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ON COMBINATORIAL TESTING PROBLEMS1
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McGill University, INRIA, McGill University and ICREA
and Pompeu Fabra University

We study a class of hypothesis testing problems in which, upon observ-
ing the realization of an n-dimensional Gaussian vector, one has to decide
whether the vector was drawn from a standard normal distribution or, alter-
natively, whether there is a subset of the components belonging to a certain
given class of sets whose elements have been “contaminated,” that is, have a
mean different from zero. We establish some general conditions under which
testing is possible and others under which testing is hopeless with a small
risk. The combinatorial and geometric structure of the class of sets is shown
to play a crucial role. The bounds are illustrated on various examples.

1. Introduction. In this paper, we study the following hypothesis testing
problem introduced by Arias-Castro et al. (2008). One observes an n-dimensional
vector X = (X1, . . . ,Xn). The null hypothesis H0 is that the components of X are
independent and identically distributed (i.i.d.) standard normal random variables.
We denote the probability measure and expectation under H0 by P0 and E0, re-
spectively.

To describe the alternative hypothesis H1, consider a class C = {S1, . . . , SN } of
N sets of indices such that Sk ⊂ {1, . . . , n} for all k = 1, . . . ,N . Under H1, there
exists an S ∈ C such that

Xi has distribution
{N (0,1), if i /∈ S,

N (μ,1), if i ∈ S,

where μ > 0 is a positive parameter. The components of X are independent under
H1 as well. The probability measure of X defined this way by an S ∈ C is denoted
by PS . Similarly, we write ES for the expectation with respect to PS . Throughout,
we will assume that every S ∈ C has the same cardinality |S| = K .
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A test is a binary-valued function f : Rn → {0,1}. If f (X) = 0 then we say that
the test accepts the null hypothesis, otherwise H0 is rejected. One would like to
design tests such that H0 is accepted with a large probability when X is distributed
according to P0 and it is rejected when the distribution of X is PS for some S ∈ C .
Following Arias-Castro et al. (2008), we consider the risk of a test f measured by

R(f ) = P0{f (X) = 1} + 1

N

∑
S∈C

PS{f (X) = 0}.(1.1)

This measure of risk corresponds to the view that, under the alternative hypothesis,
a set S ⊂ C is selected uniformly at random and the components of X belonging
to S have mean μ. In the sequel, we refer to the first and second terms on the
right-hand side of (1.1) as the type I and type II errors, respectively.

We are interested in determining, or at least estimating the value of μ under
which the risk can be made small. Our aim is to understand the order of magnitude,
when n is large, as a function of n, K , and the structure of C , of the value of the
smallest μ for which risk can be made small. The value of μ for which the risk of
the best possible test equals 1/2 is called critical.

Typically, the n components of X represent weights over the n edges of a given
graph G and each S ∈ C is a subgraph of G. When Xi ∼ N (μ,1) then the edge
i is “contaminated” and we wish to test whether there is a subgraph in C that is
entirely contaminated.

In Arias-Castro et al. (2008), two examples were studied in detail. In one case,
C contains all paths between two given vertices in a two-dimensional grid and in
the other C is the set of paths from root to a leaf in a complete binary tree. In both
cases, the order of magnitude of the critical value of μ was determined. Arias-
Castro, Candès and Durand (2009) investigate another class of examples in which
elements of C correspond to clusters in a regular grid. Both Arias-Castro et al.
(2008) and Arias-Castro, Candès and Durand (2009) describe numerous practical
applications of problems of this type.

Some other interesting examples are when C is:

• the set of all subsets S ⊂ {1, . . . , n} of size K ;
• the set of all cliques of a given size in a complete graph;
• the set of all bicliques (i.e., complete bipartite subgraphs) of a given size in a

complete bipartite graph;
• the set of all spanning trees of a complete graph;
• the set of all perfect matchings in a complete bipartite graph;
• the set of all sub-cubes of a given size of a binary hypercube.

The first of these examples, which lacks any combinatorial structure, has been
studied in the rich literature on multiple testing; see, for example, Ingster (1999),
Baraud (2002), Donoho and Jin (2004) and the references therein.

As pointed out in Arias-Castro et al. (2008), regardless of what C is, one may
determine explicitly the test f ∗ minimizing the risk. It follows from basic results
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of binary classification that for a given vector x = (x1, . . . , xn), f ∗(x) = 1, if and
only if the ratio of the likelihoods of x under (1/N)

∑
S∈C PS and P0 exceeds 1.

