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Abstract

An algorithm is presented for online prediction that allows to track the best

expert efficiently even when the number of experts is exponentially large, provided

that the set of experts has a certain additive structure. As an example we work

out the case where each expert is represented by a path in a directed graph and

the loss of each expert is the sum of the weights over the edges in the path. These

results are then used to construct universal limited-delay schemes for lossy coding

of individual sequences. In particular, we consider the problem of tracking the best

scalar quantizer that is adaptively matched to the source sequence with piecewise

different behavior. A randomized algorithm is presented which can perform, on any

source sequence, asymptotically as well as the best scalar quantization algorithm

that is matched to the sequence and is allowed to change the employed quantizer

for a given number of times. The complexity of the algorithm is quadratic in the se-

quence length, but at the price of some deterioration in performance, the complexity

can be made linear. Analogous results are obtained for sequential multiresolution

and multiple description scalar quantization of individual sequences.

Index Terms: Algorithmic efficiency, individual sequences, lossy source coding, multi-

ple description quantization, multiresolution coding, non-stationary sources, sequential

prediction, sequential coding, scalar quantization.
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1 Introduction

In this paper we consider limited-delay lossy coding schemes for individual sequences.

Our goal is to provide a universal coding method which can dynamically adapt to the

changes in the source behavior, with particular emphasis on the situation where the

source’s behavior can change a given number of times (which is a function of the sequence

length). We concentrate on low-complexity methods that perform uniformly well with

respect to a given reference coder class on every individual (deterministic) sequence.

In this individual-sequence setting no probabilistic assumptions are made on the source

sequence, which provides a natural model for situations where very little is known about

the source to be encoded.

Consider the widely used model for fixed-rate lossy source coding at rate R where an

infinite sequence of real-valued source symbols x1, x2, . . . is transformed into a sequence

of channel symbols b1, b2, . . . taking values from the finite channel alphabet {1, 2, . . . ,M},
M = 2R. These channel symbols are losslessly transmitted and then used to produce the

reproduction sequence x̂1, x̂2, . . .. The scheme is said to have delay δ if the reproduction

symbol x̂n can be decoded at most δ time instants after xn was available at the encoder.

A general model for this situation is that each channel symbol bn depends only on the

source symbols x1, . . . , xn+δ, and the reproduction x̂n for the source symbol xn depends

only on the channel symbols b1, . . . , bn. Thus, the encoder produces bn as soon as xn+δ is

available, and the decoder can produce x̂n when bn is received.

The performance of a scheme is measured with respect to a reference class of coding

schemes, and the goal is to perform, on any source sequence, asymptotically as well

as the best scheme in the reference class. Thus, the performance is measured by the

distortion redundancy defined as the maximum, over all source sequences of length n, of

the difference of the normalized cumulative distortion of our scheme and the normalized

cumulative distortion of the best scheme in the reference class.

In the initial study of zero-delay coding for individual sequences [1], the reference

class was the class of all scalar quantizers, and a coding scheme was provided (using com-

mon randomization at the encoder and the decoder) whose distortion redundancy was

O(n−1/5 log n) for bounded sequences of length n. The results in [1] were improved and

generalized by Weissman and Merhav [2] who constructed schemes that can compete with

any finite set of limited-delay finite-memory coding schemes without requiring that the

decoder have access to the randomization sequence. The resulting scheme has distortion

redundancy O(n−1/3 log2/3 N), where N is the size of the reference coder class. To our

knowledge, this is the best known redundancy bound for this problem. In the special case

where the reference class is the (infinite) set of scalar quantizers, an O(n−1/3 log n) distor-

tion redundancy can be achieved by approximating the reference class by an appropriately
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chosen finite set of quantizers.

The coding schemes of [1] and [2] are based on the theory of prediction using expert

advice. The basic theoretical results were established by Hannan [3] and Blackwell [4]

in the 1950’s and brought to the center of attention in learning theory in the 1990’s by

Vovk [5], Littlestone and Warmuth [6], Cesa-Bianchi et al. [7]; see also Cesa-Bianchi

and Lugosi [8] for a comprehensive treatment. These results show that it is possible to

construct algorithms for online prediction that predict an arbitrary sequence of outcomes

almost as well as the best of N experts in the sense that the cumulative loss of the predictor

is at most as large as that of the best expert plus a term proportional to
√

ln N/n for

any bounded loss function, where n is the number of rounds in the prediction game. The

logarithmic dependence on the number of experts makes it possible to obtain meaningful

bounds even when the pool of experts is very large.

Unfortunately, the basic prediction algorithms, such as the exponentially weighted

average predictor, which was applied both in [1] and [2], have computational complexity

which is proportional to the number of experts and are therefore infeasible when this

number is very large. Thus, although the coding schemes of [1] and [2] have the attractive

property of performing uniformly well on individual sequences, they are computationally

inefficient. For example, for the reference class of scalar quantizers, these methods use

about nc 2R

quantizers as “experts” where c = 1/5 for the scheme in [1] and c = 1/3 for

the scheme in [2] and R is the rate of the scheme, resulting in a computational complexity

that is polynomial in n with degree that is proportional to M = 2R. This complexity

comes from the fact that, in order to approximate the performance of the best scalar

quantizer, these methods have to calculate and store the cumulative distortion of each

of the approximately nc 2R

quantizers. Clearly, even for moderate values of the encoding

rate, this complexity becomes prohibitive.

For more general finite reference classes, the method of [2] has to maintain a weight

for each of the N reference codes. This results in a computational complexity of order

nN , which only allows the use of small reference classes. When the reference class is an

infinite set of codes, the method is applied to a finite approximation of the reference class,

which can result in a prohibitively large N if the approximation is to be close.

Fortunately, in many applications the set of experts has a certain structure that may

be exploited in the construction of efficient prediction algorithms. Examples of structured

classes of experts for which efficient algorithms have been constructed include prunings

of decision trees (Helmbold and Schapire [9], Pereira and Singer [10]), and planar de-

cision graphs (Mohri [11] and Takimoto and Warmuth [12],[13]). These algorithms are

all based on efficient implementations of the exponentially weighted average predictor.

Using a similar approach which exploits the special structure of scalar quantizers, in [14]
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we provided an efficient implementation of the algorithm of [2] for the reference class of

scalar quantizers. In this algorithm, the encoding complexity is reduced to O(n4/3) while

maintaining the O(n−1/3 log n) distortion redundancy. Moreover, the complexity can be

made linear in the sequence length at the price of increasing the distortion redundancy

to O(n−1/4
√

log n).

In the prediction context, a different approach was taken by Kalai and Vempala [15]

who considered Hannan’s original predictor [3] and showed that it may be used to obtain

efficient algorithms for a large class of problems that they call “geometric experts.” Based

on this method, a zero-delay quantization algorithm with linear encoding complexity was

given in [16] which is conceptually simpler than the coding method of [14], and has only

a slightly larger distortion redundancy O(n−1/4 log n). Recently Matloub and Weissman

[17] extended the general coding scheme of [2] and the method of efficient implementation

of [16] to zero-delay joint source-channel coding of individual sequences.

As suggested in [2], it is an interesting open problem to find an algorithm of low

complexity that is able to approximate the performance of the best scheme from a larger

reference class. However, it seems that to date no low-complexity algorithms have been

devised which work for more powerful reference classes than the class of scalar quantizers.

In this paper we consider a more general reference class in which each reference scheme

partitions the input sequence into contiguous segments and for each segment a different

delay-δ code from a finite base reference class F may be employed. If a combined scheme

can change the applied code m times for an input sequence of length n, then the number of

such schemes is
∑m

j=0

(
n
j

)
|F|(|F| − 1)j. If one has to maintain a weight for each reference

code, the implementation is infeasible even for a very small F , as the straightforward

implementation requires O((n + m)m|F|m) computations. However, as we will show in

this paper, the structure of the reference codes provides a possibility to overcome this

problem.

In the probabilistic setting, the somewhat related problem of efficient sequential loss-

less coding of piecewise stationary memoryless sources has been studied by Willems [18],

Shamir and Merhav [19] and Shamir and Costello [20], and some of the algorithms we

develop in this paper are close in spirit to that of Willems.

The corresponding prediction problem for individual sequences, known as the problem

of tracking the best expert, is perhaps the best known example of a structured reference

class. In this problem, a small number of “base” experts is given and the goal of the

predictor is to predict as well as the best “meta” expert that is formed by certain allowable

sequences of base experts. A sequence is allowable if it consists of at most m + 1 blocks

such that in each block the meta expert predicts according to a fixed base expert. If there

are N base experts and the length of the prediction game is n, then the total number
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of meta experts is
∑m

j=0

(
n
j

)
N(N − 1)j. For this problem Herbster and Warmuth [21]

exhibited computationally efficient algorithms that predict almost as well as the best of

the meta experts and have regret bounds that depend on the logarithm of the number of

the (meta) experts. See also Auer and Warmuth [22], Bousquet and Warmuth [23], and

Herbster and Warmuth [24] for various extensions and powerful variants of the problem.

However, these methods become computationally too expensive if the “base” reference

class is very large.

In this paper we develop efficient algorithms to track the best expert in the case

when the class of “base” experts is already very large, but has a certain structure. Thus,

in a sense, we consider a combination of the two types of structured experts described

above. Our approach is based on a suitable modification of the original tracking algorithm

of Herbster and Warmuth [21] that can handle large, structured expert classes. This

modification is described in Section 2. In Section 3 we use the modified tracking predictor

algorithm combined with the coding method of Weissman and Merhav [2] to obtain codes

which can track any finite class of limited-delay finite-memory codes efficiently. The

proposed method has computational complexity of order n|F|, significantly less than

the O((n + m)m|F|m) complexity of the algorithm in [2] when applied to this problem,

and has basically the same distortion redundancy. In Section 4 we illustrate our new

prediction method on a problem in which a base expert is associated with a path in a

directed graph and the loss of a base expert is the sum of the weights over the path

(which may change in every round of the prediction game). The special structure of

the experts allows efficient implementation of tracking. This graph representation of the

experts is used in Section 5 to obtain efficient coding algorithms to track the best scalar

quantizer (i.e., to code asymptotically as well as the best combined coding scheme from

scalar quantizers). Finally, in Section 6 we consider two network quantization versions

of this problem: tracking the best multiple description scalar quantizer and tracking the

best multiresolution scalar quantizer (among quantizers with interval cells). The encoding

and decoding complexity of each of these algorithms can be made linear in the sequence

length at the price of some performance deterioration.

2 Tracking the best expert: a variation

In this section we present a modification of a prediction algorithm by Herbster and War-

muth [21] for tracking the best expert. This modification will facilitate efficient imple-

mentation if the number of experts is very large.

The online decision problem we consider is described as follows. Suppose we want

to use a sequential decision scheme to make predictions concerning the outcomes of a
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sequence y1, y2, . . . taking values in a set Y . We assume that the (randomized) predictor

has access to a sequence of independent random variables U1, U2, . . . which are uniformly

distributed over the interval [0, 1]. At each time instant t = 1, 2, . . ., the predictor observes

Ut, and based on Ut and the past input values yt−1 = (y1, . . . , yt−1) produces an “action”

ŷt ∈ Ŷ , where Ŷ is the set of predictor actions that may not be the same as Y . Then the

predictor can observe the next input symbol yt and calculate its loss `(yt, ŷt) with respect

to some bounded loss function ` : Y × Ŷ → [0, B], where B > 0.

Formally, the prediction game is defined as follows:

Parameters: number N of base experts, outcome space Y , action space Ŷ ,

loss function ` : Y × Ŷ → [0, B], number T of rounds.

For each round t = 1, . . . , T,

(1) each (base) expert forms its prediction ŷ
(i)
t ∈ Ŷ , i = 1, . . . , N ;

(2) the predictor observes the predictions of the base experts and the ran-

dom variable Ut, and chooses an estimate ŷt ∈ Ŷ ;

(3) the environment reveals the next outcome yt ∈ Y .

The cumulative loss of the sequential scheme at time T is given by

LT =
T∑

t=1

`(yt, ŷt) .

One of the most popular algorithms for the on-line prediction game described above is

the exponentially weighted average predictor (see [5], [6], [7]) which is defined as follows:

let η > 0 be a parameter and to each i = 1, . . . , N assign the initial weight w1,i = 1/N .

At time instants t = 1, 2, . . . , T , let v
(i)
t = wt,i/Wt where Wt =

∑N
i=1 wt,i and predict ŷt

randomly according to the distribution P{ŷt = ŷ
(i)
t } = v

(i)
t . After observing yt, update the

weights by wt+1,i = wt,ie
−η`(yt,ŷ

(i)
t ). This yields v

(i)
t = e−η

Pt−1
t′=1

`(yt,ŷ
(i)
t )/

∑N
j=1 e−η

Pt−1
t′=1

`(yt,ŷ
(i)
t ),

that is, v
(i)
t is proportional to the “exponential” cumulative performance of expert i up

to time t − 1. It is well known that the expected cumulative regret of the exponentially

weighted average predictor may be bounded, for all possible sequences generated by the

environment, by

E

(
LT − min

i=1,...,N

T∑

t=1

`(yt, ŷ
(i)
t )

)
≤ B

(
ln N

η
+

nη

8

)
,
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where the expectation is understood with respect to the randomization sequence U1, . . . , UT

of the predictor. In particular, if η = B
√

8 ln N/T is chosen to optimize the upper bound,

then the bound becomes B
√

(T/2) ln N . (For various versions and more discussion on

the performance of this algorithm, we refer the reader to [8].)

