nobel (1993).

The argument below was suggested by Andrew Barron.

Proof of Lemma 1: For each partition π = {A1, . . . , Ar} ∈ A let B(π) be the collection

of all 2r sets that can be expressed as the union of cells of π. Let

B(A) = {A ∈ B(π) : π ∈ A}

be the collection of all such unions, as π ranges through A. Fix π for the moment and

define

Ã =
⋃

A∈π:µn(A)≥µ(A)

A .

Then clearly

∑
A∈π

|µn(A)− µ(A)| = 2
(
µn(Ã)− µ(Ã)

)
≤ 2 sup

A∈B(π)
|µn(A)− µ(A)| .

Consequently,

sup
π∈A

∑
A∈π

|µn(A)− µ(A)| ≤ 2 sup
π∈A

sup
A∈B(π)

|µn(A)− µ(A)|

= 2 sup
A∈B(A)

|µn(A)− µ(A)|. (6)
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A straightforward argument shows that S2n(B(A)) ≤ 2m(A)∆∗
2n(A). In conjunction with

(4) and (6) it then follows that

IP

{
sup
π∈A

∑
A∈π

|µn(A)− µ(A)| > ε

}
≤ IP

{
sup

A∈B(A)

|µn(A)− µ(A)| > ε

2

}

≤ 4 ∆∗
2n(A) 2m(A) e−nε2/32,

as desired. 2

The results of Sections 4 and 5 rely on the following corollary of Lemma 1, whose

proof is an easy application of the Borel-Cantelli Lemma.

Corollary 1 Let X1, X2, . . . be i.i.d. random vectors in IRd with Xi ∼ µ, and let

A1,A2, . . . be a sequence of partition families. If as n tends to infinity

(a) n−1m(An) → 0 and

(b) n−1 log ∆∗
n(An) → 0,

then

sup
π∈An

∑
A∈π

|µn(A)− µ(A)| → 0 (7)

with probability one.

3 Data-driven Partitioning Schemes

The density and classification estimates studied below have several common features.

In each case an estimate is produced in two stages from a training set Tn that consists

of n i.i.d. random variables Z1, . . . , Zn taking values in a set X . For density estimation

X = IRd, while for classification X = IRd × {1, . . . ,M}. Using Tn a partition πn =

πn(Z1, . . . , Zn) is produced according to a prescribed rule. The partition πn is then used

in conjunction with Tn to produce a density estimate as in Section 4, or a classification

rule as in Section 5. In either case, the training set is “used twice” and it is this feature of

data-dependent histogram methods that distinguish them from fixed histogram methods.

An n-sample partitioning rule for IRd is a function πn that associates every n-tuple

(z1, . . . zn) ∈ X n with a measurable partition of IRd. Applying the rule πn to Z1, . . . , Zn
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produces a random partition πn(Z1, . . . , Zn). A partitioning scheme for IRd is a sequence

of partitioning rules

Π = {π1, π2, . . .}

Associated with every rule πn there is a fixed, non-random family of partitions

An = {πn(z1, . . . , zn) : z1, . . . , zn ∈ X}.

Thus every partitioning scheme Π is associated with a sequence {A1,A2, . . .} of partition

families. In what follows the random partitions πn(Z1, . . . , Zn) will be denoted simply

by πn. With this convention in mind, for every x ∈ IRd let πn[x] be the unique cell of πn

that contains the point x.

Let A be any subset of IRd. The diameter of A is the maximum Euclidean distance

between any two points of A:

diam(A) = sup
x,y∈A

‖x− y‖.

For each γ > 0 let Aγ be the set of points in IRd that are within distance γ of some point

in A,

Aγ =
{
x : inf

y∈A
‖x− y‖ < γ

}
.

4 Histogram Density Estimation

In this section we investigate the consistency of histogram density estimates based on

data-dependent partitions. Let µ be a probability distribution on IRd having density f ,

so that

µ(A) =
∫

A
f(x)dx.

for every Borel subset A of IRd. Let X1, X2, . . . be i.i.d. random vectors in IRd, each

distributed according to µ, and let µn be the empirical distribution of X1, . . . , Xn. Fix a

partitioning scheme Π = {π1, π2, . . .} for IRd. Applying the n’th rule in Π to X1, . . . , Xn

produces a partition πn = πn(Xn
1 ) of IRd. The partition πn, in turn, gives rise to a

natural histogram estimate of f as follows. For each vector x ∈ IRd let

fn(x) =

 µn(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise .

(8)
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Here λ denotes the Lebesgue measure on IRd. Note that fn is itself a function of the

training set X1, . . . , Xn, and that fn is piecewise constant on the cells of πn. The sequence

of estimates {fn} is said to be strongly L1-consistent if∫
|f(x)− fn(x)|dx → 0. (9)

with probability one as n → ∞. The strong distribution-free consistency of kernel and

non-data dependent histogram estimates has been thoroughly studied by Devroye and

Györfi (1985).

Remark: While the estimates fn are always non-negative, they need not integrate

to one, indeed
∫

fn(x)dx(x) is just the fraction of those points X1, . . . , Xn lying in cells

A ∈ πn for which λ(A) is finite. The consistency of the normalized estimates is addressed

in Corollary 2 below.

Proposition 1 Let f be a density function on IRd, and for some ε < 1/2 let g ≥ 0

satisfy ∫
|f − g|dx < ε .

If ĝ(x) = g(x)/
∫

g(y)dy is the normalized density corresponding to g, then∫
|f − ĝ|dx <

8ε

3
.

Proof: In this proof all integrals are understood with respect to Lebesgue measure.

Since |
∫

g −
∫

f | ≤
∫
|g − f | < ε, it follows that 1− ε ≤

∫
g ≤ 1 + ε. Therefore,

∫ ∣∣∣∣∣f − g∫
g

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣f − f∫

g

∣∣∣∣∣+
∫ ∣∣∣∣∣ f∫

g
− g∫

g

∣∣∣∣∣
=

∫
f

∣∣∣∣∣1− 1∫
g

∣∣∣∣∣+ 1∫
g

∫
|f − g|

< 1− 1

1 + ε
+

ε

1− ε
≤ 8ε

3
.

2

The following theorem extends previous work of Zhao, Krishnaiah, and Chen (1990)

who found sufficient conditions for the strong L1 consistency of histogram density esti-

mates based on infinite, data-dependent rectangular partitions. Our result differs from
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theirs in two respects. First, we place no restriction on the geometry of the partitions

outside of the growth condition (b) below. Secondly, the condition (c) weakens their

requirement that for λ-almost every x the cells containing x have diameter tending to

zero.

Theorem 1 Let X1, X2, . . . be i.i.d. random vectors in IRd whose common distribution

µ has a density f . Let Π = {π1, π2, . . .} be a fixed partitioning scheme for IRd, and let

An be the collection of partitions associated with the rule πn. If as n tends to infinity,

(a) n−1m(An) → 0,

(b) n−1 log ∆∗
n(An) → 0, and

(c) µ{x : diam(πn[x]) > γ} → 0 with probability one for every γ > 0 ,

then the density estimates fn are strongly consistent in L1:∫
|f(x)− fn(x)|dx → 0

with probability one.

Proof: Fix a number ε ∈ (0, 1/2). It follows from Proposition 1 and standard arguments

that there is a continuous density g on IRd such that {x : g(x) > 0} is bounded and∫
|f − g|dx < ε. Let ν be the measure corresponding to g and set Sν = {x : g(x) > 0}.

Fix n and let πn = πn(Xn
1 ) be the random partition produced from X1, . . . , Xn. Let

fn be as in (8) above and define the auxiliary functions

f̃n(x) =

 µ(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise

and

g̃n(x) =

 ν(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise.

It is clear that

|f − fn| ≤ |f − g|+ |g̃n − f̃n|+ |g − g̃n|+ |f̃n − fn|, (10)
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so the L1 error of fn is bounded above by the sum of the integrals of each term on the

right-hand side above. By design,
∫
|f − g|dx < ε, and it is easy to see that∫

|g̃n − f̃n|dx ≤
∑

A∈πn

|ν(A)− µ(A)| ≤
∫
|f − g|dx < ε

as well.

The last term in (10) involves the difference between µn and µ on cells of the random

partition πn. By considering the worst-case behavior over the range of πn(·), we obtain

an upper bound to which the results of Section 2 apply:∫
|f̃n − fn|dx ≤

∑
A∈πn

|µn(A)− µ(A)|

≤ sup
π∈An

∑
A∈π

|µn(A)− µ(A)| ,

and it follows from Corollary 1 of Lemma 1 that

lim
n→∞

∫
|f̃n − fn|dx = 0

with probability one.