Writing

φ0(x) = (2π)−n/2e−∑n
i=1 x2

i /2

and

φS(x) = (2π)−n/2e−∑
i∈S(xi−μ)2/2−∑i /∈S x2

i /2

for the probability densities of P0 and PS , respectively, the likelihood ratio at x is

L(x) = 1/N
∑

S∈C φS(x)

φ0(x)
= 1

N

∑
S∈C

eμxS−Kμ2/2,

where xS =∑
i∈S xi . Thus, the optimal test is given by

f ∗(x) = 1{L(x)>1} =
⎧⎪⎨⎪⎩0, if

1

N

∑
S∈C

eμxS−Kμ2/2 ≤ 1,

1, otherwise.

The risk of f ∗ (often called the Bayes risk) may then be written as

R∗ = R∗
C (μ) = R(f ∗) = 1 − 1

2
E0|L(X) − 1|

= 1 − 1

2

∫ ∣∣∣∣φ0(x) − 1

N

∑
S∈C

φS(x)

∣∣∣∣dx.

We are interested in the behavior of R∗ as a function of C and μ. Clearly, R∗ is
a monotone decreasing function of μ. (This fact is intuitively clear and can be
proved easily by differentiating R∗ with respect to μ.) For μ sufficiently large,
R∗ is close to zero while for very small values of μ, R∗ is near its maximum
value 1, indicating that testing is virtually impossible. Our aim is to understand
for what values of μ the transition occurs. This depends on the combinatorial and
geometric structure of the class C . We describe various general conditions in both
directions and illustrate them on examples.

REMARK (An alternative risk measure). Arias-Castro et al. (2008) also con-
sider the risk measure

R(f ) = P0{f (X) = 1} + max
S∈C

PS{f (X) = 0}.

Clearly, R(f ) ≥ R(f ) and when there is sufficient symmetry in f and C , we have
equality. However, there are significant differences between the two measures of
risk. The alternative measure R obviously satisfies the following monotonicity
property: for a class C and parameter μ > 0, let R∗

C (μ) denote the smallest achiev-
able risk. If A ⊂ C are two classes then for any μ, R∗

A(μ) ≤ R∗
C (μ). In contrast
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to this, the “Bayesian” risk measure R(f ) does not satisfy such a monotonicity
property as is shown in Section 5. In this paper, we focus on the risk measure
R(f ).

REMARK. Throughout the paper we assume, for simplicity, that each set S ∈ C
has the same cardinality K . We do this partly in order to avoid technicalities that
are not difficult but make the arguments less transparent. At the same time, in many
natural examples this condition is satisfied. If C may contain sets of different size
such that all sets have approximately the same number of elements, then all argu-
ments go through without essential changes. However, if C contains sets of very
different size then the picture may change because large sets become much easier
to detect and small sets can basically be ignored. Another approach to handle sets
of different size, adopted by Arias-Castro, Candès and Durand (2009), is to change
the model of the alternative hypothesis such that the level μ of contamination is
appropriately scaled depending on the size of the set S.

Plan of the paper. The paper is organized as follows. In Section 2, we briefly
discuss two suboptimal but simple and general testing rules (the maximum test and
the averaging test) that imply sufficient conditions for testability that turn out to
be useful in many examples.

In Section 3, a few general sufficient conditions are derived for the impossibility
of testing under symmetry assumptions for the class.

In Section 4, we work out several concrete examples, including the class of all
K-sets, the class of all cliques of a certain size in a complete graph, the class of
all perfect matchings in the complete bipartite graph and the class of all spanning
trees in a complete graph.

In Section 5, we show that, perhaps surprisingly, the optimal risk is not
monotone in the sense that larger classes may be significantly easier to test than
small ones, though monotonicity holds under certain symmetry conditions.

In the last two sections of the paper, we use techniques developed in the theory
of Gaussian processes to establish upper and lower bounds related to geometrical
properties of the class C . In Section 6, general lower bounds are derived in terms
of random subclasses and metric entropies of the class C . Finally, in Section 7 we
take a closer look at the type I error of the optimal test and prove an upper bound
that, in certain situations, is significantly tighter than the natural bound obtained
for a general-purpose maximum test.

2. Simple tests and upper bounds. As mentioned in the Introduction, the
test f ∗ minimizing the risk is explicitly determined. However, the performance
of this test is not always easy to analyze. Moreover, efficient computation of the
optimal test is often a nontrivial problem though efficient algorithms are available
in many interesting cases. (We discuss computational issues for the examples of
Section 4.) Because of these reasons, it is often useful to consider simpler, though
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suboptimal, tests. In this section, we briefly discuss two simplistic tests, a test
based on averaging and a test based on maxima. These are often easier to analyze
and help understand the behavior of the optimal test as well. In many cases, one of
these tests turn out to have a near-optimal performance.