The exponentially weighted average algorithm is thus guaranteed to perform, on the

average, almost as well as the expert with the smallest cumulative loss. A more ambitious

goal of the predictor is to achieve a cumulative loss (almost) as small as the best tracking

of the N base experts. More precisely, to describe the loss the predictor is compared

to, consider the following “m-partition” prediction scheme: The sequence of examples

y1, . . . , yT is partitioned into m+1 contiguous segments, and on each segment the scheme

assigns exactly one of the N base experts. Formally, an m-partition P(T,m, t, e) of the

first T samples is given by an m-tuple t = (t1, . . . , tm) such that t0 = 0 < t1 < · · · < tm <

T = tm+1, and an (m + 1)-vector e = (e0, . . . , em) where ei ∈ {1, . . . , N}. At each time

instant t, ti < t ≤ ti+1, expert ei is used to predict yt. The cumulative loss of a partition

P(T,m, t, e) is

L(P(T,m, t, e)) =
m∑

i=0

ti+1∑

t=ti+1

`(yt, ŷ
(ei)
t ) =

m∑

i=0

L((ti, ti+1], ei)

where for any time interval I, L(I, i) =
∑

t∈I `(yt, ŷ
(i)
t ) denotes the cumulative loss of

expert i in I. Here and later in the paper we adopt the convention that in case the

summation is over an empty index set, the sum is defined to be zero (e.g., for a > b,

L([a, b], i) = 0).

The goal of the predictor is to perform nearly as well as the best partition, that is, to

keep the normalized regret

1

T

(
LT − min

t,e
L(P(T,m, t, e))

)

as small as possible (with high probability) for all possible outcome sequences. A slightly

different goal is to keep the normalized expected regret

1

T
E

(
LT − min

t,e
L(P(T,m, t, e))

)

as small as possible, where the expectation is taken with respect to the randomizing

sequence UT = (U1, . . . , UT ).

Herbster and Warmuth [21] constructed a so-called “fixed-share” share update algo-

rithm for the tracking prediction problem. Below we present a slightly modified version of

this algorithm. While this modification was also introduced by Bousquet and Warmuth

[23], the performance bounds provided there are insufficient for our purposes.
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Algorithm 1 Fix the positive numbers η and α < 1, and initialize weights

ws
1,i = 1/N for i = 1, . . . , N . At time instants t = 1, 2, . . . , T let v

(i)
t = ws

t,i/Wt

where Wt =
∑N

i=1 ws
t,i, and predict ŷt randomly according to the distribution

P{ŷt = ŷ
(i)
t } = v

(i)
t . (1)

After observing yt, for all i = 1, . . . , N , let

wm
t,i = ws

t,ie
−η`(yt,ŷ

(i)
t ) (2)

and

ws
t+1,i =

αWt+1

N
+ (1 − α)wm

t,i (3)

where Wt+1 =
∑N

i=1 wm
t,i.

Observe that
∑N

i=1 ws
t+1,i =

∑N
i=1 wm

t,i = Wt+1; thus there is no ambiguity in the definition

of Wt+1. Note that equation (3) is slightly changed compared to the original algorithm of

[21].

The following theorem bounds the loss of the algorithm. The proof is quite similar to

that in [21] and therefore it is deferred to the appendix.

Theorem 1 For all positive integers m,T with T ≥ m+1, real numbers 0 < α < 1, η > 0,

and 0 < p < 1, and for any sequence y1, . . . , yT and loss function ` : Y × Ŷ → [0, B], with

probability at least 1 − p, the regret of Algorithm 1 can be bounded as

LT − min
t,e

L(P(T,m, t, e))

≤ 1

η
ln

(
Nm+1

αm(1 − α)T−m−1

)
+

TηB2

8
+ B

√
T ln(1/p)

2
(4)

and the expected regret can be bounded as

E

(
LT − min

t,e
L(P(T,m, t, e))

)
≤ 1

η
ln

(
Nm+1

αm(1 − α)T−m−1

)
+

TηB2

8
. (5)

In particular, if α = m
T−1

< 1 and η is chosen to minimize the above bound as

η =

√√√√8 ln
(

Nm+1

αm(1−α)T−m−1

)

TB2
(6)

we have

LT − min
t,e

L(P(T,m, t, e))

≤ T 1/2 B√
2

√
(m + 1) ln N + m ln

T − 1

m
+ m + B

√
T ln(1/p)

2
(7)
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and

E

(
LT − min

t,e
L(P(T,m, t, e))

)

≤ T 1/2 B√
2

√
(m + 1) ln N + m ln

T − 1

m
+ m . (8)

Remark. If the number of experts N is proportional to T γ for some γ > 0, then the

bound in (8) is of order
√

(mT ) ln T , and so the normalized expected regret is

1

T
E

(
LT − min

t,e
L(P(T,m, t, e))

)
= O

(√
(m/T ) ln T

)
.

That is, the rate of convergence is the same (up to a constant factor) as if we competed

with the best static expert on a segment of average length T/m.

2.1 Implementation of Algorithm 1

If the number of experts N is large, for example, N = T γ for some large γ > 1, then the im-

plementation of Algorithm 1 may become computationally prohibitive. The main message

of this section is the nontrivial observation that if the standard exponentially weighted

prediction algorithm can be efficiently implemented, then one can also efficiently imple-

ment Algorithm 1. The main step toward demonstrating this is the following alternative

expression for the weights in Algorithm 1.

Lemma 1 For any t = 2, . . . , T , the probability v
(i)
t and the corresponding normalization

factor Wt in Algorithm 1 can be obtained as

v
(i)
t =

(1 − α)t−1

NWt

e−ηL([1,t−1],i) +
α

NWt

t−1∑

t′=2

(1 − α)t−t′Wt′e
−ηL([t′,t−1],i) +

α

N
(9)

Wt =
α

N

t−1∑

t′=2

(1 − α)t−1−t′Wt′Zt′,t−1 +
(1 − α)t−2

N
Z1,t−1 (10)

where Zt′,t−1 =
∑N

i=1 e−ηL([t′,t−1],i) is the sum of the (unnormalized) weights assigned

to the experts by the exponentially weighted prediction method for the input samples

(yt′ , . . . , yt−1).

Proof. The expressions in the lemma follow directly from the recursive definition of the

weights {ws
t,i}. First we show that for t = 1, . . . , T ,

wm
t,i =

α

N

t∑

t′=2

(1 − α)t−t′Wt′e
−ηL([t′,t],i) +

(1 − α)t−1

N
e−ηL([1,t],i) (11)
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ws
t+1,i =

α

N
Wt+1 +

α

N

t∑

t′=2

(1 − α)t+1−t′Wt′e
−ηL([t′,t],i) +

(1 − α)t

N
e−ηL([1,t],i). (12)

Clearly, for a given t, (11) implies (12) by the definition (3). Since ws
1,i = 1/N for every

expert i, (11) and (12) hold for t = 1 and t = 2 (for t = 1 the summations are 0 in both

equations). Now assume that they hold for some t ≥ 2. We show that then (11) holds for

t + 1. By definition,

wm
t+1,i = ws

t+1,ie
−η`(yt+1,ŷ

(i)
t+1)

=
α

N
Wt+1e

−η`(yt+1,ŷ
(i)
t+1) +

α

N

t∑

t′=2

(1 − α)t+1−t′Wt′e
−ηL([t′,t+1],i)

+
(1 − α)t

N
e−ηL([1,t+1],i)

=
α

N

t+1∑

t′=2

(1 − α)t+1−t′Wt′e
−ηL([t′,t+1],i) +

(1 − α)t

N
e−ηL([1,t+1],i)

thus (11) and (12) hold for all t = 1, . . . , T . Now (9) follows from (12) by normalization

for t = 2, . . . , T + 1. Finally, (10) can easily be proved from (11), as for any t = 2, . . . , T ,

Wt =
N∑

i=1

wm
t−1,i

=
N∑

i=1

(
α

N

t−1∑

t′=2

(1 − α)t−1−t′Wt′e
−ηL([t′,t−1],i) +

(1 − α)t−2

N
e−ηL([1,t−1],i)

)

=
α

N

t−1∑

t′=2

(1 − α)t−1−t′Wt′

N∑

i=1

e−ηL([t′,t−1],i) +
(1 − α)t−2

N

N∑

i=1

e−ηL([1,t−1],i)

=
α

N

t−1∑

t′=2

(1 − α)t−1−t′Wt′Zt′,t−1 +
(1 − α)t−2

N
Z1,t−1.

�

Examining formula (9), one can see that the t′-th term in the summation (including

the first and last individual terms for t′ = 1 and t′ = t, respectively) is some multiple of

e−ηL([t′,t−1],i). Recall that the normalized version of e−ηL([t′,t−1],i) is the weight assigned to

expert i by the exponentially weighted prediction method for the last t− t′ input samples

(yt′ , . . . , yt−1) (the last term in the summation corresponds to the case where no previous

samples of the sequence are taken into consideration). Therefore, for t ≥ 2, the random

choice of a predictor (1) can be performed in two steps. First we choose a random time τt,

which specifies how many of the most recent samples we are going to use for the prediction.

Then we choose the predictor according to the exponentially weighted prediction for these

9



samples. Thus, P{τt = t′} is the sum of the t′-th terms with respect to the index i in the

expressions for v
(i)
t , and given τt = t′, the probability that ŷt = ŷ

(i)
t is just the probability

assigned to expert i using the exponentially weighted average prediction based on the

samples (yt′ , . . . , yt−1). Hence we obtain the following algorithm.

Algorithm 2 For t = 1, choose ŷ1 uniformly from the set {ŷ(1)
1 , . . . , ŷ

(N)
1 }.

For t ≥ 2, choose τt randomly according to the distribution

P{τt = t′} =





(1−α)t−1Z1,t−1

NWt
for t′ = 1

α(1−α)t−t′Wt′Zt′,t−1

NWt
for t′ = 2, . . . , t

(13)

where we define Zt,t−1 = N . Given τt = t′, choose ŷt randomly according to

the conditional probabilities

P{ŷt = ŷ
(i)
t |τt = t′} =





e−ηL([t′,t−1],i)

Zt′,t−1
for t′ = 1, . . . , t − 1

1
N

for t′ = t,
(14)

We note here that the algorithm is somewhat similar to that of Willems [18]. His

second, so called ”linear-complexity coding method” for the lossless compression of a

probabilistic source with piecewise independent and identical distribution is a mixture

code with t component codes corresponding to the hypotheses that the last change in the

source statistics occurred at time t′ for t′ = 1, . . . , t. The conditional probability assigned

for the t-th sample by such a component code depends only on the last t − t′ samples of

the source sequence, similarly to our Algorithm 2.

The discussion preceding Algorithm 2 shows that it provides an alternative implemen-

tation of Algorithm 1.

Theorem 2 Algorithm 1 and Algorithm 2 are equivalent in the sense that the predictor

sequences generated by the two randomized algorithms have the same distribution. In

particular, the distribution of the sequence (ŷ1, . . . , ŷT ) generated by Algorithm 2 satisfies

P{ŷ1 = ŷ
(i)
1 } = v

(i)
1 and

Pt−1{ŷt = ŷ
(i)
t } = v

(i)
t (15)

for all t = 2, . . . , T and i = 1, . . . , N , where Pt−1 denotes conditional probability given the

input sequence y1, . . . , yt−1 and expert predictions {ŷ(i)
1 }N

i=1, . . . , {ŷ(i)
t−1}N

i=1 up to time t− 1,

and the v
(i)
t are the normalized weights generated by Algorithm 1

10



In some special, but important problems efficient algorithms are known to imple-

ment the exponentially weighted average prediction for the samples (yt′ , . . . , yt−1) for any

t′ < t. Generally, as a byproduct, these algorithms can also compute the corresponding

probabilities P{ŷt = ŷ
(i)
t |τt = t′} and normalization factors Zt′,t−1 efficiently. Then Wt

can be obtained via the recursion formula (10), and so Algorithm 2 can be implemented

efficiently.

In the following sections we apply the prediction method of Algorithm 2 to obtain

efficient adaptive quantization schemes.

3 Tracking the best finite-delay finite-memory source

code

In this section we consider the problem of coding an individual sequence with a fixed-

rate limited-delay and finite-memory source coding scheme as defined by Weissman and

Merhav [2]. Our goal is to construct an algorithm that performs as well as the best

combined coding scheme which is allowed, several times during the coding procedure,

to choose a new code from a finite reference class of limited-delay finite-memory source

codes.