It remains to consider the third term in (10). Let δ > 0 be so small that δλ(S1
ν) ≤ ε,

where S1
ν denotes the 1-blowup of Sν . Let γ ∈ (0, 1) be such that for every set A ⊆ IRd

having diameter less than γ,

sup
x,y∈A

|g(x)− g(y)| < δ.

Let π∗n be the collection of cells A ∈ πn for which λ(A) is finite. Then∫
|g(x)− g̃n(x)|dx =

∑
A∈π∗

n

∫
A

∣∣∣∣∣ g(x)− ν(πn[x])

λ(πn[x])

∣∣∣∣∣ dx +
∑

A6∈π∗
n

∫
A

g(x)dx

≤
∑

A∈π∗
n

∫
A

∣∣∣∣∣ g(x)− ν(πn[x])

λ(πn[x])

∣∣∣∣∣ dx + ν{x : diam(πn[x]) ≥ γ}.(11)

An application of Fubini’s Theorem shows that if A ∈ π∗n, then∫
A

∣∣∣∣∣ g(x)− ν(πn[x])

λ(πn[x])

∣∣∣∣∣ dx = λ(A)−1
∫

A
|g(x)λ(A)− ν(A)| dx

= λ(A)−1
∫

A

∣∣∣∣ g(x)
∫

A
dy −

∫
A

g(y)dy
∣∣∣∣ dx

≤ λ(A)−1
∫

A×A
|g(x)− g(y)|dxdy . (12)
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If A ∩ Sν = ∅ then ∫
A×A

|g(x)− g(y)|dxdy = 0. (13)

Suppose that A ∩ Sν 6= ∅. If diam(A) < γ then A ⊆ Sγ
ν and it follows that∫

A×A
|g(x)− g(y)|dxdy ≤ δλ2(A) = δλ2(A ∩ Sγ

ν ) . (14)

On the other hand, if diam(A) ≥ γ then∫
A×A

|g(x)− g(y)|dxdy ≤ 2
∫

A×A
g(x)dxdy = 2ν(A)λ(A) . (15)

Combining (11) - (14) shows that∫
|g(x)− g̃n(x)|dx ≤ 3ν({x : diam(πn[x]) ≥ γ}) + δλ(Sγ

ν )

≤ 3µ({x : diam(πn[x]) ≥ γ}) +
3

2
ε + δλ(Sγ

ν ) ,

where the second inequality follows from the fact that for every Borel set A ⊆ IRd,

|ν(A)− µ(A)| ≤ 1

2

∫
|f − g|dx <

1

2
ε .

Letting n →∞ and making use of assumption (c) in the statement of the theorem,

lim sup
n→∞

∫
|g(x)− g̃n(x)|dx ≤ 3

2
ε + δλ(Sγ

ν ) ≤ 5

2
ε

with probability one. The result may now be established by letting ε tend to zero. 2

The consistency of the estimates {fn} extends immediately to their normalized ver-

sions using Proposition 1.

Corollary 2 Under the assumptions of Theorem 1 the L1-error of the normalized par-

titioning density estimates converges to zero with probability one. 2

5 Histogram Classification

In the classification problem, a measurement vector X ∈ IRd is associated in a stochastic

fashion with a class label Y taking on finitely many values. Let (X, Y ), (X1, Y1), (X2, Y2), . . .

12



be independent and identically distributed with X ∈ IRd and Y ∈ {1, . . . ,M}. Each

measurable decision rule g : IRd → {1, . . . ,M} has an associated error probability, or

risk,

L(g) = IP{g(X) 6= Y }.

The decision rule minimizing L(·) is given by

g∗(x) = arg max
k=1,...,M

Pk(x),

where Pk(x) = IP{Y = k|X = x} is the a posteriori probability of the k-th class given

that X = x. Define L∗ = L(g∗).

Let gn be a decision rule that is based on the training set Tn = (X1, Y1), . . . , (Xn, Yn).

The error probability of gn is a random variable given by

L(gn) = IP{gn(X) 6= Y |Tn} .

A sequence {gn} of data-dependent decision rules is said to be strongly risk consistent

if L(gn) → L∗ with probability one as n tends to infinity.