A simple test based on averaging. Perhaps the simplest possible test is based
on the fact that the sum of the components of X is zero-mean normal under P0 and
has mean μK under the alternative hypothesis. Thus, it is natural to consider the
averaging test

f (x) = 1{∑n
i=1 Xi>μK/2}.

PROPOSITION 2.1. Let δ > 0. The risk of the averaging test f satisfies
R(f ) ≤ δ whenever

μ ≥
√

8n

K2 log
2

δ
.

PROOF. Observe that under P0, the statistic
∑n

i=1 Xi has normal N (0, n) dis-
tribution while for each S ∈ C , under PS , it is distributed as N (μK,n). Thus,
R(f ) ≤ 2e−(μK)2/(8n). �

A test based on maxima. Another natural test is based on the fact that un-
der the alternative hypothesis for some S ∈ C , XS =∑

i∈S Xi is normal (μK,K).
Consider the maximum test

f (x) = 1 if and only if max
S∈C

XS ≥ μK + E0 maxS∈C XS

2
.

The test statistic maxS∈C XS is often referred to as a scan statistic and has been
thoroughly studied for a wide range of applications; see Glaz, Naus and Wallen-
stein (2001). Here, we only need the following simple observation.

PROPOSITION 2.2. The risk of the maximum test f satisfies R(f ) ≤ δ when-
ever

μ ≥ E0 maxS∈C XS

K
+ 2

√
2

K
log

2

δ
.

In the analysis, it is convenient to use the following simple Gaussian concentra-
tion inequality; see Tsirelson, Ibragimov and Sudakov (1976).

LEMMA 2.1 (Tsirelson’s inequality). Let X = (X1, . . . ,Xn) be an vector of
n independent standard normal random variables. Let f : R

n → R denote a Lip-
schitz function with Lipschitz constant L (with respect to the Euclidean distance).
Then for all t > 0,

P{f (X) − Ef (X) ≥ t} ≤ e−t2/(2L2).
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PROOF OF PROPOSITION 2.2. Simply note that under the null hypothesis, for
each S ∈ C , XS is a zero-mean normally distributed random variable with variance
K = |S|. Since maxS∈C XS is a Lipschitz function of X with Lipschitz constant√

K , by Tsirelson’s inequality, for all t > 0,

P0

{
max
S∈C

XS ≥ E0 max
S∈C

XS + t
}

≤ e−t2/(2K).

On the other hand, under PS for a fixed S ∈ C ,

max
S′∈C

XS′ ≥ XS ∼ N (μK,K)

and therefore

PS

{
max
S∈C

XS ≤ μK − t
}

≤ e−t2/(2K),

which completes the proof. �

The maximum test is often easier to compute than the optimal test f ∗,
though maximization is not always possible in polynomial time. If the value of
E0 maxS∈C XS is not exactly known, one may replace it in the definition of f by
any upper bound and then the same upper bound will appear in the performance
bound.

Proposition 2.2 shows that the maximum test is guaranteed to work whenever μ

is at least E0 maxS∈C XS/K + const./
√

K . Thus, in order to better understand the
behavior of the maximum test (and thus obtain sufficient conditions for the optimal
test to have a low risk), one needs to understand the expected value of maxS∈C XS

(under P0). As the maximum of Gaussian processes have been studied extensively,
there are plenty of directly applicable results available for expected maxima. The
textbook of Talagrand (2005) is dedicated to this topic. Here, we only recall some
of the basic facts.

First, note that one always has E0 maxS∈C XS ≤ √
2K logN but sharper bounds

can be derived by chaining arguments; see Talagrand (2005) for an elegant and
advanced treatment. The classical chaining bound of Dudley (1978) works as fol-
lows. Introduce a metric on C by

d(S,T ) =
√

E0(XS − XT )2 =√
dH (S,T ), S, T ∈ C,

where dH (S,T ) =∑n
i=1 1{1{i∈S} �=1{i∈T }} denotes the Hamming distance. For t > 0,

let N(t) denote the t-covering number of C with respect to the metric d , that is,
the smallest number of open balls of radius t that cover C . By Dudley’s theorem,
there exists a numerical constant C such that

E0 max
S∈C

XS ≤ C

∫ diam(C)

0

√
logN(t) dt,

where diam(C) = maxS,T ∈C d(S,T ) denotes the diameter of the metric space C .
Note that since |S| = K for all S ∈ C , diam(C) ≤ √

2K . Dudley’s theorem is not
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optimal but it is relatively easy to use. Dudley’s theorem has been refined, based
on “majorizing measures,” or “generic chaining” which gives sharp bounds; see,
for example, Talagrand (2005).