A fixed-rate delay-δ sequential source code of rate R = log M is defined by an encoder-

decoder pair connected via a discrete noiseless channel of capacity R. (Here δ is a non-

negative integer, M is a positive integer and log denotes base-2 logarithm.) The input

to the encoder is a sequence x1, x2, . . . taking values in some source alphabet X . At

each time instant i = 1, 2, . . ., the encoder observes xi and based on the source sequence

xi+δ = (x1, . . . , xi+δ), the encoder produces a channel symbol bi ∈ {1, 2, . . . ,M} which

is then noiselessly transmitted to the decoder. After receiving bi, the decoder outputs

the reconstruction x̂i (taking value in a reconstruction alphabet X̂ ) based on the channel

symbols bi = (b1, . . . , bi) received so far.

Formally, the code is given by a sequence of encoder-decoder functions (f, g) =

{fi, gi}∞i=1, where

fi : X i+δ → {1, 2, . . . ,M}

and

gi : {1, 2, . . . ,M}i → X̂

so that bi = fi(x
i+δ) and x̂i = gi(b

i), i = 1, 2, . . .. Note that the total delay of the encoding

and decoding process is δ. Although we require the decoder to operate with zero delay,

this requirement introduces no loss in generality, as any finite-delay coding system with

11



δ1 encoding and δ2 decoding delay can be equivalently represented in this way with δ1 +δ2

encoding and zero decoding delay [2].

The normalized cumulative distortion of the sequential scheme after reproducing the

first n symbols is given by
1

n

n∑

i=1

d(xi, x̂i)

where d : X×X̂ → [0, 1] is some distortion measure. (All results may be extended trivially

to arbitrary bounded distortion measures.)

The decoder {gi}∞i=1 is said to be of finite memory s ≥ 0 if gi(b
i) = gi(b̂

i) for all

i and bi, b̂i ∈ {1, . . . ,M}i such that bi
i−s = b̂i

i−s, where bi
i−s = (bi−s, bi−s+1, . . . , bi) and

b̂i
i−s = (b̂i−s, b̂i−s+1, . . . , b̂i). In order to emphasize that the output depends only on bi

i−s,

sometimes we will write gi(b
i
i−s) instead of gi(b

i) for such decoders. Let Fd denote the

collection of all delay-δ sequential source codes of rate R, and let F δ
s denote the class of

codes in F δ with memory s.1

Let F ⊂ F δ
s be a finite class of reference codes. Our goal is to construct a delay-δ

scheme which, for every sequence xn, performs “nearly” as well as the best coding scheme

which employs codes from F and is allowed to change the code m times. Formally, a code

in this class Fm,n against which our scheme competes is given by integers 1 ≤ i1 < i2 <

. . . < im < n and codes {(f (j)
i , g

(j)
i }∞i=1, j = 0, . . . ,m such that {(f (j)

i , g
(j)
i }∞i=1 ∈ F for

all j and bi = f
(j)
i (xi+δ) for ij < i ≤ ij+1, where i0 = 0 and im+1 = n. The “idealized”

minimum normalized cumulative distortion achievable by such schemes for n reproduction

values is

D∗
F ,m,n(x) =

1

n
min

1≤i1<···<im<n

m∑

j=0

min
(f,g)∈F

ij+1∑

i=ij+1

d
(
xi, gi

(
fi−s(x

i+δ−s), . . . , fi(x
i+δ)
))

(16)

where x = (x1, x2, . . .) denotes the entire input sequence. Note that to find the best

scheme achieving this minimum one has to know the sequence xn+δ in advance. Also, the

minimum above is idealized in the sense that when the code is changed, any realizable

coding system having delay s has to wait s symbols before starting to decode. In contrast,

in the formula above we assume that the decoder can operate correctly immediately after

the change. Note that the assumption of the idealized scheme is pessimistic since our goal

is to compete against such schemes.

1In [2], the codes in Fδ and Fδ
s were allowed to use randomization. Since the applications we consider

in Sections 5 and 6 are for non-randomized reference classes, we use a slightly less general definition.

However, all results in this section remain valid for randomized reference classes.
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3.1 A general scheme

In this section we construct a general scheme for tracking a finite set of limited-delay finite-

memory source codes. Low-complexity implementations for various scalar quantization

scenarios will be discussed in the subsequent sections. The following general method is a

combination of the coding scheme of Weissman and Merhav [2] and our modification of

the prediction scheme of Herbster and Warmuth [21] described in Section 2.

The scheme works as follows. Divide the source sequence xn into non-overlapping

blocks of length l (for simplicity assume that l divides n). At the beginning of the

kth block, that is, at time instants t = (k − 1)l + 1, k = 1, . . . , n/l, a coding scheme

(f (k), g(k)) = {f (k)
i , g

(k)
i }∞i=1 is chosen randomly from the finite reference class F ⊂ F δ

s .

The exact distribution for the random choice of (f (k), g(k)) will be specified later based on

the results in Section 2 (see (20) and (21)). The encoder uses the first d 1
R

log |F|e time

instants of the block to describe the selected coding scheme (f (k), g(k)) to the receiver (dxe
denotes the smallest integer greater than or equal to x). More precisely, for time instants

i = (k − 1)l + 1, . . . , (k − 1)l +

⌈
1

R
log |F|

⌉

an index uniquely identifying (f (k), g(k)) is transmitted. In the rest of the block, that is,

for time instants

i = (k − 1)l +

⌈
1

R
log |F|

⌉
+ 1, . . . , kl

the encoder uses f
(k)
i to produce and transmit bi = f

(k)
i (xi+δ) to the receiver. In the first

h =

⌈
1

R
log |F|

⌉
+ s

time instants of the kth block, that is, while the index of the coding scheme (f (k), g(k)) is

communicated and the first s correct channel symbols are received, the decoder emits an

arbitrary reproduction symbol x̂i = x̂ with distortion at most

d̂ = sup
x∈X

d(x, x̂) ≤ 1.

In the remainder of the block, the decoder uses g
(k)
i to decode the transmitted channel

symbols as

x̂i = g
(k)
i (bi) = g

(k)
i (bi

i−s)

where bi
i−s = (bi−s, bi−s+1, . . . , bi) (recall that the decoder g(k) has finite memory s).

Now except for the distortion induced by communicating the quantizer index and

the first s correct code symbols at the beginning of each block, the above scheme can

easily be fitted in the sequential decision framework. We want to make a sequence of

13



decisions concerning the sequence {yk} with yk = (x(k−1)l+h+1, . . . , xkl) for k = 1, . . . , n/l.

We consider any (f, g) ∈ F an expert whose prediction is ŷ
(f,g)
k = (x̂

(f,g)
(k−1)l+h+1, . . . , x̂

(f,g)
kl )

where x̂
(f,g)
i = gi(fi−s(x

i−s+δ), . . . , fi(x
i+δ)). Thus (f, g) incurs loss `(yk, ŷ

(f,g)
k ), where

`(y, ŷ) =
l−h∑

j=1

d(x(j), x̂(j)) (17)

for y = (x(1), . . . , x(l − h)) and ŷ = (x̂(1), . . . , x̂(l − h)). Then

n∑

i=1

d(xi, x̂i) ≤
n/l∑

k=1

`(yk, ŷ
(f,g)
k ) +

nhd̂

l
(18)

where the second term comes from the fact that in each block the distortion at each of

the first h time instants is at most d̂.

Using the notation of Section 2, we have N = |F|, T = n/l, and B = l − h. For any

(f, g) ∈ F and all integers 1 ≤ k′ ≤ k ≤ n/l, let

L([k′, k], (f, g)) =
k∑

j=k′

jl∑

i=(j−1)l+h+1

d(xi, x̂
(f,g)
i ). (19)

Choose η > 0 and 0 < α < 1, and define

Zk′,k =
∑

(f,g)∈F

e−ηL([k′,k],(f,g)).

Let W1 = 1, and for k = 2, . . . , n/l,

Wk+1 =
α

|F|

k∑

k′=2

(1 − α)k−k′

Wk′Zk′,k +
(1 − α)k−1

|F| Z1,k.

Finally, using {Zk′,k} and {Wk}, define the probability distribution of (f (k), g(k)), accord-

ing to Algorithm 2, as

P{τk = k′} =





(1−α)k−1Z1,k−1

|F|Wk
for k′ = 1

α(1−α)k−k′Wk′Zk′,k−1

|F|Wk
for k′ = 2, . . . , k

(20)

and

P
{
(f (k), g(k)) = (f, g)

∣∣τk = k′
}

=





e−ηL([k′,k−1],(f,g))

Zk′,k−1
for k′ = 1, . . . , k − 1

1
|F|

for k′ = k.
(21)

From Theorem 1 we obtain the following performance bound for the above scheme.
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Theorem 3 Let F ⊂ F δ
s be a finite class of delay-δ memory-s codes. Assume that m, n,

l, M and s are positive integers such that h = dlog |F|/ log Me+ s ≤ l, n/l ≥ m + 1, and

l divides n, and let 0 < α < 1, η > 0. Then the difference of the normalized cumulative

distortion of the constructed randomized, delay-δ coding scheme and that of the idealized

scheme in (16) can be bounded for any sequence x ∈ X∞ as

E

[
1

n

n∑

i=1

d(xi, x̂i)

]
− D∗

F ,m,n(x)

≤ hd̂

l
+

1

ηn
ln

( |F|m+1

αm(1 − α)n/l−m−1

)
+

η(l − h)2

8l
+

m(l − 1)

n
. (22)

Proof. The proof follows from applying Theorem 1 to the transformed “prediction

problem” described in (17)–(21). The last term on the right-hand side of (22) is due to

the fact that the idealized scheme achieving D∗
F ,m,n(x) can switch its base code not only

at the segment boundaries but also inside the segments. Thus, the minimum loss of any

algorithm that is restricted to changes at the segment boundaries may exceed D∗
F ,m,n by

at most l − 1 for each occasion the change in the optimal idealized scheme occurs inside

the segment. �

Remark. To optimize the bound in Theorem 3, first we choose η optimally according to

(6) as

η =

√
8l

n(l − h)2
ln

( |F|m+1

αm(1 − α)n/l−m−1

)
.

Assuming m < n/l − 1 and letting α = m/(n/l − 1), similarly to the derivation of (8) in

the proof of Theorem 1, we obtain that the distortion redundancy can be bounded as

E

[
1

n

n∑

i=1

d(xi, x̂i)

]
− D∗

F ,m,n(x)

≤ C1
log |F|

l
+ C2

√
lm

n
log

n|F|
lm

+
m(l − 1)

n
. (23)

From here it is easy to see that the best possible rate for the normalized distortion

redundancy is achieved by setting l = c1(n log2 |F|/m)1/3 for some positive constant c1,

yielding

E

[
1

n

n∑

i=1

d(xi, x̂i)

]
− D∗

F ,m,n(x) = O

((m

n

) 1
3

(
log1/3 |F| +

√
log

n|F|
m

))
.

A straightforward implementation of the above general coding scheme can be done via

Algorithm 1, but this is efficient only if F is quite small, which severely limits the best
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achievable performance. If F is a large class of codes, Algorithm 2 provides an efficient

implementation if the codes in F posses a certain structure. In the remainder of the

paper we will show this to be the case if F is a set of scalar quantizers, scalar multiple

description, and multiresolution quantizers, respectively.

Tracking the best (traditional) scalar quantizer can be efficiently implemented by

combining Algorithm 2 with the efficient implementation of the exponentially weighted

prediction tailored to zero-delay quantization in [14]. To provide a framework for efficient

implementations that work for traditional, as well as multiresolution and multiple de-

scription scalar quantization, we first present a general, efficient method for tracking the

minimum-weight path in an acyclic weighted directed graph. We then demonstrate that

this model provides a unified approach for the above mentioned three fixed-rate scalar

quantization problems. The idea of posing optimal scalar quantizer design in terms of

dynamic programming or as a problem of finding a minimum-weight path in an acyclic

weighted directed graph is well known; see, e.g., [25], [26]. For network quantization,

a similar approach is taken by Muresan and Effros [27] who consider (offline) design of

entropy-constrained multiple description and multiresolution scalar quantizers. However,

instead of an offline design we consider an online problem, and the differences in the

details necessitate a detailed description of these models.

4 Minimum-weight path in a directed graph

In this section we consider the problem of tracking the minimum-weight path in an acyclic

weighted directed graph. The method presented here is a combination of the efficient

implementation (Algorithm 2) of the tracking algorithm of Herbster and Warmuth [21]

and the weight pushing algorithm of [11, 12, 13] which enables efficient computation of the

constants {Zk′,k}. The slightly different problem of tracking the minimum-weight path of

a given length was considered in [28].

Consider an acyclic directed graph (V , E), where V and E denote the set of vertices

and edges, respectively. Given a fixed pair of vertices s and u, let R denote the set of all

directed paths from s to u, and assume that R is not empty. We also assume that for all

z 6= u, z ∈ V , there is an edge starting from z. (Otherwise vertex z is of no use in finding

a path from s to u, and all such vertices can be removed iteratively from the graph at the

beginning of the algorithm in O(|V|) + O(|E|) time.) Finally, we assume that the vertices

are labeled by the integers 1, 2, . . . , |V| such that s = 1, u = |V|, and if z1 < z2, then there

is no edge from z2 to z1 (such an ordered labeling can be found in O(|E|) time since the

graph is acyclic). At time t = 1, 2, . . . the predictor picks a path ŷt ∈ R. The cost of this

path is the sum of the weights δt(a) on the edges a of the path (the weights are assumed
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to be nonnegative real numbers), which are revealed for each a ∈ E only after the path

has been chosen. To use our previous definition for prediction in Section 2, we may define

yt = {δt(a)}a∈E , and the loss function

`(yt, ŷt) =
∑

a∈ŷt

δt(a)

for each pair (yt, ŷt). The cumulative loss at time T is given by

LT =
T∑

t=1

`(yt, ŷt).