Let Π = {π1, π2, . . .} be a fixed partitioning scheme for IRd. The partitioning rule

πn assigns a measurable partition of IRd to each sequence (x1, y1), . . . , (xn, yn) of labeled

vectors. Of interest here are decision rules that are defined by forming a class-majority

votes within the cells of πn(Tn). Supressing the dependence of πn(Tn) on Tn, define

gn(x) = k if
∑

Xi∈πn[x]

I{Yi = k} ≥
∑

Xi∈πn[x]

I{Yi = l} for l = 1, . . . ,M , (16)

where I{C} denotes the indicator of an event C. Ties are broken in favor of the class

having the smallest index. We emphasize that the partition πn can depend on the vectors

Xi, and on their labels Yi as well.

The weak consistency of histogram classification rules whose partitions depend only

on the vectors Xi may be established using the general result of Stone’s (1977). The

strong universal consistency of histogram classification rules based on data independent

cubic partitions was shown by Devroye and Györfi (1983). Gordon and Olshen (1978),

(1980), and (1984) established universal consistency for classification and regression

schemes based on data-dependent, rectangular partitioning of IRd. The most general
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existing conditions for the risk consistency of the classification rules studied here can be

found in the book of Breiman, Friedman, Olshen and Stone (1984). These conditions

are discussed further in Section 6.

Here we establish the strong risk consistency of the rules {gn} for a wide class of

partitioning schemes Π. The next theorem is analogous to Theorem 1 for density esti-

mation.

Theorem 2 For each n let An be the collection of partitions associated with the n-

sample partitioning rule πn. Let µ be the distribution of X. If as n tends to infinity

(a) n−1m(An) → 0,

(b) n−1 log ∆∗
n(An) → 0, and

(c) for every γ > 0 and δ ∈ (0, 1)

inf
S:µ(S)≥1−δ

µ{x : diam(πn[x] ∩ S) > γ} → 0 with probability one,

then the classification rules {gn} defined in (16) are risk consistent:

L(gn) → L∗

with probability one.

Theorem 2 implies the distribution free consistency of partitioning schemes for which

condition (c) is satisfied for every distribution of (X, Y ). An example of such a scheme

will be given in Section 6. The proof of Theorem 2 relies on the following elementary

inequality (c.f. Devroye and Györfi (1985)).

Lemma A Let β1(x), . . . , βM(x) be real-valued functions on IRd, and define the decision

rule

h(x) = arg max
1≤k≤M

βk(x).

Then

L(h)− L∗ ≤
M∑

k=1

∫
|Pk(x)− βk(x)|µ(dx) .
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Proof of Theorem 2: Observe that the classification rule gn defined in (16) can be

rewritten in the form:

gn(x) = arg max
1≤k≤M

{
n−1∑n

i=1 I{Xi ∈ πn[x], Y = k}
µ(πn[x])

}
.

For k = 1, . . . ,M define

Pk,n(x) =
n−1∑n

i=1 I{Xi ∈ πn[x], Y = k}
µ(πn[x])

,

and note that by Lemma A, it is enough to show that∫
|Pk(x)− Pk,n(x)|µ(dx) → 0 a.s.

for each k. Fix k ∈ {1, . . . ,M} and define

m(x) = Pk(x) and mn(x) = Pk,n(x).

Fix ε > 0 and let r : IRd → IR be a continuous function with compact support such that∫
|m(x)− r(x)|µ(dx) < ε.

Define the auxiliary functions

m̃n(x) =
E (I{Y = k}I{X ∈ πn[x]}|Tn)

µ(πn[x])

and

r̃n(x) =
E (r(X)I{X ∈ πn[x]}|Tn)

µ(πn[x])
,

and note that both are piecewise-constant on the cells of the partition πn. We begin

with the following upper bound:

|m(x)−mn(x)|

≤ |m(x)− r(x)|+ |r(x)− r̃n(x)|+ |r̃n(x)− m̃n(x)|+ |m̃n(x)−mn(x)|. (17)

The integral of the first term on the right hand side of (17) is smaller than ε by the

definition of r(x). As for the third term,∫
|r̃n(x)− m̃n(x)|µ(dx) =

∑
A∈πn

∣∣∣∣∫
A

m(x)µ(dx)−
∫

A
r(x)µ(dx)

∣∣∣∣
≤

∫
|m(x)− r(x)|µ(dx) < ε.
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Now let η be the distribution of (X, I{Y = k}) on IRd × {0, 1}, and let ηn be the

empirical measure of (X1, I{Y1 = k}), . . . , (Xn, I{Yn = k}). For each partition π =