REMARK (The VC dimension). In certain cases, it is convenient to further
bound Dudley’s inequality in terms of the VC dimension; see Vapnik and Chervo-
nenkis (1971). Recall that the VC dimension V (C) of C is the largest positive inte-
ger m such that there exists an m-element set {i1, . . . , im} ⊂ {1, . . . , n} such that for
all 2m subsets A ⊂ {i1, . . . , im} there exists an S ∈ C such that S ∩{i1, . . . , im} = A.
Haussler (1995) proved that the covering numbers of C may be bounded as

N(t) ≤ e · (V (C) + 1
)(2en

t2

)V (C)

,

so by Dudley’s bound,

E0 max
S∈C

XS ≤ C
√

V (C)K logn.

REMARK (Tests based on symmetrization). An interesting alternative to the
maximum test, proposed and investigated by Durot and Rozenholc (2006) and
Arlot, Blanchard and Roquain (2010a), is based on the idea that under the null
hypothesis the distribution of the vector X does not change if the sign of each
component is changed randomly, while under the alternative hypothesis the distri-
bution changes. In Durot and Rozenholc (2006) and Arlot, Blanchard and Roquain
(2010a), methods based on symmetrization and bootstrap are suggested and ana-
lyzed. Such tests are meaningful and interesting in the setup of the present paper
as well and it would be interesting to analyze their behavior.

3. Lower bounds. In this section, we investigate conditions under which the
risk of any test is large. We start with a simple universal bound that implies that
regardless of what the class C is, small risk cannot be achieved unless μ is sub-
stantially large compared to K−1/2.

A universal lower bound. An often convenient way of bounding the Bayes risk
R∗ is in terms of the Bhattacharyya measure of affinity [Bhattacharyya (1946)]

ρ = ρC (μ) = 1
2E0

√
L(X).

It is well known [see, e.g., Devroye, Györfi and Lugosi (1996), Theorem 3.1] that

1 −
√

1 − 4ρ2 ≤ R∗ ≤ 2ρ.

Thus, 2ρ essentially behaves as the Bayes error in the sense that R∗ is near 1 when
2ρ is near 1, and is small when 2ρ is small. Observe that, by Jensen’s inequality,

2ρ = E0
√

L(X) =
∫ √√√√ 1

N

∑
S∈C

φS(x)φ0(x) dx ≥ 1

N

∑
S∈C

∫ √
φS(x)φ0(x) dx.
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Straightforward calculation shows that for any S ∈ C ,∫ √
φS(x)φ0(x) dx = e−μ2K/8

and therefore we have the following.

PROPOSITION 3.1. For all classes C , R∗ ≥ 1/2 whenever μ ≤ √
(4/K) ×√

log(4/3).

This shows that no matter what the class C is, detection is hopeless if μ is of the
order of K−1/2. This classical fact goes back to Le Cam (1970).

A lower bound based on overlapping pairs. The next lemma is due to Arias-
Castro et al. (2008). For completeness, we recall their proof.

PROPOSITION 3.2. Let S and S′ be drawn independently, uniformly, at ran-
dom from C and let Z = |S ∩ S′|. Then

R∗ ≥ 1 − 1
2

√
Eeμ2Z − 1.

PROOF. As noted above, by the Cauchy–Schwarz inequality,

R∗ = 1 − 1
2E0|L(X) − 1| ≥ 1 − 1

2

√
E0|L(X) − 1|2.

Since E0L(X) = 1,

E0|L(X) − 1|2 = Var0(L(X)) = E0[L(X)2] − 1.

However, by definition L(X) = 1
N

∑
S∈C eμXS−Kμ2/2, so we have

E0[L(X)2] = 1

N2

∑
S,S′∈C

e−Kμ2
E0e

μ(XS+XS′ ).

But

E0e
μ(XS+XS′ ) = E0[eμ

∑
i∈S\S′ Xi e

μ
∑

i∈S′\S Xi e2μ
∑

i∈S∩S′ Xi ]
= (E0e

μX)2(K−|S∩S′|)(E0e
2μX)|S∩S′|

= eμ2(K−|S∩S′|)+2μ2|S∩S′|,
and the statement follows. �

The beauty of this proposition is that it reduces the problem to studying a purely
combinatorial quantity. By deriving upper bounds for the moment generating func-
tion of the overlap |S ∩ S′| between two elements of C drawn independently and
uniformly at random, one obtains lower bounds for the critical value of μ. This
simple proposition turns out to be surprisingly powerful as it will be illustrated in
various applications below.
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A lower bound for symmetric classes. We begin by deriving some simple con-
sequences of Proposition 3.2 under some general symmetry conditions on the
class C . The following proposition shows that the universal bound of Proposi-
tion 3.1 can be improved by a factor of

√
log(1 + n/K) for all sufficiently sym-

metric classes.