Our goal is to perform as well as the best combination of paths (experts) which is allowed

to change the path m times during the time interval t = 1, . . . , T . As in the prediction con-

text, such a combination is given by an m-partition P(T,m, t, e), where t = (t1, . . . , tm)

such that t0 = 0 < t1 < · · · < tm < tm+1 = T , and e = (e0, . . . , em), where ei ∈ R (that

is, expert e ∈ R predicts ŷ
(e)
t = e). The cumulative loss of a partition P(T,m, t, e) is

L(P(T,m, t, e)) =
m∑

i=0

ti+1∑

t=ti+1

`(yt, ei) =
m∑

i=0

ti+1∑

t=ti+1

∑

a∈ei

δt(a).

Now Algorithms 1 and 2 can be used to choose the path ŷt randomly at each time instant

t = 1, . . . , T , and the regret

LT − min
t,e

L(P(T,m, t, e))

can be bounded by Theorem 1. In this setup, with the aid of the weight pushing algo-

rithm [11, 12, 13], we can compute efficiently a path based on the exponentially weighted

prediction method and the constants Zt′,t, and thus prove the following theorem.

Theorem 4 For the minimum-weight path problem described in this section, Algorithm 2

can be implemented in O(T 2|E|) + O(T 3) time. Moreover, let N denote the number of

different paths from vertex s to vertex u, and assume that α = m
T−1

< 1, δt(a) < B/(|V|−1)

for all t and edges a ∈ E, and η is chosen according to (6). Then for any p ∈ (0, 1), the

regret of the algorithm can be bounded from above, with probability at least 1 − p, as

LT − min
t,e

L(P(T,m, t, e))

≤ T 1/2 B√
2

√
(m + 1) ln N + m ln

T − 1

m
+ m + B

√
T ln(1/p)

2
.

The expected regret of the algorithm can be bounded as

ELT − min
t,e

L(P(T,m, t, e))

≤ T 1/2 B√
2

√
(m + 1) ln N + m ln

T − 1

m
+ m.
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Proof. The performance bound in the theorem follows trivially from the optimized

bound (7) in Theorem 1. All we need to show is that the algorithm can be implemented

in O(T 2|E|) + O(T 3) time. To do this, we first revisit the weight pushing algorithm

[11, 12, 13] via a modification of the algorithm of [14] for choosing a path ŷt randomly

based on (yt′ , yt′+1, . . . , yt−1). That is, based on the weights {δi(a)}a∈E , i ∈ [t′, t − 1], we

have to choose a path ŷt according to the probabilities

P{ŷt = r} =
e−η

P

a∈r ∆t′,t−1(a)

∑
r′∈R e−η

P

a∈r′ ∆t′,t−1(a)
(24)

where ∆t′,t−1(a) =
∑t−1

i=t′ δi(a), and compute

Zt′,t−1 =
∑

r∈R

e−η
P

a∈r ∆t′,t−1(a).

Using the constants Z1,t−1, . . . , Zt−1,t−1 and W1, . . . ,Wt−1, we can compute Wt, and per-

form the random choice of τt via Algorithm 2. In what follows we show how these steps

can be done efficiently.

For any z ∈ V , let Rz denote the set of paths from z to u (we define Ru = ∅), and

let Gt′,t(z) denote the sum of the exponential cumulative losses in the interval [t′, t] of all

paths in Rz. Formally, if Rz is empty then we define Gt′,t(z) = 1, otherwise

Gt′,t(z) =
∑

r∈Rz

e−η
P

a∈r ∆t′,t(a). (25)

Then Zt′,t = Gt′,t(s), and Gt′,t(z) can be computed recursively for z = u−1, u−2, . . . , s =

1, as Gt′,t(u) = 1,

Gt′,t(z) =
∑

ẑ:(z,ẑ)∈E

e−η∆t′,t((z,ẑ))Gt′,t(ẑ). (26)

Note that since ẑ > z if (z, ẑ) ∈ E , Gt′,t(ẑ) is already available when it is needed in

the above formula. In the recursion each edge is taken into consideration exactly once.

Therefore, calculating Gt′,t(z) for all z ∈ V requires O(|E|) computations for any fixed

1 ≤ t′ ≤ t, provided the cumulative weights ∆t′,t(a) are known for all edges a ∈ E . Now

for a given t, as t′ is decreased from t to 1, if we store the cumulative weights ∆t′,t(a) for

each edge a, then only O(|E|) computations are needed to update the cumulative weights

at the edges for each t′. Therefore, for a given t, calculating Gt′,t(z) for all z ∈ V and

1 ≤ t′ ≤ t requires O(t|E|) computations.

The function Gt′,t−1 offers an efficient way of drawing ŷt randomly for a given τt = t′:

For any z ∈ V \ {u}, let Ez = {ẑ : (z, ẑ) ∈ E} and

pt′,t(ẑ|z) = e−η∆t′,t−1((z,ẑ)) Gt′,t−1(ẑ)

Gt′,t−1(z)
, ẑ ∈ Ez.
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For fixed z, pt′,t(ẑ|z) is a probability distribution on Ez since by (25)

∑

ẑ∈Ez

pt′,t(ẑ|z) = 1.

Denote the kth vertex along a path r ∈ R by zr,k for k = 0, 1, . . . , |r|, where |r| is the

length of the path r (zr,0 = s and zr,|r| = u). Then,

|r|∏

k=1

pt′,t(zk,r|zk−1,r) =

|r|∏

k=1

e−η∆t′,t−1((zk−1,r,zk,r)) Gt′,t−1(zk,r)

Gt′,t−1(zk−1,r)

= e−η
P|r|

k=1 ∆t′,t−1((zk−1,r,zk,r))Gt′,t−1(u)

Gt′,t−1(s)

= P{ŷt = r} (27)

by (24) since Gt′,t−1(u) = 1 and Gt′,t−1(s) =
∑

r′∈R e−η
P

a∈r′ ∆t′,t(a). Thus ŷt can be drawn

randomly in a sequential manner: Starting from zŷt,0 = s, in each step k = 1, 2, . . . choose

z = zŷt,k randomly from Ezŷt,k−1
with probability pt′,t(z|zŷt,k−1). The procedure stops when

zŷt,k = u. Thus ŷt can be computed in O(|V|) steps if τt = t′ and the functions ∆t′,t−1 and

Gt′,t−1 are given, as any path from s to r is of length at most |V| − 1.

It remains to show that τt can be chosen efficiently. As we have seen before, Gt′,t(z)

can be computed in O(t|E|) time for all z and 1 ≤ t′ ≤ t; hence finding Zt′,t = Gt′,t(s)

requires O(t|E|) computations. Then, given Wt′ for t′ = 1, . . . , t, Wt+1 can be computed

by (10) in O(t) steps, and so for all t′ = 1, . . . , t, the computational time of Wt′ and

Zt′,t is O(t|E|) + O(t2). Therefore, τt can be chosen randomly according to (13) in the

same computational time. Finally, as we have seen in the preceding paragraph, given

τt = t′ and the function Gt′,t, ŷt can be computed in O(|V|) steps. Thus, the overall time

complexity of computing ŷt for a given t is O(t|E|) +O(t2) +O(|V|) = O(t|E|) +O(t2) (as

|E| ≥ |V| − 1). Thus, Algorithm 2 can be performed in O(T 2|E|) + O(T 3) time. �

5 Online scalar quantization

In this section we apply the results of Sections 3 and 4 to construct efficient zero-delay

sequential source codes. Our goal is to find efficiently implementable zero-delay coding

schemes which perform asymptotically as well as the best scalar quantization scheme

which is allowed to change the employed quantizer a certain number of times.

We assume that the source and reconstruction symbols belong to the interval [0, 1].

Then a zero-delay scheme using encoder randomization is given formally by the encoder-

decoder functions {fi, gi}∞i=1, where

fi : [0, 1]i × [0, 1]i → {1, 2, . . . ,M}
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and

gi : {1, 2, . . . ,M}i → [0, 1]

so that bi = fi(x
i, U i) and x̂i = gi(b

i), i = 1, 2, . . .. Recall that {Ui} is the randomization

sequence, and note that there is no delay in the encoding and decoding process; i.e., δ = 0

in the terminology of Section 3.

We also assume that the distortion is measured by some bounded nondecreasing dif-

ference distortion measure of the form

d(x, x̂) = ρ(|x − x̂|) (28)

where ρ : [0, 1] → [0, 1] is assumed to satisfy the Lipschitz condition

|ρ(x) − ρ(x̂)| ≤ cρ|x − x̂| for all x, x̂ ∈ [0, 1] (29)

for some constant cρ > 0. (For the squared error distortion ρ(x) = x2, we have cρ = 2.)

The base set of reference codes we use is the set of scalar quantizers. Formally, an M -

level scalar quantizer Q is a measurable mapping R → C, where the codebook C is a finite

subset of R with cardinality |C| = M . The elements of C are called the code points.

The instantaneous distortion of Q for input x is ρ(|x − Q(x)|). A quantizer Q is called a

nearest neighbor quantizer if for all x,

|Q(x) − x| = min
x̂∈C

|x − x̂|.

As ρ is nondecreasing, it is immediate from the definition that if Q is a nearest neighbor

quantizer and Q̂ has the same codebook as Q, then ρ(|Q(x) − x|) ≤ ρ(|Q̂(x) − x|) for all

x. For this reason, we only consider nearest-neighbor quantizers. Also, since we consider

sequences with components in [0, 1], we can assume without loss of generality that the

domain of definition of Q is [0, 1] and that all its code points are in [0, 1].

Let Q denote the collection of all M -level nearest neighbor quantizers. For any se-

quence xn, we want our scheme to perform asymptotically as well as the best coding

scheme which employs M -level scalar quantizers and is allowed to change quantizers m

times. Formally, a code in this class Qm,n is given by the integers 1 ≤ i1 < i2 < . . . <

im < n and M -level scalar quantizers q0, . . . , qm ∈ Q such that xi is encoded to qj(xi) if

ij < i ≤ ij+1, where i0 = 0 and im+1 = n. The minimum normalized cumulative distortion

achievable by such schemes is

D∗
Q,m,n(xn) =

1

n
min

1≤i1<i2<...<im<n

m∑

j=0

min
q∈Q

ij+1∑

i=ij+1

ρ(|xi − q(xi)|).

Note that to find the best scheme achieving this minimum one has to know the entire

sequence xn in advance. Moreover, unlike in (16), the minimum D∗
Q,m,n(xn) is indeed
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achievable by realizable coding schemes since we now deal with the zero delay case (how-

ever, the optimal scheme will in general be different for each source sequence xn).

The expected distortion redundancy of a scheme (with respect to the class Qm,n) is

the quantity

sup
xn

(
E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

Q,m,n(xn)

)
(30)

where the supremum is over all individual sequences of length n with components in [0, 1]

(recall that the expectation is taken over the randomizing sequence).

We could immediately apply the coding scheme of Section 3 if the set Q were finite.

Since this is not the case, we approximate Q with QK , the set of all M -level nearest-

neighbor quantizers whose code points all belong to the finite grid

C(K) = {1/(2K), 3/(2K), . . . , (2K − 1)/(2K)}. (31)

By the Lipschitz condition on ρ, for any q ∈ Q there is a q′ ∈ QK such that

sup
x∈[0,1]

|ρ(|x − q(x)|) − ρ(|x − q′(x)|)| ≤ cρ/(2K). (32)

In particular, for the squared error distortion the difference is at most 1/K.

The next theorem shows that a slightly modified version of the coding scheme of Sec-

tion 3 applied to the base reference class QK (which has delay δ = 0 and decoder memory

s = 0) can perform as well as the best coding scheme which uses scalar quantization and

is allowed to change its quantizer m times for n source samples. Moreover, the proposed

scheme can be implemented efficiently.

Theorem 5 Assume that m, n, l, K, M are positive integers such that M ≤ K, l ≥⌈
log
(

K
M

)
/ log M

⌉
, n/l > m, and l divides n, and let 0 < α < 1, η > 0. Then there is a

coding scheme with zero delay and rate R = log M whose normalized cumulative distortion

can be bounded for any sequence xn ∈ [0, 1]n as

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

Q,m,n(xn)

≤ ρ(1/2)

l

⌈
1

R
log

(
K

M

)⌉
+

1

ηn
ln

( (
K
M

)m+1

αm(1 − α)n/l−m−1

)

+
ηl

8
+

cρ

K
+

m(l − 1)

n
. (33)

Moreover, the algorithm can be implemented with O(MK2n2/l2)+O(n3/l3)+O(K3n/l)+

O(n) computational complexity.
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Remark. Assuming m < n/l−1, let α = m/(n/l−1). Then, choosing η optimally (based

on (6)), similarly to (23) we obtain that the distortion redundancy can be bounded as

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

Q,m,n(xn)

≤ C1 log K

l
+ C2

√
lm

n
log

n

lm
+

1

K
+

ml

n
.