{A1, . . . , Ar} ∈ An, define a partition π̃ of IRd × {0, 1} via

π̃ = {A1 × {0}, . . . Ar × {0}} ∪ {A1 × {1}, . . . Ar × {1}} ,

and let Bn = {π̃ : π ∈ An}. Then∫
|m̃n(x)−mn(x)|µ(dx) =

∑
A∈πn

∣∣∣∣∣ 1n
n∑

i=1

I{Yi = k}I{Xi ∈ A} − E (I{Y = k}I{X ∈ A}|Tn)

∣∣∣∣∣
=

∑
A∈πn

|ηn(A× {1})− η(A× {1})|

≤ sup
π∈An

∑
A∈π

|ηn(A× {1})− η(A× {1})|

= sup
π̃∈Bn

∑
Bj∈π̃

|ηn(Bj)− η(B)| .

It is easy to see that m(Bn) = 2m(An) and ∆∗
n(Bn) = ∆∗

n(An). In conjunction with

Corollary 1 of Lemma 1, conditions (a) and (b) above imply that∫
|m̃n(x)−mn(x)|µ(dx) → 0 a.s.

It remains to consider the second term on the right-hand side of (17). An application

of Fubini’s theorem gives the following bound:∫
|r(x)− r̃n(x)|µ(dx) =

∑
A:µ(A) 6=0

∫
A

∣∣∣∣∣r(x)− E (r(X)I{X ∈ A}|Tn)

µ(A)

∣∣∣∣∣µ(dx)

=
∑

A:µ(A) 6=0

1

µ(A)

∫
A
|r(x)µ(A)− E (r(X)I{X ∈ A}|Tn)|µ(dx)

=
∑

A:µ(A) 6=0

1

µ(A)

∫
A

∣∣∣∣r(x)
∫

A
µ(dy)−

∫
A

r(y)µ(dy)
∣∣∣∣µ(dx)

≤
∑

A:µ(A) 6=0

1

µ(A)

∫
A

∫
A
|r(x)− r(y)|µ(dx)µ(dy) .

Fix δ ∈ (0, 1) and let γ > 0 be chosen so that if A ⊆ IRd satisfies diam(A) < γ then

|r(x)− r(y)| < δ for every x, y ∈ A. Let K < ∞ be a uniform upper bound on |r|. Let

S ⊂ IRd be such that µ(S) ≥ 1− δ. If diam(A ∩ S) ≥ γ then

1

µ(A)

∫
A

∫
A
|r(x)− r(y)|µ(dx)µ(dy) ≤ 2Kµ(A).
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If, on the other hand, diam(A ∩ S) < γ then

1

µ(A)

∫
A

∫
A
|r(x)− r(y)|µ(dx)µ(dy)

≤ 1

µ(A)

(∫
A∩S

∫
A∩S

|r(x)− r(y)|µ(dx)µ(dy) + 2
∫

A

∫
A\S

|r(x)− r(y)|µ(dx)µ(dy)

)

≤ 1

µ(A)

(
δµ2(A) + 4Kµ(A)µ(A \ S)

)
= δµ(A) + 4Kµ(A \ S).

Summing over the cells A ∈ πn, and noting that µ(Sc) < δ, these bounds show that∫
|r(x)− r̃n(x)|µ(dx) ≤ 2Kµ{x : diam(πn[x] ∩ S) ≥ γ}+ (4K + 1)δ .

Take the infimum of both sides above over S ⊂ IRd with µ(S) ≥ 1 − δ and then let n

tend to infinity. By condition (c) of the theorem,

lim sup
n→∞

∫
|r(x)− r̃n(x)|µ(dx) ≤ δ(4K + 1) a.s.

In summary, we have shown that

lim sup
n→∞

∫
|m(x)−mn(x)|µ(dx) ≤ 2ε + δ(4K + 1) a.s..

As ε and δ were arbitrary, the proof is complete. 2

Remark: The similarity between the conditions of Theorem 1 and Theorem 2 is appar-

ent. Condition (c) of Theorem 2 is weaker than condition (c) of Theorem 1, however,

as one can see by taking S = IRd in the argument above. Consistent density estima-

tion requires more stringent conditions on the diameter of the partition-cells than does

consistent classification.