PROPOSITION 3.3. Let δ ∈ (0,1). Assume that C satisfies the following con-
ditions of symmetry. Let S,S′ be drawn independently and uniformly at random
from C . Assume that: (i) the conditional distribution of Z = |S ∩ S′| given S′ is
identical for all values of S′; (ii) for any fixed S0 ∈ C and i ∈ S0, P{i ∈ S} = K/n.
Then R∗ ≥ δ for all μ with

μ ≤
√

1

K
log

(
1 + 4n(1 − δ)2

K

)
.

PROOF. We apply Proposition 3.2. By the first symmetry assumption, it suf-
fices to derive a suitable upper bound for E[eμ2Z] = E[eμ2Z|S′] for an arbitrary
S′ ∈ C . After a possible relabeling, we may assume that S′ = {1, . . . ,K} so we can
write Z =∑K

i=1 1{i∈S}. By Hölder’s inequality,

E[eμ2Z] = E

[
K∏

i=1

eμ21{i∈S}
]

≤
K∏

i=1

(E[eKμ21{i∈S} ])1/K

= E[eKμ21{1∈S} ] [by assumption (ii)]

= (eμ2K − 1)
K

n
+ 1.

Proposition 3.2 now implies the statement. �

Surprisingly, the lower bound of Proposition 3.3 is close to optimal in many
cases. This is true, in particular when the class C is “small,” made precise in the
following statement.

COROLLARY 3.1. Assume that C is symmetric in the sense of Proposition 3.3
and that it contains at most nα elements where α > 0. Then R∗ ≥ 1/2 for all μ

with

μ ≤
√

1

K
log

(
1 + n

K

)
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and R∗ ≤ 1/2 for all μ with

μ ≥
√

2α

K
logn +

√
8 log 4

K
.

PROOF. The first statement follows from Proposition 3.3 while the second
from Proposition 2.2 and the fact that E0 maxS∈C XS ≤ √

2K log |C|. �

The proposition above shows that for any small and sufficiently symmetric class,
the critical value of μ is of the order of

√
(logn)/K , at least if K ≤ nβ for some

β ∈ (0,1). Later, we will see examples of “large” classes for which Proposition 3.3
also gives a bound of the correct order of magnitude.

Negative association. The bound of Proposition 3.3 may be improved sig-
nificantly under an additional condition of negative association that is satisfied
in several interesting examples (see Section 4 below). Recall that a collection
Y1, . . . , Yn of random variables is negatively associated if for any pair of disjoint
sets I, J ⊂ {1, . . . , n} and (coordinate-wise) nondecreasing functions f and g,

E[f (Yi, i ∈ I )g(Yj , j ∈ J )] ≤ E[f (Yi, i ∈ I )]E[g(Yj , j ∈ J )].
PROPOSITION 3.4. Let δ ∈ (0,1) and assume that the class C satisfies

the conditions of Proposition 3.3. Suppose that the labels are such that S′ =
{1,2, . . . ,K} ∈ C . Let S be a randomly chosen element of C . If the random vari-
ables 1{1∈S}, . . . ,1{K∈S} are negatively associated, then R∗ ≥ δ for all μ with

μ ≤
√

log
(

1 + n log(1 + 4(1 − δ)2)

K2

)
.

PROOF. We proceed similarly to the proof of Proposition 3.3. We have

E[eμ2Z] = E

[
K∏

i=1

eμ21{i∈S}
]

≤
K∏

i=1

E[eμ21{i∈S} ] (by negative association)

=
(
(eμ2 − 1)

K

n
+ 1

)K

.

Proposition 3.2 and the upper bound above imply that R∗ at least δ for all μ such
that

μ ≤
√

log
(

1 + n((1 + 4(1 − δ)2)1/K − 1)

K

)
.

The result follows by using ey ≥ 1 + y with y = K−1 log(1 + 4(1 − δ)2). �
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4. Examples. In this section, we consider various concrete examples and
work out upper and lower bounds for the critical range of μ.

4.1. Disjoint sets. We start with the simplest possible case, that is, when all
S ∈ C are disjoint (and therefore KN ≤ n). Fix δ ∈ (0,1). Then, under P0, the XS

are independent normal (0,K) random variables and the bound E0 maxS∈C XS ≤√
2K logN is close to being tight. By applying the maximum test f , we see that

R∗ ≤ R(f ) ≤ δ whenever

μ ≥
√

2 logN

K
+ 2

√
2 log(2/δ)

K
.