From here the best possible rate achievable is O((m/n)1/3 log(n/m)), when l = c1(n/m)1/3

and K = c2(n/m)1/3, which requires O((M + m)n2) computations.

In a practical implementation it is desirable that the computational complexity per

unit time remains a constant as the length of the input sequence increases. In our case

such an implementation is possible if the total computational complexity is linear in n.

This may be achieved by setting l = c1n
2/3 and K = c2n

1/6. Then the computational

complexity of the algorithm is O(Mn). However, with this choice the normalized distor-

tion redundancy deteriorates to O(m1/2 log n/n1/6) (here we require m = o(n1/3/ log n) in

order to ensure that the distortion redundancy converges to zero).

Proof of Theorem 5. Let q2K : [0, 1] → C(2K) be a 2K-level uniform quantizer in

[0, 1] (that is, a nearest neighbor quantizer with codebook C (2K)), and let x̄i = q2K(xi)

be the uniformly quantized version of xi. The algorithm of Section 3 is modified so

that when choosing the quantizer Q(k) from QK , the cumulative distortions in (19) are

computed with respect to the sequence {x̄i} instead of {xi}. This “pre-quantization” step

is necessary to reduce the computational complexity of the algorithm and only results in

a slight increase of the distortion if K is judiciously chosen. The latter claim can be seen

as follows: Without loss of generality we can assume that in each quantizer (including

q2K) each decision threshold is quantized to the smaller nearest code point (that is, the

quantization cells are right-closed intervals). Then q(x) = q(x̄) for any quantizer q ∈ QK

and x ∈ [0, 1], where x̄ = q2K(x). Therefore, assuming the same realization of {Un} is

used, the output sequence x̂n is the same in the following two situations: (1) the original

algorithm of Section 3 is applied to the input x̄n; (2) the modified version of the algorithm

above is applied to the input xn. Moreover,

|(x − q(x)) − (x̄ − q(x̄))| = |x − x̄| ≤ 1/(4K)

implying

ρ(|x − q(x)|) − ρ(|x̄ − q(x̄)|) ≤ cρ/(4K).

Thus, the difference of the normalized cumulative distortion of the two algorithms can be

bounded as ∣∣∣∣∣E
[

1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− E

[
1

n

n∑

i=1

ρ(|x̄i − x̂i|)
]∣∣∣∣∣ ≤

cρ

4K
. (34)
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Similarly, the difference of the minimum distortions achievable by changing quantizers m

times can be bounded as

∣∣D∗
Q,m,n(xn) − D∗

Q,m,n(x̄n)
∣∣ ≤ cρ

4K
. (35)

This implies that the normalized expected distortion redundancy of our modified algo-

rithm is no more than the redundancy of the original algorithm applied to x̄n plus cρ/(2K).

The latter redundancy can easily be bounded by Theorem 3 with |F| = |QK | =
(

K
M

)
,

x̂ = 1/2 and d̂ = ρ(1/2) as

E

[
1

n

n∑

i=1

ρ(|x̄i − x̂i|)
]
− D∗

Q,m,n(x̄n)

≤ E

[
1

n

n∑

i=1

ρ(|x̄i − x̂i|)
]
− D∗

QK ,m,n(x̄n) +
cρ

2K

≤ ρ(1/2)

l

⌈
1

R
log

(
K

M

)⌉
+

1

ηn
ln

( (
K
M

)m+1

αm(1 − α)n/l−m−1

)
+

ηl

8
+

cρ

2K
+

m(l − 1)

n

where the first inequality follows from (32) via

|D∗
Q,m,n(xn) − D∗

QK ,m,n(xn)| ≤ cρ/(2K).

Now (33) follows from (34) and (35).

Next we show that the algorithm can be implemented with the claimed complexity by

reducing the quantizer design algorithm to the problem of finding online the minimum-

weight path in a weighted directed graph as discussed in Section 4. Consider the directed

graph with vertices

V = C(K) × {1, 2, . . . ,M} ∪ (0, 0) ∪ (1,M + 1)

and edges

E = {(z, j − 1), (ẑ, j)) : z, ẑ ∈ C (K), z < ẑ, j ∈ {1, . . . ,M + 1}}

such that at time instant k the weight of edge ((z, j − 1), (ẑ, j)) is

δk((z, ẑ))

=





∑kl
i=(k−1)l+1 I{x̄i≤ẑ}ρ(|x̄i − ẑ|) if z = 0

∑kl
i=(k−1)l+1 I{x̄i∈(z, z+ẑ

2
]}ρ(|x̄i − z|) + I{x̄i∈( z+ẑ

2
,ẑ]}ρ(|x̄i − ẑ|) if 0 < z < ẑ < 1

∑kl
i=(k−1)l+1 I{x̄i≥z}ρ(|x̄i − z|) if 0 < z and ẑ = 1

for all j, where IB denotes the indicator function of the event B. With a slight abuse of

notation, let any path be described by the ordered sequence of its constituent vertices.
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Figure 1: An example of a scalar quantizer and the corresponding graph.

Then it is easy to see that for any z0 = 0 < z1 < · · · < zM < zM+1 = 1, the cost of

a path (z0, 0), (z1, 1), . . . , (zM+1,M + 1) at time instant k is the same as the cumulative

distortion in the kth block of a nearest neighbor quantizer Q with code points {z1, . . . , zM}
(see Figure 1 for an example). Moreover, any path from s = (0, 0) to u = (1,M + 1) is of

the form (z0, 0), (z1, 1), . . . , (zM+1,M + 1). Therefore, the random choice of a quantizer

according to the probabilities given in the algorithm of Section 3 (see (20) and (21)) is

equivalent to randomly choosing a path from vertex s to vertex u as in Section 4. Thus,

as |V| = MK + 2, |E| = (M − 1)K(K − 1)/2 + 2K, and T = n/l, applying the algorithm

described in Section 4, the random choice of Q(k) for k = 1, . . . , n/l can be performed in

O(MK2n2/l2) + O(n3/l3) time, provided the weights δk are known.

Now for each k, δk can be computed efficiently as follows: Let

ak,j =
∣∣{i : x̄i = (2j − 1)/2K, (k − 1)l + 1 ≤ i ≤ kl}

∣∣, j = 1, . . . , K, k = 1, . . . , n/l.

(Computing the ak,j takes O(n) time.) Then the weight δk(z, ẑ) can be computed in

O(K) steps for each pair (z, ẑ) by running through ak,1, ak,2, . . . , ak,K . For example, for

0 < z < ẑ < 1,

δk(z, ẑ) =
∑

z<j≤ z+ẑ
2

ak,jρ(|j − z|) +
∑

z+ẑ
2

<j<ẑ

ak,jρ(|j − ẑ|).
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Thus computing the weights in each block requires O(K3) time, resulting in a total com-

putational time of O(MK2n2/l2)+O(n3/l3)+O(K3n/l)+O(n). (Note that the use of the

finely quantized version x̄n of the input sequence changed the total computational cost of

the weights from O(nK2) to O(K3n/l). Although with certain choices of the parameters

the latter quantity may be larger, it can be made linear in n for large enough l, while

nK2 always grows faster than linearly.) �

6 Online multiresolution and multiple description

scalar quantization

In this section we generalize the online quantization algorithm to network quantization

problems, such as multiresolution and multiple description quantization. Multiple de-

scription coding (e.g., [29], [30], [31]) makes it possible to recover data at a degraded

but still acceptable quality if some parts of the transmitted data are lost. In this coding

scheme several different descriptions of the source are produced such that various levels of

reconstruction quality can be obtained from different subsets of these descriptions. Mul-

tiresolution coding (e.g., [32], [33], [34]) is a special case of multiple description coding in

which the information is progressively refined as more and more descriptions are received.

To simplify the notation, we consider only two-description systems, but the results can

be generalized to several descriptions in a straightforward manner. As before, we restrict

our attention to zero-delay coding schemes.

A fixed-rate zero-delay sequential two-description code of rate (R1, R2) with Rj =

log Mj, j = 1, 2, is defined by an encoder-decoder pair connected via two discrete erasure

channels having input alphabets {1, 2, . . . ,Mj}, j = 1, 2. The output alphabet of the jth

channel is {0, 1, . . . ,Mj} where the character 0 corresponds to an erasure. The channels

are assumed to be memoryless and time invariant, but not necessarily independent. Let

rj, j = 1, 2, denote the (joint) probability that there is no error on channel j and erasure

occurs on channel 3 − j, and let r0 denote the probability that there is no error on ei-

ther channel. Thus, only description j is received with probability rj, j = 1, 2, and both

descriptions are received with probability r0. As before, we assume that the encoder has

access to a randomization sequence U1, U2, . . . of independent random variables distributed

uniformly over the interval [0, 1], and the input to the encoder is a sequence of real num-

bers x1, x2, . . . taking values in the interval [0, 1]. At each time instant i = 1, 2, . . ., based

on the observed input values xi and randomization sequence U i, the encoder produces

channel symbols b
(j)
i ∈ {1, 2, . . . ,Mj}, j = 1, 2, which are then transmitted over the corre-

sponding channels. The decoder receives the (possibly erased) symbols b̂
(j)
i , and outputs
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the reconstruction x̂i based on the channel symbols (b̂
(1)
1 , . . . , b̂

(1)
i , b̂

(2)
1 , . . . , b̂

(2)
i ) received so

far. Note that if an error occurs on channel j then b̂
(j)
i = 0, otherwise b̂

(j)
i = b

(j)
i .

The code is formally given by a sequence of encoder-decoder functions {fi, gi}∞i=1,

where fi = (f
(1)
i , f

(2)
i ) with

f
(j)
i : [0, 1]i × [0, 1]i → {1, 2, . . . ,Mj}, j = 1, 2

and

gi : {0, 1, . . . ,M1}i × {0, 1, . . . ,M2}i → [0, 1]

so that b
(j)
i = f

(j)
i (xi, U i), j = 1, 2, and x̂i = gi(b̂

(1)
i , b̂

(2)
i ), i = 1, 2, . . ., where

P{b̂(1)
i = b

(1)
i , b̂

(2)
i = b

(2)
i } = r0,

P{b̂(1)
i = b

(1)
i , b̂

(2)
i = 0} = r1,

P{b̂(1)
i = 0, b̂

(2)
i = b

(2)
i } = r2,

P{b̂(1)
i = 0, b̂

(2)
i = 0} = 1 − r0 − r1 − r2.

Again, the distortion of the scheme is measured using a nondecreasing difference dis-

tortion measure d(x, x̂) = ρ(|x − x̂|), defined in (28), satisfying the Lipschitz condition

(29). Thus, the normalized cumulative distortion of the sequential scheme at time instant

n is again given by
1

n

n∑

i=1

ρ(|xi − x̂i|).

The expected normalized cumulative distortion is

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]

where, in contrast to the single-description (scalar quantization) case, the expectation is

taken with respect to both the randomizing sequence Un and the channel randomness.

An (M1,M2)-level multiple description scalar quantizer is given by two index mappings

αj : [0, 1] → {1, . . . ,Mj}, j = 1, 2, decoder functions βj : {1, . . . ,Mj} → {x̂(j)
1 , . . . , x̂

(j)
Mj

} ⊂
[0, 1], j = 1, 2, and β0 : C → {x̂(0)

i,j : (i, j) ∈ C} ⊂ [0, 1], where C = {(α1(x), α2(x)) : x ∈
[0, 1]}. In addition, one must also specify a constant x̂∗ to make the definition complete.

For each input x, the encoder assigns two index values α1(x) and α2(x) which are

transmitted over two different channels. If the decoder receives both indices (descriptions),

it outputs qc(x) = β0(α1, α2) = x̂
(0)
α1(x),α2(x); if only index αj(x) is received (j = 1, 2), the

output is q(j)(x) = βj(αj(x)) = x̂
(j)
αj(x); if both indices are lost, that is, no description

is received, then the output of the decoder is x̂∗. Usually, q(1) and q(2) are respectively

referred to as the first and the second side quantizer, while qc is called the central quantizer.
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Let x̂ denote the (random) reproduction of the multiple description quantizer q when

coding the input value x, and let αj(x) = ij, j = 1, 2. Then the average distortion of q is

given by

dq(x) = Eρ(|x − x̂|) = r0ρ(|x − x̂
(0)
i1,i2

|) + r1ρ(|x − x̂
(1)
i1
|) + r2ρ(|x − x̂

(2)
i2
|)

+ (1 − r0 − r1 − r2)ρ(|x − x̂∗|) (36)

where the expectation is taken with respect to the the channel randomness. (For proba-

bilistic stationary sources and the squared error distortion, x̂∗ is optimally chosen to be

the expectation of the source.)