6 Applications

6.1 Relation to a previous result

Breiman et al. considered classification rules based on tree-structured partitions. Tree-

structured partitions are produced recursively: beginning with a single cell containing
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all of IRd, refinements are made in an iterative fashion by splitting a selected cell of

the current partition with a hyperplane that is based on the data. If the rule πn(·)
makes k such splits, then the resulting partition contains k + 1 cells, each of which is a

convex polytope. Breiman et al. (1984) establish the consistency of classification rules

gn defined as in (16) under three conditions:

a. For every n and every training sequence Tn, each cell of πn(Tn) is a polytope having

at most B faces, where B is fixed.

b. Each cell of πn contains at least kn of the vectors X1, . . . , Xn, where kn/ log n →∞.

c. A “shrinking cell” condition that implies condition (c) of Theorem 2.

Using Theorem 2 it can be shown that conditions (b) and (c) alone suffice to insure the

consistency of classification rules based on tree-structured partitioning schemes.

Theorem 3 Let Π = {π1, π2, . . .} be a sequence of tree-structured partitioning rules

for IRd. Suppose that for every training sequence Tn, each cell of the partition πn(Tn)

contains at least kn of X1, . . . , Xn, where

kn

log n
→∞ . (18)

If the shrinking cell condition (c) of Theorem 2 is satisfied, then the classification rules

{gn} based on Π are risk consistent.

Proof: Let An denote the collection of all possible partitions produced by the rule πn(·).
Each partition πn(Tn) contains at most n/kn cells, so that

m(An)

n
≤ 1

kn

→ 0 .

The recursive nature of the partitioning rule insures that each partition πn(Tn) is based

on at most m(An) = n/kn hyperplane splits. Each such split can dichotomize n ≥ 2

points in IRd in at most nd different ways (cf. Cover (1965)). It follows that the number

of different ways n vectors can be partitioned by π ∈ An is bounded by

∆∗
n(An) ≤

(
nd
)n/kn

,
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and consequently
1

n
log ∆∗

n(An) ≤ d log n

kn

→ 0 .

Thus conditions (a) and (b) of Theorem 2 are satisfied, and the proof is complete. 2

6.2 k-spacing density estimates

Consider the kn-spacing estimate of a univariate density. Let X1, . . . , Xn be i.i.d. real-

valued random variables whose distribution µ has a density f on IR. Let X(1) < X(2) <

. . . < X(n) be the order statistics obtained by a suitable permutation of X1, . . . , Xn.

(This permutation exists with probability one as µ has a density.) The rule πn partitions

the real line into intervals such that each interval, with the possible exception of the

rightmost, contains kn points. Let m =
⌈

n
kn

⌉
. Then

πn(Xn
1 ) = {A1, . . . , Am},

where

X(kn(j−1)+1), . . . , X(knj) ∈ Aj ,

for each j = 1, . . . ,m− 1, and

X(kn(m−1)+1), . . . , X(n) ∈ Am .

Theorem 4 applies to any partition having these properties: the endpoints of the indi-

vidual cells are not important. The density estimate fn is defined by

fn(x) =


kn/λ(πn[x]) if x ∈ ∪m−1

j=1 Aj

(n− kn(m− 1))/λ(πn[x]) if x ∈ Am

0 otherwise.

Abou-Jaoude (1976b) established the strong L1-consistency of this estimate when the

density f of µ is Riemann-integrable. An application of Theorem 1 gives the best possible

result.

Theorem 4 Let fn be the kn-spacing estimate given above. Then

lim
n→∞

∫
|f(x)− fn(x)|dx = 0 a.s.

if kn →∞ and kn/n → 0 as n tends to infinity.
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Remark: Abou-Jaoude (1976b) showed that the conditions on the block size kn are

necessary for universal consistency, so the conditions above are optimal.

Proof of Theorem 4: Let An contain all the partitions of IR into m =
⌈

n
kn

⌉
intervals.

Then m(An) ≤ n/kn+1, so that condition (a) of Theorem 1 is satisfied. The partitioning

number ∆∗
n(An) is equal to the number of ways n fixed points can be partitioned by m

intervals, so that

∆∗
n(An) =

(
n + m

n

)
.