To see that this bound gives the correct order of magnitude, we may simply apply
Proposition 3.2. Here Z may take two values:

Z = K with probability 1/N and Z = 0 with probability 1 − 1/N .

Thus,

Eeμ2Z − 1 = 1

N
(eμ2K − 1) ≤ 1

N
eμ2K

and therefore R∗ ≥ δ whenever

μ ≤
√

log(4N(1 − δ)2)

K
.

So in this case the critical transition occurs when μ is of the order of
√

(1/K) logN .
In Section 6, we use this simple lower bound to establish lower bounds for general
classes C of sets. Note that in this simple case one may directly analyze the risk of
the optimal test and obtain sharper bounds. In particular, the leading constant in the
lower bound is suboptimal. However, in this paper our aim is to understand some
general phenomena and we focus on orders of magnitude rather than on nailing
down sharp constants.

REMARK (Multiple hypothesis testing). Taking S = {{1}, . . . , {n}}, K = 1,
and N = n ≥ 2 in the above example, we obtain a connection with multiple hypoth-
esis testing. In the latter, one tests “mi = 0” against “mi = μ” for every 1 ≤ i ≤ n,
and traditionally uses as test statistics Xi,1 ≤ i ≤ n, to build a multiple testing
procedure (often rejecting all the hypotheses corresponding to large Xi), see, for
instance, Romano and Wolf (2005), Arlot, Blanchard and Roquain (2010b). Such
a procedure will reject the global null hypothesis “∀i ∈ S,mi = 0” if at least one
of the alternatives “mi = μ” is preferred. The main difference with the approach
taken in this paper concerns the error rate. A multiple testing procedure is gener-
ally calibrated to control measures of the type I error like the family wise error
rate or the false discovery rate, while the tests defined in this paper are designed
to control the entire risk. Finally, in this example, the subsets are disjoint which is
the traditional framework in multiple testing.
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4.2. K-sets. Consider the example when C contains all sets S ⊂ {1, . . . , n} of
size K . Thus, N = (n

K

)
. As mentioned in the Introduction, this problem is very

well understood as sharp bounds and sophisticated tests are available; see, for ex-
ample, Ingster (1999), Baraud (2002), Donoho and Jin (2004). We include it for
illustration purposes only and we warn the reader that the obtained bounds are not
sharpest possible.

Let δ ∈ (0,1). It is easy to see that the assumptions of Proposition 3.4 are satis-
fied [this follows, e.g., from Proposition 11 of Dubdashi and Ranjan (1998)] and
therefore R∗ ≥ δ for all

μ ≤
√

log
(

1 + n log(1 + 4(1 − δ)2)

K2

)
.

This simple bound turns out to have the correct order of magnitude both when

n � K2 [in which case it is of the order of
√

log(n/K2)] and when n � K2 (when

it is of the order of
√

n/K2).
This may be seen by considering the two simple tests described in Section 2 in

the two different regimes. Since

E0 maxS∈C XS

K
≤
√

2K log
(n
K

)
K

≤
√

2 log
(

ne

K

)
,

we see from Proposition 2.2 that when K = O(n(1−ε)/2) for some fixed ε > 0,
then the threshold value is of the order of

√
logn. On the other hand, when K2/n

is bounded away from zero, then the lower bound implied by Proposition 3.4 above

is of the order
√

n/K2 and the averaging test provides a matching upper bound by
Proposition 2.1.

Note that in this example the maximum test is easy to compute since it suffices
to find the K largest values among X1, . . . ,Xn.

4.3. Perfect matchings. Let C be the set of all perfect matchings of the com-
plete bipartite graph Km,m. Thus, we have n = m2 edges and N = m!, and K = m.
By Proposition 2.1 (i.e., the averaging test), for δ ∈ (0,1), one has R(f ) ≤ δ when-
ever μ ≥ √

8 log(2/δ).
To show that this bound has the right order of magnitude, we may apply Propo-

sition 3.4. The symmetry assumptions hold obviously and the negative association
property follows from the fact that Z = |S ∩ S′| has the same distribution as the
number of fixed points in a random permutation. The proposition implies that for
all m, R∗ ≥ δ whenever

μ ≤
√

log
(
1 + log

(
1 + 4(1 − δ)2

))
.



COMBINATORIAL TESTING PROBLEMS 3075

Note that in this case the optimal test f ∗ can be approximated in a computationally
efficient way. To this end, observe that computing

1

N

∑
S∈C

eμXS = 1

m!
∑
σ

m∏
j=1

eμX(j,σ (j))

(where the summation is over all permutations of {1, . . . ,m}) is equivalent to com-
puting the permanent of an m × m matrix with nonnegative elements. By a deep
result of Jerrum, Sinclair and Vigoda (2004), this may be done by a polynomial-
time randomized approximation.