In contrast to traditional fixed-rate scalar quantization, the structure of optimal mul-

tiple description scalar quantizers is not well understood. In this direction, Vaisham-

payan [35] showed that the cells of optimal two-description scalar quantizers are unions

of finitely many intervals. More precisely, he showed that the intersection of the ith

cell of the first side quantizer and the jth cell of the second side quantizers (i.e., the

set {x : α1(x) = i, α2(x) = j}) is either an interval or the empty set. In general, how-

ever, for an optimal quantizer the cells of the side quantizers (the sets {x : αj(x) = i},
j = 1, 2, i = 1, . . . ,Mj) are not necessarily intervals. An example demonstrating this is

given in [36].

Since the optimal side quantizers can have a very complex structure, finding these for

a given source distribution may be computationally hard for quantizers with moderate or

large rates. To avoid this problem, the restriction that the side quantizers have interval

cells has recently been introduced in [27],[37],[38],[39]. These works use graph-theoretic

and/or dynamic programming frameworks to construct algorithms with reasonable com-

plexity to find optimal (entropy-coded or fixed-rate) multiple description or multireso-

lution quantizers (with interval cells) for a given discrete probabilistic source. While

the performance loss that results from the assumption of interval cells has not yet been

quantified, some heuristic arguments exist [40] which indicate that this loss may not be

significant at high rates. In our online multiple description quantization problem, we also

make the assumption that the cells of the side quantizers are intervals. Let QMD denote the

collection of all (M1,M2)-level multiple description scalar quantizers (α1, α2, β0, β1, β2, x̂
∗)

such that the side quantizers have interval cells, and all reproduction points belong to

their respective cells.

In the special case of two-level multiresolution quantization, one has r0 + r1 = 1, that

is, either the first description or both descriptions are received. Accordingly, there is no

need to specify the reproduction points corresponding to the second side quantizer or for

the case when both descriptions are lost. Hence a multiresolution quantizer is defined

by the quadruple q = (α1, α2, β0, β1). For multiresolution quantizers we assume that q(1),
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the first side quantizer, has interval cells, and q(2), restricted to a cell of q(1), is a nearest

neighbor quantizer. Thus a cell of q(2) is a union of M1 intervals, one subinterval from

each cell of q(1). Let QMR denote the set of all such quantizers.

As before, for any source sequence xn, we want to compete with the best coding scheme

which employs quantizers from QMD (or QMR), and is allowed to change its quantizer m

times. The source sequence xn is unknown in advance, but we assume that the erasure

probabilities r0, r1, and r2 are known at the encoder.

6.1 Adaptive multiple description scalar quantization

Our aim is to generalize the algorithm of Section 5 to obtain an adaptive online multiple

description scalar quantization scheme of moderate complexity in the individual sequence

setting. The class of codes QMD
m,n we want to compete with is formally given by integers 1 <

i1 < · · · < im < n and (M1,M2)-level multiple description scalar quantizers q0, . . . , qm ∈
QMD such that xi is encoded by qj for ij < i ≤ ij+1 where i0 = 0 and im+1 = n. The

minimum normalized cumulative distortion achievable by such schemes is

D∗
QMD,m,n(xn) =

1

n
min

1≤i1<...<im<n

m∑

j=0

min
q∈QMD

ij+1∑

i=ij+1

dq(xi).

where dq(xi) was defined in (36). As before, one would have to know the entire sequence

in advance to find an optimal scheme achieving this minimum.

There are two main problems to overcome in constructing an efficient algorithm on

the basis of the general coding scheme in Section 3. The first is to find an efficient finite

covering of QMD, and the second is to find an efficient implementation of Algorithm 2.

We first deal with the covering problem.

Let QMD
K ⊂ QMD denote the set of (M1,M2)-level multiple description scalar quantizers

such that the cells of the side quantizers are right closed intervals with endpoints (called

the decision thresholds of the side quantizers) that belong to the set

Ĉ(K) = {1/K, 2/K, . . . , (K − 1)/K}. (37)

In addition, we also specify that each quantizer in QMD
K has all its reproduction points

in Ĉ(K), and that each reproduction point belongs to its corresponding quantization cell

(except for the reproduction point for the case when both descriptions are lost). The

following lemma shows that if K is sufficiently large, QMD
K provides a fine covering of

QMD. The proof is relegated to the appendix.
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Lemma 2 For any q ∈ QMD there is a q′ ∈ QMD
K such that the maximum difference of

the average distortions are bounded as

sup
x∈[0,1]

(dq′(x) − dq(x)) ≤ 6cρ

K
.

The lemma implies that for all xn,

D∗
QMD

K
,m,n(xn) − D∗

QMD,m,n(xn) ≤ 6cρ

K
. (38)

For any q ∈ QMD
K , the jth side quantizer is determined by Mj reproduction points and

Mj −1 thresholds (note, however, that the reproduction points and the thresholds are not

necessarily distinct); the central quantizer has at most M1M2 reproduction points, while

its cells are determined by the side quantizers. Therefore, the number of quantizers in

QMD
K is bounded as

N = |QMD
K | ≤

(
K

M1 − 1

)(
K

M1

)(
K

M2 − 1

)(
K

M2

)(
K

M1M2

)
K (39)

where the last term corresponds to the choice of the constant x̂∗ in the definition of q.

As the next theorem shows, the general coding scheme of Section 3 applied to the

base reference class QMD
K provides an efficient solution to the problem of tracking the best

multiple description quantizer. The general scheme must be slightly modified, however,

since at the beginning of each block, the index of the randomly chosen quantizer is now

transmitted over two unreliable (erasure) channels. Therefore, we will repeat the descrip-

tion of the quantizer several times to ensure that the corresponding index can be decoded

with large enough probability. (We use this repetition code for the sake of simplicity,

and to reduce encoding/decoding complexity. Alternatively, we could employ an optimal

channel code as was done in [17], but in the theoretical analysis this would only improve

the scheme’s performance by a multiplicative constant term.)

We will use the first h time instants of each block (h will be specified later) to transmit

the quantizer index. In the remainder of the block, for time instants t = kl+h+1, . . . , (k+

1)l, the randomly chosen quantizer Q(k) is used to encode the source symbols xi. While

the index of Q(k) is transmitted, the decoder emits x̂i = 1/2. If the description of Q(k)

can be reconstructed at or before the time index t = kl + h, Q(k) is used to decode the

received channel symbols in the remainder of the block. Otherwise the decoder emits 1/2

in the entire block.

The distribution for the random choice of Q(k) is the same as in Section 3 with the

modification introduced in Theorem 5. That is, when computing Q(k), the source sequence
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xn is finely quantized using a 2K-level uniform quantizer as x̄i = q2K(xi). For any k′ ≤ k,

let

Zk′,k =
∑

Q∈QMD
K

e−η
Pk

j=k′
Pjl

i=(j−1)l+h+1
dQ(x̄i) (40)

where the distortion dQ is defined in (36). Furthermore, let W1 = 1, and for k = 2, . . . , n/l,

Wk+1 =
α

N

k∑

k′=2

(1 − α)k−k′

Wk′Zk′,k +
(1 − α)k−1

N
Z1,k (41)

(recall that N = |QMD
K |). Then, according to Algorithm 2, let

P{τk = k′} =





α(1−α)k−k′Wk′Zk′,k−1

NWk
for k′ = 2, . . . , k

(1−α)k−1Z1,k−1

NWk
for k′ = 1

(42)

and

P{Q(k) = Q|τk = k′} =





e
−η

Pk−1
j=k′

Pjl
i=(j−1)l+h+1

dQ(x̄i)

Zk′,k−1
for k′ = 1, . . . , k − 1

1
N

for k′ = k.
(43)

The performance and complexity of the above coding scheme is analyzed in the next

theorem.

Theorem 6 Assume that m, n, l, K, M1, M2, h are positive integers such that 2Mj−1 ≤
K, j = 1, 2,

h = min
j∈{1,2}

⌈
−(M1M2 + 2M1 + 2M2 − 1) log K

log Mj

(
log
(
n/ log Mj)

log(1 − r0 − rj)
+ 1

)⌉
(44)

l divides n, and h ≤ l. Then for any 0 < α < 1, η > 0, the normalized cumulative

distortion of the above coding scheme can be bounded for any sequence xn ∈ [0, 1]n as

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

QMD,m,n(xn)

≤ hρ(1/2)

l
+

ρ(1/2)(M1M2 + 2M1 + 2M2 − 1) log K

n
(45)

+
1

ηn
ln

( |QMD
K |m+1

αm(1 − α)n/l−m−1

)
+

ηl2

8
+

ml

n
+

13cρ

2K
.

The algorithm can be implemented with O(M1M2K
5n2/l2)+O(n3/l3)+O(M1M2K

6n/l)+

O(n) computational complexity.
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Remark. Optimizing the above bound with respect to η and α as after Theorem 5, we

obtain

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

QMD,m,n(xn)

≤ C1
log K log n

l
+ C2

log K

n
+ C3

√
lm

n
log

n

lm
+

13cρ

2K
+

ml

n
.

From here the best possible rate achievable is O((m/n)1/3 log(n/m) log n), when l =

c1(n/m)1/3 and K = c2(n/m)1/3, which requires O(M1M2n
3/m)+O(mn2) computations.

On the other hand, if we set l = c1n
7/9/m1/3 and K = c2n

1/9/m2/15, then, assuming

m = o(n1/3/(log n)3/2), the computational complexity of the algorithm is O(M1M2n) and

the normalized distortion redundancy becomes O(m1/3
√

log n/n1/9). (Note that omitting

the factors associated with m from the definitions of K and l results in a linear complexity

regardless of the relation between m and n; however, in this case the distortion redundancy

grows linearly with m, and for vanishing redundancy similar conditions on m are required

as in the scalar quantization case).

Proof of Theorem 6. The proof follows the lines of the proof of Theorem 5. However,

the algorithm is more complicated, and in proving the performance bound we have to

consider the problem that the description of Q(k) may not be received at the decoder.

Let ε denote the probability that the index of Q(k) cannot be decoded after receiving

the first h symbols of the kth block (note that this probability is the same for each block

as the channels are memoryless, and Q(k) and Q(k′) can be decoded independently for

k 6= k′). Then the decoder emits x̂i = 1/2 in the entire block, and the per letter distortion

is bounded by ρ(1/2). Hence,

E

[
n∑

i=1

ρ(|xi − x̂i|)
]

=

n/l∑

k=1

E




kl∑

i=(k−1)l+1

ρ(|xi − x̂i|)




≤
n/l∑

k=1


E




kl∑

i=(k−1)l+1

ρ(|xi − x̂i|)

∣∣∣∣∣∣
Q(k) can be decoded


+ εlρ(1/2)




= E

[
n∑

i=1

ρ(|xi − x̂i|)
∣∣∣∣∣ Q(k) can be decoded for all k

]
+ εnρ(1/2). (46)

If Q(k) can be decoded at the receiver for all k, then, similarly to (34) and (35), it can
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be shown (using the fact that all interval cells are closed from the right) that
∣∣∣∣∣

(
1

n
E

[
n∑

i=1

ρ(|xi − x̂i|)
∣∣∣∣∣Q

(k) can be decoded for all k

]
− D∗

QMD
K

,m,n(xn)

)

−
(

1

n
E

[
n∑

i=1

ρ(|x̄i − x̂i|)
∣∣∣∣∣Q

(k) can be decoded for all k

]
− D∗

QMD
K

,m,n(x̄n)

)∣∣∣∣∣

≤ cρ

2K
. (47)

Also, since the same quantizer encodes xi and x̄i into the same channel symbols, if Q(k)

can be decoded for all k, then the coding procedure is a special case of Theorem 3 with

input x̄n (note that the explicit value of h is never used in the proof of Theorem 3).

Therefore,

1

n
E

[
n∑

i=1

ρ(|x̄i − x̂i|)
∣∣∣∣∣Q

(k) can be decoded for all k

]
− D∗

QMD
K

,m,n(x̄n)

≤ hρ(1/2)

l
+

1

ηn
ln

( |QMD
K |m+1

αm(1 − α)n/l−m−1

)
+

η(l − h)2

8l
+

m(l − 1)

n
. (48)

Combining (46)–(48) with (38) implies

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

QMD,m,n(xn) (49)

≤ hρ(1/2)

l
+

1

ηn
ln

( |QMD
K |m+1

αm(1 − α)n/l−m−1

)
+

η(l − h)2

8l
+

m(l − 1)

n
+ ερ(1/2) +

13cρ

2K
.

In order to complete the proof of (45) we need to bound the error probability ε. Since

on channel j it takes dlog |QMD
K |/ log Mje symbols to transmit the index of a quantizer,

in h channel symbols the quantizer index can be repeated
⌊

h log Mj

log |QMD
K

|

⌋
times. Since the

channel is memoryless and the probability that a symbol is not received is 1− r0 − rj, the

probability that each symbol of the description of the quantizer is received at least once

is

(
1 − (1 − r0 − rj)

—

h log Mj

log |QMD
K

|

�)‰

log |QMD
K |

log Mj

ı

≥ 1 −
⌈

log |QMD
K |

log Mj

⌉
(1 − r0 − rj)

—

h log Mj

log |QMD
K

|

�

as (1 − x)k ≥ 1 − kx for all x > 0 and k > 0. Now from (39) it follows that
⌈

log |QMD
K |

log Mj

⌉
≤ (M1M2 + 2M1 + 2M2 − 1) log K

log Mj

and ⌊
h log Mj

log |QMD
K |

⌋
≥ h log Mj

(M1M2 + 2M1 + 2M2 − 1) log K
− 1. (50)
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Now for the j∗ realizing the minimum in the definition of h given in (44), the right-hand

side of (50) is − log(n/ log Mj∗)/ log(1− r0 − rj∗) (note that this quantity is positive since

1 − r0 − rj∗ < 1). Therefore, as ε is no more than the probability of not receiving the

quantizer index on channel j∗,

ε ≤ (M1M2 + 2M1 + 2M2 − 1) log K

n
.