Let h be the binary entropy function, defined by h(x) = −x log(x)− (1− x) log(1− x)

for x ∈ (0, 1). Note that h is increasing on (0, 1/2], h is symmetric about 1/2, and

that h(x) → 0 as x → 0. It is well known (c.f. Csiszár and Körner (1981)) that

log
(

s
t

)
≤ sh(t/s), and consequently

log ∆∗
n(An) ≤ (n + m)h

(
m

n + m

)
≤ 2nh(1/kn) .

As kn →∞, the last inequality implies that

1

n
log ∆∗

n(An) → 0 ,

which establishes condition (b) of Theorem 1.

Now fix γ, ε > 0 and let B be so large that µ([−B, B]c) < ε. Then

µ{x : diam(πn[x]) > γ} ≤ ε + µ( {x : diam(πn[x]) > γ} ∩ [−B, B] ) .

There are at most 2B/γ disjoint intervals of length greater than γ in [−B, B], and

consequently

µ( {x : diam(πn[x]) > γ} ∩ [−B, B] ) ≤ 2B

γ
max
A∈πn

µ(A)

≤ 2B

γ

(
max
A∈πn

µn(A) + max
A∈πn

|µ(A)− µn(A)|
)

≤ 2B

γ

(
kn

n
+ sup |µ(A)− µn(A)|

)
,

where in the last inequality the supremum is taken over all intervals in IR. The first

term in the parenthesis tends to zero by assumption, while the second term tends to zero
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with probability one by an obvious extension of the classical Glivenko-Cantelli theorem.

In summary, for any γ, ε > 0,

lim sup
n→∞

µ{x : diam(πn[x]) > γ} ≤ ε a.s.

so that condition (c) of Theorem 1 is satisfied. This completes the proof. 2

6.3 Classification using statistically equivalent blocks

Classification rules based on statistically equivalent blocks are analogous to the k-spacing

density estimate studied above. If the observations Xi are real-valued, then the partition

for the statistically equivalent blocks classification rule agrees with the partition used by

the k-spacing density estimate. Note that partitions of this sort are well-defined only if

data points do not coincide.

For multivariate data the k-spacing partitioning scheme can be generalized in several

ways. Consider a training sequence (X1, Y1), . . . , (Xn, Yn) ∈ IRd × {1, . . . ,M} such that

d ≥ 2 and the distribution of Xi has non-atomic marginals. We consider a partitioning

method proposed by Gessaman (1970). Let mn =
⌈(

n
kn

)1/d
⌉
. Now project the vectors

X1, . . . , Xn onto the first coordinate axis. Based on these projections, partition the data

into mn sets using hyperplanes perpendicular to the first coordinate axis, in such a way

that each set (with the possible exception of the last) contains an equal number of points.

This produces mn cylindrical sets. In the same way, partition each of these cylindrical

sets along the second axis into mn boxes, such that each box contains the same number

of data points. Continuing in a similar fashion along the remaining coordinate axes

produces md
n rectangular cells, each of which (with the possible exception of those on

the boundary) contains kn points. The corresponding classification rule gn is defined

as in Section 5, by taking a majority vote among those labels Yi whose corresponding

vectors Xi lies within a given cell. The consistency of this classification rule can be

established by an argument similar to that given for the kn-spacing density estimate

above. It is sufficient to verify that the conditions of Theorem 2 are satisfied. The only

minor difference is in the computation of ∆∗
n, which in this case is upper bounded by(

n+m
n

)d
. The following theorem summarizes the result.
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Theorem 5 Assume that the distribution µ of X has non-atomic marginals. Then the

classification rule based on Gessaman’s partitioning scheme is consistent if kn →∞ and

kn/n → 0 as n tends to infinity. 2

To consider distributions with possibly atomic marginals the partitioning algorithm

must be modified, since for large n every such atom will have more than kn data points

with the same corresponding component. Such a modification is possible, but it is not

discussed here.

Remark: Consistency of Gessaman’s classification scheme can also be derived from

the results of Gordon and Olshen (1978) under the additional condition kn/
√

n → ∞.

Results in Breiman et al. (1984) can be used to improve this condition to kn/ log n →∞.

Theorem 5 guarantees consistency under the optimal condition kn →∞.

6.4 Clustering-based partitioning schemes

Clustering is a widely used methods of statistical data analysis. Clustering schemes

divide the data into a finitely many disjoint groups by minimizing an empirical error

measure, such as the average squared distance from the cluster centers. In this section

we outline the application of our results to classification rules and density estimates

based on nearest-neighbor clustering of the (unlabeled) measurement vectors Xi.