4.4. Stars. Consider a network of m nodes in which each pair of nodes inter-
acts. One wishes to test if there is a corrupted node in the network whose interac-
tions slightly differ from the rest. This situation may be modeled by considering
the class of stars.

A star is a subgraph of the complete graph Km which contains all K = m − 1
edges containing a fixed vertex (see Figure 1). Consider the set C of all stars. In
this setting, n = (m

2

)
and N = m.

In this case, we are in the situation of Corollary 3.1 and Propositions 3.3 and 2.2
imply that if C is the class of all stars in Km then for any ε > 0,

lim
m→∞R∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if μ ≥ (√

2 + ε
)√ logm

m
,

1, if μ ≤ (1 − ε)

√
logm

m
.

4.5. Spanning trees. Consider again a network of m nodes in which each pair
of nodes interact. One may wish to test if there exists a corrupted connected sub-
graph containing each node. This leads us to considering the class of all spanning
trees as follows.

Let 1,2, . . . , n = (m
2

)
represent the edges of the complete graph Km and let C be

the set of all spanning trees of Km. Thus, we have N = mm−2 spanning trees and
K = m − 1. [See, e.g., Moon (1970).] By Proposition 2.1, the averaging test has
risk R(f ) ≤ δ whenever μ ≥ √

4 log(2/δ).

FIG. 1. A star [Vonnegut (1973)].
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This bound is indeed of the right order. To see this, we may start with Proposi-
tion 3.2. There are (at least) two ways of proceeding. One is based on negative
association. Even though Proposition 3.4 is not applicable because of the lack
of symmetry in C , negative association still holds. In particular, by a result of
Feder and Mihail (1992) [see also Grimmett and Winkler (2004) and Benjamini
et al. (2001)], if S is a random uniform spanning tree of Km, then the indicators
1{1∈S}, . . . ,1{n∈S} are negatively associated. This means that, if S and S′ are inde-
pendent uniform spanning trees and Z = |S ∩ S′|,

E[eμ2Z] = EE
[
eμ2|S∩S′||S′]

= EE[eμ2∑
i∈S′ 1{i∈S} |S′]

≤ E

∏
i∈S′

E[eμ21{i∈S} |S′] (by negative association)

≤ E

∏
i∈S′

(
2

m
eμ2 + 1

)

=
(

2

m
eμ2 + 1

)m−1

≤ exp(2eμ2
).

This, together with Proposition 3.2 shows that for any δ ∈ (0,1), R∗ ≥ δ whenever

μ ≤
√

log
(
1 + 1

2 log
(
1 + 4(1 − δ)2

))
.

We note here that the same bound can be proved by a completely different way
that does not use negative association. The key is to note that we may generate
the two random spanning trees based on 2(m − 1) independent random variables
X1, . . . ,X2(m−1) taking values in {1, . . . ,m − 1} as in Aldous (1990) [see also
Broder (1989)]. The key property we need is that if Zi denotes the number of
common edges in the two spanning trees when Xi is replaced by an independent
copy X′

i while keeping all other Xj ’s fixed, then

2(m−1)∑
i=1

(Z − Zi)+ ≤ Z

(the details are omitted). For random variables satisfying this last property, an
inequality of Boucheron, Lugosi and Massart (2000) implies the sub-Poissonian
bound

E exp(μ2Z) ≤ exp
(
EZ(eμ2 − 1)

)
.

Clearly, EZ = 2(n−1)/n ≤ 2, so essentially the same bound as above is obtained.
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As the bounds above show, the computationally trivial average test has a close-
to-optimal performance. In spite of this, one may wish to use the optimal test f ∗.
The “partition function” (1/N)

∑
S∈C eμXS may be computed by an algorithm of

Propp and Wilson (1998), who introduced a random sampling algorithm that, given
a graph with nonnegative weights wi over the edges, samples a random spanning
tree from a distribution such that the probability of any spanning tree S is propor-
tional to

∏
i∈S wi . The expected running time of the algorithm is bounded by the

cover time of an associated Markov chain that is defined as a random walk over the
graph in which the transition probabilities are proportional to the edge weights. If
μ is of the order of a constant (as in the critical range) then the cover time is easily
shown to be polynomial (with high probability) as all edge weights wi = eμ2Xi are
roughly of the same order both under the null and under the alternative hypotheses.