Combining this with (49) proves (45).

Next we consider the implementation complexity. Although somewhat more com-

plicated than for traditional scalar quantization, it is still possible in the algorithm to

reduce the random choice of a multiple description quantizer to the problem of finding

a minimum-weight path in a directed graph. In a related work, Muresan and Effros [27]

showed that the problem of optimal entropy coded multiple description scalar quantizer

design can be reduced to the problem of finding a minimum-weight path in an appropri-

ately defined graph. In the following we modify this method to fit in our scheme of online

design.

First, observe that the algorithm of Section 4 for finding a minimum-weight path in a

directed graph can be extended trivially to graphs with multiple edges (where each edge

may have a different weight). This follows from the fact that the probability of choosing

an edge from a given vertex depends only on the relative weight of the paths that go

through this edge from the given vertex, and no other property of the edges is used.

Therefore, the algorithm works for such graphs in exactly the same way, with no change

in the redundancy and complexity (which, however, depend on the increased number of

the edges that includes the multiple edges).

Also note that it is possible to choose the constant x̂∗ of the quantizer independently of

the side and central quantizers. Choosing x̂∗ from C(K) corresponds to a graph with two

vertices, 0 and 1, with K edges from 0 to 1 such that edge ej, j = 1, . . . , K, corresponds

to x̂∗ = (2j − 1)/(2K), and the weight of ej at time k (that is, in the kth block) is

δk(ej) =
kl∑

i=(k−1)l+h+1

ρ
(∣∣x̄i − (2j − 1)/(2K)

∣∣).

Next we choose the central and side quantizers. For simplicity, we will refer to this

triplet as a multiple description quantizer (and thus exclude the constant x̂∗ from the

problem). Consider a graph with vertices labeled (z1,m1, z2,m2), where zj ∈ Ĉ(K)∪{0, 1}
and mj ∈ {0, . . . ,Mj}, j = 1, 2, such that mj = Mj if and only if zj = 1. The vertex

(z1,m1, z2,m2) corresponds to the situation that the left endpoint of the m1th cell of the

first side quantizer is z1 and the left endpoint of the m2nd cell of the second side quantizer
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z1, m1, z2, m2
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v
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Figure 2: A section of a multiple description scalar quantizer and the corresponding graph.

is z2. Following an edge from a vertex will correspond to adding a cell to the side quantizer

j whose mjth cell lies more to the left (i.e., zj ≤ z3−j).

Assume that z1 < z2 (note that in this case we necessarily have m1 < M1). Then

there is an edge from v = (z1,m1, z2,m2) to each vertex v′ = (z′
1,m1 + 1, z2,m2) such

that z1 < z′
1 < 1 if m1 < M1 − 1, and z′

1 = 1 if m1 = M1 − 1. If z′
1 ≤ z2, then an edge

corresponds to the case that the next cell of the first side quantizer and that of the central

quantizer is (z1, z
′
1] (except when z1 = 0, in which case it is [z1, z

′
1]). In the sequel, for

simplicity, we do not consider z1 = 0 or z′
1 = 1; the definitions can be extended to this

situation in a straightforward manner. However, the corresponding reproduction point in

each quantizer can be any point of Ĉ(K) ∪ {0, 1} which lies between z1 and z′
1. Therefore,

we need K2(z′
1−z1)

2 edges, such that edge (v, v′)i,j, i, j ∈ {1, . . . , K(z′
1−z1)} corresponds

to the situation that the new reproduction point of the central quantizer is z1 + i/K, and

that of the first side quantizer is z1+j/K (see Figure 2). Consequently, the corresponding

weights in the kth block are the empirical distortions

δk((v, v′)i,j) = r0

kl∑

t=(k−1)l+h+1

ρ(|x̄t − z1 − i/K|) + r1

kl∑

t=(k−1)l+h+1

ρ(|x̄t − z1 − j/K|). (51)

If z′
1 > z2, then the corresponding cell of the central quantizer is (z1, z2], and the
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corresponding cell of the first side quantizer is (z1, z
′
1]. Now the possible set of reproduction

points for the central partition is {z1+1/K, z1+2/K, . . . , z2} and for the first side quantizer

{z1 +1/K, z1 +2/K, . . . , z′
1}. Therefore, there are K2(z2−z1)(z

′
1−z1) possible edges, and

edge (v, v′)i,j , i ∈ {1, . . . , K(z2 − z1)}, j ∈ {1, . . . , K(z′
1 − z1)}, corresponds to central and

side reproduction points z1 + i/K and z1 + j/K, respectively, with corresponding weight

given again by (51). The formula can be modified straightforwardly for z1 = 0 and z′
1 = 1.

The edges and weights are similarly defined for z1 > z2.

If z1 = z2, then adding a cell to any side quantizer will determine the cell of only

that quantizer but not any cell of the central quantizer. In this situation we always

choose to extend the first side quantizer, so from v = (z,m1, z,m2) there are K(z′ − z)

edges to v′ = (z′,m1 + 1, z,m2) for every z′ > z, and the weight of edge (v, v′)i, i ∈
{1, . . . , K(z′−z)} corresponds to reproduction point z+ i/K and has weight δk((v, v′)i) =

r1

∑kl
j=(k−1)l+h+1 ρ(|xj − z − i/K|).

It is not hard to see that there is a one-to-one correspondence between paths from

(0, 0, 0, 0) to (1,M1, 1,M2) and multiple description quantizers from QMD
K (with the con-

stant x̂∗ yet undefined), such that the weight of a path is the same as the distortion of the

corresponding quantizer. Therefore, finding a quantizer according to the probabilities in

(42) and (43) is equivalent to finding a path from vertex (0, 0, 0, 0) to vertex (1,M1, 1,M2),

and the algorithm of Section 4 can be used to solve this problem. Since the number of

edges in the constructed graph is O(M1M2K
5), and the weight of each edge can be com-

puted in O(K) time (as in Theorem 5), the required time complexity of the algorithm is

O(M1M2K
5n2/l2) + O(n3/l3) + O(M1M2K

6n/l) + O(n). �

6.2 Adaptive multiresolution scalar quantization

Multiresolution quantization is a special case of multiple description quantization with

r0 +r1 = 1. However, recall that for multiresolution quantizers we assume that the second

side quantizer q(2) restricted to a cell of q(1) is a nearest neighbor quantizer. Although this

assumption is not compatible with our earlier assumption on the cell structure of multiple

description quantizers, it allows, through similar methods, a simpler graph representation,

and results in an algorithm with somewhat reduced complexity.

Similarly to the multiple description case, first we find a fine covering of the allowed

multiresolution quantizers: Let QMR
K ⊂ QMR denote the set of multiresolution scalar

quantizers such that the cells of the first side quantizer (which is often referred to as

the base quantizer) and the cells of the second side quantizer (the refinement quantizer)

restricted to the cells of the base quantizer are right closed intervals with endpoints from

Ĉ(K), all the reproduction points are also from Ĉ(K), and belong to the corresponding

interval cell.
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Then, similarly to Lemma 2, it can be shown that for any quantizer q ∈ QMR there is

a q′ ∈ QMR
K such that

sup
x∈[0,1]

(dq′(x) − dq(x)) ≤ 3cρ/K. (52)

(see the footnote in the proof of Lemma 2).

This result allows us to compete with best code in QMR by applying the coding scheme

of Section 3 to the finite set of codes QMR
K . There are two differences compared to the

general multiple description case: (i) Since there is no loss on the first channel, it is enough

to send the index of the chosen quantizer Q(k) only once in each block, requiring

h =

⌈
log |QMR

K |
log M1

⌉
≤
⌈

1

log M1

log

((
K

M1 − 1

)(
K

M1

)(
K

M1M2

))⌉
(53)

time instants (recall that the second side quantizer restricted to a cell of the base quantizer

is assumed to be a nearest neighbor quantizer). (ii) The simpler structure of QMR
K allows

a smaller graph representation. Indeed, the graph describing quantizers from QMR
K can

be constructed as follows: Define vertices (z,m1) for each z ∈ Ĉ(K) ∪ {0, 1} and m1 ∈
{0, . . . ,M1}. The vertex (z,m1) corresponds to the case that the right endpoint of the

m1st cell of q(1) is z (recall that the cells of q(1) are intervals). Now vertices (z1,m1) and

(z2,m1 + 1) are connected via the following subgraph. The first vertex of the subgraph

is (z1, z2,m1), and there are K(z2 − z1) edges going from (z1,m1) to (z1, z2,m1), each

corresponding to a different possible code point of the cell from the set (z1, z2]∩ Ĉ(K) with

weight corresponding to the distortion of this cell in the kth block (if z1 = 0, then there

are Kz2 + 1 edges, where the extra edge corresponds to the code point z1 = 0, which is a

valid code point only in this case). Then (z1, z2,m1) and (z2,m1 + 1) are connected via

a directed graph corresponding to an M2-level nearest neighbor quantizer from z1 to z2

as in Theorem 5, but the weights of the edges are multiplied by r0 (see Figure 3). The

number of edges of such a subgraph is O(M2K
2); hence the total number of edges of the

constructed graph is O(M1M2K
4).

Therefore, the complexity of the algorithm is slightly reduced compared to the general

multiple description case, as it requires only O(M1M2K
4n2/l2)+O(n3/l3)+O(M1M2K

5n/l)+

O(n) computations.

From here, similarly to Theorem 6, we obtain the following result.

Theorem 7 Assume that m, n, l, K, M1, M2, h are positive integers such that M1M2 ≤
K, l divides n, and h ≤ l, where h is defined in (53). Then for any 0 < α < 1, η > 0, the

normalized cumulative distortion of the above described coding scheme can be bounded for
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Figure 3: A section of a multiple description scalar quantizer and the corresponding graph.
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any sequence xn ∈ [0, 1]n as

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

QMR,m,n(xn);

≤ hρ(1/2)

l
+

1

ηn
ln

( |QMR
K |m+1

αm(1 − α)n/l−m−1

)
+

ηl2

8
+

ml

n
+

7cρ

2K
.

The algorithm can be implemented with O(M1M2K
4n2/l2)+O(n3/l3)+O(M1M2K

5n/l)+

O(n) computational complexity.

Remark. Optimizing the above bound as after Theorem 5, we obtain

E

[
1

n

n∑

i=1

ρ(|xi − x̂i|)
]
− D∗

QMR,m,n(xn)

≤ C1
log K

l
+ C2

√
lm

n
log

n

lm
+

7cρ

2K
+

ml

n
.

From here the best possible rate achievable is O((m/n)1/3 log(n/m)), when l = c1(n/m)1/3

and K = c2(n/m)1/3, which requires O(M1M2n
8/3/m2/3) + O(mn2) computations.

On the other hand, if we set l = c1n
3/4/m1/2 and K = c2n

1/8/m1/4, then, assuming

m = O(n1/6), the computational complexity of the algorithm is O(M1M2n), and the

normalized distortion redundancy becomes O(m1/4
√

log n/n1/8) (note that, similarly to

the case of multiple description quantizers, omitting the factors associated with m from

the definitions of l and K results in a linear complexity regardless of the relation between

m and n).

7 Conclusion

We presented a general scheme for limited-delay lossy coding of individual sequences.

For any finite class of limited-delay, finite-memory reference coders, our scheme performs

asymptotically as well as the best “tracking” scheme which can change its coder a given

number of times (each time choosing from the reference class) while encoding an input

sequence of finite length. In order to implement the method, we devised an efficient

algorithm for online prediction that tracks the best expert even when the number of

experts is exponentially large, provided the experts have a certain additive structure.

The example of tracking the minimum-weight path in an acyclic graph was worked out

in detail and used to construct efficient quantization schemes. In particular, we have

constructed low-complexity schemes for tracking the best scalar quantizer, as well as the

best multiple description or multiresolution quantizer (among the ones with interval cells).
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For all these schemes, analyses of distortion redundancy and computational complexity

were provided.

The focus of this work was on implementable sequential lossy coding schemes based

on ideas rooted in the theory of sequential prediction for individual sequences. While

the considered combined (i.e, tracking) scalar (network) quantization schemes form more

powerful classes than the base class of scalar (network) quantizers, these schemes are still

less general than one would desire in certain applications. For example, efficiently imple-

mentable schemes for the class of coders with finite-state encoders and sliding-window (or

finite-state) decoders would by desirable [2]. Also of interest would be the construction of

linear-time scalar (network) quantization schemes with the same distortion redundancy

rates as that of the more complex schemes presented here.