A clustering scheme is a function C : IRd → C, where C = {c1, . . . cm} ⊆ IRd is a finite

set of vectors known as cluster centers. Every clustering scheme C is associated with

a partition π = {A1, . . . , Am} of IRd having cells Aj = {x : Q(x) = cj}. A clustering

scheme C(·) is said to be nearest neighbor if for each x ∈ IRd,

C(x) = arg min
cj∈C

‖x− cj‖ ,

with ties broken in favor of the center cj having the least index. In this case the partition

π of C is just the nearest-neighbor partition of the vectors {c1, . . . , cm}. See Hartigan

(1975) or Gersho and Gray (1992) for more details concerning multivariate clustering

and its applications.

Let (X1, Y1), (X2, Y2), . . . ∈ IRd × {1, . . . ,M} be i.i.d. and suppose that the distribu-

tion µ of X1 has bounded support. The risk of a clustering scheme C is defined to be
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R(C) =
∫
‖x − C(x)‖2dµ(x), and the empirical risk of C with respect to X1, . . . , Xn is

given by

R̂n(C) =
1

n

n∑
i=1

‖Xi − C(Xi)‖2 . (19)

(Here ‖·‖ denotes the usual Euclidean norm.) From a training set Tn = (X1, Y1), . . . , (Xn, Yn)

and a clustering scheme Cn one may produce a classification rule gn be taking class-

majority votes within the cells of Cn. Suitable choice of Cn insures that gn is risk

consistent.

Theorem 6 Assume that the distribution µ of Xi has bounded support. Let Cn minimize

the empirical risk Rn(C) over all nearest neighbor clustering schemes C with kn cluster

centers. Let the classification rule gn be defined within the cells of Cn by a majority vote

as in (16). If kn →∞ and n−1k2
n log n/n → 0, then L(gn) → L∗ with probability one.

Proof: Let Vk be the family of all nearest-neighbor partitions of k vectors in IRd. Then

m(Vk) = k, and every cell of a partition π ∈ Vk is bounded by (k − 1) hyperplanes

representing points that are equidistant from two vectors. It is well-known (c.f. Cover

(1965)) that n vectors x1, . . . , xn in IRd can be split by hyperplanes in at most nd different

ways. Therefore the cells of partitions in Vk can intersect x1, . . . , xn in at most n(k−1)d

different ways. Each partition contains at most k cells, so that ∆∗
n(Vk) ≤ nk2d, and

consequently
1

n
log ∆∗

n(Vkn) ≤ dk2
n log n

n
→ 0

by assumption. Thus condition (b) of Theorem 2 is satisfied.

It remains to establish the shrinking cell condition of Theorem 2. Fix γ, δ > 0 and

let c1, . . . , ckn be the cluster centers of the scheme Cn that minimizes (19). Define

Sn =
kn⋃
j=1

B(cj, γ/2) ∩ Aj,

where Aj is the cell of cj and B(x, α) denotes the open ball of radius α around the vector

x. It is evident that

µ{x : diam(πn[x] ∩ Sn) > γ} = 0,
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so it suffices to show that µ(Sn) → 1 with probability one. Using a large-deviation

inequality of Linder, Lugosi, and Zeger (1993) for the empirical squared error of nearest-

neighbor clustering schemes, it can be shown that

R(Cn) → 0 (20)

with probability one. (Here we have made use of the fact that the Xi are bounded.) By

the Markov inequality,

1− µ(Sn) ≤
(

2

γ

)2

R(Cn)

for each n, and it follows that µ(Sn) → 1 as desired. 2

Suppose now that X1, X2, . . . ∈ IRd are i.i.d. and that the distribution µ of X1 has

a density with bounded support. Let πn be the partition associated with the nearest-

neighbor clustering scheme Cn minimizing (19). It follows from a general result of Nobel

(1995) that if R(Cn) → 0 then diam(πn[X]) → 0 in probability. Thus (20) insures

that the shrinking cell condition of Theorem 1 is satisfied, and we obtain the following

analogue of Theorem 6 above.

Theorem 7 Let Cn minimize the empirical risk Rn(C) over all nearest neighbor clus-

tering schemes C with kn cluster centers. Let the density estimate fn be defined within

the cells of Cn as in (8). If kn →∞ and n−1k2
n log n/n → 0, then

∫
|fn− f |dx → 0 with

probability one.
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