Appendix A

Proof of Theorem 1 The proof of Theorem 1 is done through a sequence of lemmas.

First observe that, denoting by Et the expectation taken with respect to Ut only, the

sequence

Vt = `(yt, ŷt) − Et`(yt, ŷt) = `(yt, ŷt) − E[`(yt, ŷt)|U t−1], t = 1, . . . , T

is a martingale difference with respect to U1, U2, . . . , UT such that with probability one

−E[`(yt, ŷt)|U t−1] ≤ Vt ≤ −E[`(yt, ŷt)|U t−1] + B.

Thus it suffices to bound the difference

T∑

t=1

Et`(yt, ŷt) − min
t,e

L(P(T,m, t, e))

since
T∑

t=1

Vt = LT −
T∑

t=1

Et`(yt, ŷt)

and so by the Hoeffding-Azuma inequality [41] for sums of martingale differences, with

probability at least 1 − p,

LT ≤
T∑

t=1

Et`(yt, ŷt) + B

√
T ln(1/p)

2

and

E

[
T∑

t=1

Et`(yt, ŷt)

]
=

T∑

t=1

E`(yt, ŷt) .
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Lemma 3 The cumulative loss of Algorithm 1 satisfies

T∑

t=1

Et`(yt, ŷt) ≤ −1

η
ln wm

T,i +
TηB2

8

for all i = 1, . . . , N .

Proof. The proof follows standard arguments, see, e.g., Cesa-Bianchi and Lugosi [42].

From the definition of Wt we have for all t

ln
Wt+1

Wt

= ln

(∑N
i=1 ws

t,ie
−η`(yt,ŷ

(i)
t )

∑N
i=1 ws

t,i

)

= ln
(
Ete

−η`(yt,ŷt)
)

= ln
(
e−ηEt`(yt,ŷt)Ete

−η(`(yt,ŷt)−Et`(yt,ŷt))
)

= −ηEt`(yt, ŷt) + ln
(
Ete

−η(`(yt,ŷt)−Et`(yt,ŷt))
)

≤ −ηEt`(yt, ŷt) +
η2B2

8
.

Note that the expectations are taken with respect to the random choice of ŷt, that is, with

respect to the randomizing variable Ut, and the inequality holds by Hoeffding’s inequality

[41] for the moment generation function of bounded random variables. Summing the

above inequality for all t = 1, . . . , T , we obtain

ln
WT+1

W1

≤ −η

T∑

t=1

Et`(yt, ŷt) +
Tη2B2

8
.

Since W1 = 1 and WT+1 ≥ wm
T,i for any i, we have

ln wm
T,i ≤ −η

T∑

t=1

Et`(yt, ŷt) +
Tη2B2

8

which implies the statement of the lemma. �

Lemma 4 For any 1 ≤ t ≤ t′ ≤ T and any i = 1, . . . , N we have

wm
t′,i

ws
t,i

≥ e−ηL([t,t′],i)(1 − α)t−t′

where L([t, t′], i) =
∑t′

τ=t `(yτ , ŷ
(i)
τ ).

Proof. The proof is a straightforward modification of the one in [21]. From the

definitions of wm
t,i and ws

t+1,i (see equations (2) and (3)) it is clear that for any τ ≥ 1

ws
τ+1,i =

αWτ+1

N
+ (1 − α)wm

τ,i ≥ (1 − α)e−η`(yτ ,ŷ
(i)
τ )ws

τ,i.
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Applying this equation iteratively for τ = t, t + 1, . . . , t′ − 1, and (2) for τ = t′, we obtain

wm
t′,i ≥ e−η`(yt′ ,ŷ

(i)

t′
)

t′−1∏

τ=t

(
(1 − α)e−η`(yτ ,ŷ

(i)
τ )
)

ws
t,i = e−ηL([t,t′],i)(1 − α)t−t′ws

t,i

which implies the statement of the lemma. �

Lemma 5 For any t ≥ 1 and 1 ≤ i, j ≤ N , we have

ws
t+1,i

wm
t,j

≥ α

N
.

Proof. By the definition of ws
t+1,i we have

ws
t+1,i ≥

αWt+1

N
=

α

N

N∑

l=1

wm
t,l ≥

αwm
t,j

N
.

This completes the proof of the lemma. �

Proof of Theorem 1. Let P(T,m, t, e) be an arbitrary partition. Then by Lemma 3,

the cumulative loss of Algorithm 1 can be bounded as

T∑

t=1

Et`(yt, ŷt) ≤ −1

η
ln wm

T,em
+

TηB2

8
(A.1)

(recall that em denotes the expert used in the last segment of the partition). Now wm
T,em

can be rewritten in the form of the following telescoping product

wm
T,em

= ws
t0+1,e0

wm
t1,e0

ws
t0+1,e0

m∏

i=1

(
ws

ti+1,ei

wm
ti,ei−1

wm
ti+1,ei

ws
ti+1,ei

)
.

Therefore, applying Lemmas 4 and 5, we have

wm
T,em

≥ ws
t0+1,e0

( α

N

)m
m∏

i=0

(
e−ηL((ti,ti+1],ei)(1 − α)ti+1−ti−1

)

=
1

N
e−ηL(P(T,m,t,e))(1 − α)T−m−1

( α

N

)m

.

Substituting this bound in (A.1) proves (4) and (5), the first statements of the theorem.

To prove the second part, let H(p) = −p ln p− (1− p) ln(1− p) and D(p‖q) = p ln p
q
+

(1 − p) ln 1−p
1−q

. Optimizing the value of η in (4) gives the following:

T∑

t=1

Et`(yt, ŷt) − min
t,e

L(P(T,m, t, e))

≤ B

√
T

2

(
(m + 1) ln N + m ln

1

α
+ (T − m − 1) ln

1

1 − α

)
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= B

√
T

2
((m + 1) ln N + (T − 1)(Db(α∗‖α) − Hb(α∗)))

where α∗ = m
T−1

. For α = α∗ the bound becomes

T∑

t=1

Et`(yt, ŷt) − min
t,e

L(P(T,m, t, e))

≤ BT 1/2

√
2

√
(m + 1) ln N + m ln

T − 1

m
+ (T − m − 1) ln

(
1 +

m

T − m − 1

)

≤ T 1/2 B√
2

√
(m + 1) ln N + m ln

T − 1

m
+ m

where we used the fact that ln(1 + x) ≤ x for all x > −1. �

Appendix B

Proof of Lemma 2 In view of (32), the proof would be simple if only nearest neighbor

quantizers were allowed as side quantizers. As this is not the case, a more involved

construction is needed.

For i = 1, 2, let 0 = t
(i)
0 < t

(i)
1 < · · · < t

(i)
Mi−1 < t

(i)
Mi

= 1 denote the decision thresholds

of q(i), the ith side quantizer of q (that is, the cells of q(i) are intervals with endpoints

t
(i)
j−1 and t

(i)
j , j = 1, . . . ,Mi). We will construct a sequence of two-description quantizers

qj, j = 0, . . . , K, such that all the thresholds t of the side quantizers q
(i)
j that satisfy

t ≤ j/K are of the form t = k/K for some integer k, the corresponding cells with

right end points t are right closed intervals, and qj+1 and qj differ only in the interval

(j/K, (j + 1)/K].

Let q0 = q, which clearly satisfies that all thresholds t ≤ 0 are of the form 0/K.

Assume that we have already constructed qj with the desired property for some j ≥ 0.

From qj we construct qj+1 by modifying the thresholds of the side quantizers of qj in the

interval (j/K, (j + 1)/K]. Therefore, for all x 6∈ (j/K, (j + 1)/K],

dqj+1
(x) − dqj

(x) = 0. (B.1)

Furthermore, if qj has no threshold in the interval (j/K, (j +1)/K], then let qj+1 = qj

(so obviously dqj
= dqj+1

).

If qj has exactly one threshold in (j/K, (j + 1)/K), then without loss of generality we

can assume that this threshold t belongs to the first side quantizer q
(1)
j . Let qleft and qright

be 2-description quantizers obtained from qj by replacing the threshold t with j/K and

(j +1)/K, respectively (such that the new threshold is quantized to a smaller code point;
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that is, the corresponding cell is closed from the right), and qj+1 will be the one with

smaller guaranteed worst case distortion. Let c
(1)
1 , c

(1)
2 denote the code points of the side

quantizer q
(1)
j corresponding to the cells ending and beginning at t, respectively, and let

c
(0)
1 , c

(0)
2 denote the corresponding code points of the central quantizer q

(0)
j . Now clearly,

if x ≤ j/K or x > t, then qj(x) = qleft(x). For x ∈ (j/K, t), we have

dqleft
(x) − dqj

(x)

= r0

(
ρ(|x − c

(0)
2 |) − ρ(|x − c

(0)
1 |)

)
+ r1

(
ρ(|x − c

(1)
2 |) − ρ(|x − c

(1)
1 |)

)

≤ r0

(
ρ(|t − c

(0)
2 |) − ρ(|t − c

(0)
1 |) + 2cρ(t − j/K)

)

+ r1

(
ρ(|t − c

(1)
2 |) − ρ(|t − c

(1)
1 |) + 2cρ(t − j/K)

)

≤ r0

(
ρ(|t − c

(0)
2 |) − ρ(|t − c

(0)
1 |)

)
+ r1

(
ρ(|t − c

(1)
2 |) − ρ(|t − c

(1)
1 |)

)
+ 2cρ/K (B.2)

and similarly, for x < t or x > (j + 1)/K, qj(x) = qright(x), and for x ∈ (t, (j + 1)/K),

dqright
(x) − dqj

(x)

= r0

(
ρ(|x − c

(0)
1 |) − ρ(|x − c

(0)
2 |)

)
+ r1

(
ρ(|x − c

(1)
1 |) − ρ(|x − c

(1)
2 |)

)

≤ r0

(
ρ(|t − c

(0)
1 |) − ρ(|t − c

(0)
2 |)

)
+ r1

(
ρ(|t − c

(1)
1 |) − ρ(|t − c

(1)
2 |)

)
+ 2cρ/K. (B.3)

It is easy to see that for x = t, either qj(x) = qleft(x) (resp. qj(x) = qright(x)), or the

bound (B.2) (resp. (B.3)) holds. Now let qj+1 = qleft if the bound (B.2) is smaller than

(B.3), and let qj+1 = qright otherwise. Then, as the first two terms in (B.2) and (B.3) are

the negative of each other,

dqj+1
(x) − dqj

(x) ≤ 2cρ/K. (B.4)

for all x ∈ (j/K, (j + 1)/K].

If one of the side quantizers of qj has at least one cell that is contained in the interval

(j/K, (j + 1)/K], then in qj+1, all such cells are merged and enlarged into the larger cell

(j/K, (j + 1)/K] with reconstruction point (j + 1/2)/K (consequently, the neighboring

cells may shrink). If the other side quantizer has no threshold in (j/K, (j + 1)/K], then

no other modification is necessary. If it has exactly one threshold, then similarly to (B.2)

and (B.3), that threshold can be moved either to j/K or to (j + 1)/K. Finally, if the

other side quantizer also has at least two thresholds in the interval (j/K, (j +1)/K], then

merging all cells in this interval as for the other side quantizer results in a quantizer qj+1

for which (j/K, (j + 1)/K] is a cell of both side quantizers, and consequently, it is also a

cell of the central quantizer. In all cases, the bound (B.4) holds for the distortion of qj+1.

The last case to be considered is when both side quantizers have exactly one threshold

in (j/K, (j +1)/K]. Let t1 ≤ t2 denote these thresholds. If t1 = t2 and there is no central
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partition cell {t1}, then, similarly to (B.2) and (B.3), it can be shown that replacing the

common threshold of the side quantizers with j/K or (j + 1)/K results in a maximum

increase in distortion of 3cρ/K. Note that the factor 2 in (B.4) is replaced with 3 because

here all three quantizers (both side quantizers and the central quantizer) change.2 If

t1 < t2, then similarly to (B.4), it can be shown that t1 can be replaced with j/K or t2

at the price of an increase of at most 2cρ/K in the pointwise distortion (such that the

new central quantizer has no one-point cell {t2}). Then, the threshold t2 (which may be

a single or a common threshold) can be quantized into Ĉ(K) as before on the price of

further increasing the pointwise distortion by at most 3cρ/K. Finally, if t1 = t2 and the

central partition has a one-point cell {t1}, then similarly to the case t1 < t2, first we can

replace this cell by the empty cell or by (j/K, t2], and then proceed as in the previous

case. Based on the above, we have, for all x ∈ (j/K, (j + 1)/K],

dqj+1
(x) − dqj

(x) ≤ 5cρ/K. (B.5)

From equations (B.1), (B.4), and (B.5) we can see that for all x ∈ [0, 1],

dqK
(x) − dq(x) ≤ 5cρ/K.

Now let q′ ∈ QMD
K be a quantizer obtained from qK by replacing its code points by

the corresponding closest points in the set Ĉ(K) that also belong to the corresponding

quantization cells. Then

dq′(x) − dq(x) ≤ 5cρ

K
+

cρ

K
=

6cρ

K

for all x ∈ [0, 1], as desired. �
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