4.6. Cliques. Another natural application is the class of all cliques of a cer-
tain size in a complete graph. More precisely, the random variables X1, . . . ,Xn

are associated with the edges of the complete graph Km such that
(m

2

)= n and let

C contain all cliques of size k. Thus, K = (k
2

)
and N = (m

k

)
. This case is more dif-

ficult than the class of K-sets discussed above because negative association does
not hold anymore. (This may be easily seen by considering the indicator vari-
ables of two adjacent edges both being in the randomly chosen clique.) Also, com-
putationally the class of cliques is much more complex. A related, well-studied
model starts with the subgraph Km containing each edge independently with prob-
ability 1/2, as null hypothesis. The alternative hypothesis is the same as the null
hypothesis, except that there is a clique of size k on which each edge is indepen-
dently present with probability p > 1/2. This is called the “hidden clique” problem
(usually only the special case p = 1 is considered). Despite substantial interest in
the hidden clique problem, polynomial time detection algorithms are only known
when k = 
(

√
n) [Alon, Krivelevich and Sudakov (1999), Feige and Krauthgamer

(2000)]. We may obtain the hidden clique model from our model by thresholding
at weight zero (retaining only edges whose normal random variable is positive),
and so our model is easier for testing than the hidden clique model. However, it
seems likely that designing an efficient test in the normal setting will be as difficult
as it has proved for hidden cliques. It would be of interest to construct near-optimal
tests that are computable in polynomial time for larger values of k.

We have the following bounds for the performance of the optimal test. It shows
that when k is a most of the order of

√
m, the critical value of μ is of the order of√

(1/k) log(m/k). The proof below may be adjusted to handle larger values of k

as well but we prefer to keep the calculations more transparent.

PROPOSITION 4.1. Let C represent the class of all N = (m
k

)
cliques of a com-

plete graph Km and assume that k ≤ √
m(log 2)/e. Then:
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(i) for all δ ∈ (0,1), R∗ ≤ δ whenever

μ ≥ 2

√
1

k − 1
log

(
me

k

)
+ 4

√
log(2/δ)

k(k − 1)
;

(ii) R∗ ≥ 1/2 whenever

μ ≤
√

1

k
log

(
m

2k

)
.

PROOF. (i) follows simply by a straightforward application of Proposition 2.2
and the bound E0 maxS∈C XS ≤ √

2K logN .
To prove the lower bound (ii), by Proposition 3.2, it suffices to show that if

S,S′ are k-cliques drawn randomly and independently from C and Z denotes the
number of edges in the intersection of S and S′, then E[exp(μ2Z)] ≤ 2 for the
indicated values of μ.

Because of symmetry, E[exp(μ2Z)] = E[exp(μ2Z)|S′] for all S′ and therefore
we might as well fix an arbitrary clique S′. If Y denotes the number of vertices in
the clique S∩S′, then Z = (Y

2

)
. Moreover, the distribution of Y is hypergeometrical

with parameters m and k. If B is a binomial random variable with parameters k and
k/m, then since exp(μ2x2/2) is a convex function of x, an inequality of Hoeffding
(1963) implies that

E[eμ2Z] = E[eμ2Y 2/2] ≤ E[eμ2B2/2].
Thus, it remains to derive an appropriate upper bound for the moment generating
function of the squared binomial. To this end, let c > 1 be a parameter whose value
will be specified later. Using

B2 ≤ B

(
k1{B>ck2/m} + c

k2

m

)
and the Cauchy–Schwarz inequality, it suffices to show that

E

[
exp

(
μ2c

k2

m
B

)]
· E
[
exp

(
μ2kB1{B>ck2/m}

)]≤ 4.(4.1)

We show that, if μ satisfies the condition of (ii), for an appropriate choice of c,
both terms on the left-hand side are at most 2.

The first term on the left-hand side of (4.1) is

E

[
exp

(
μ2c

k2

m
B

)]
=
(

1 + k

m

(
exp

(
μ2c

k2

m

)
− 1

))k

,

which is at most 2 if and only if

k

m

(
exp

(
μ2c

k2

m

)
− 1

)
≤ 21/k − 1.
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Since 21/k − 1 ≥ (log 2)/k, this is implied by

μ ≤
√

m

ck2 log
(

1 + m log 2

k2

)
.

To bound the second term on the left-hand side of (4.1), note that

E
[
exp

(
μ2kB1{B>ck2/m}

)]≤ 1 + E
[
1{B>ck2/m} exp(μ2kB)

]
≤ 1 +

(
P

{
B > c

k2

m

})1/2

(E[exp(μ2kB)])1/2,

by the Cauchy–Schwarz inequality, so it suffices to show that

P

{
B > c

k2

m

}
· E[exp(μ2kB)] ≤ 1.

Denoting h(x) = (1 + x) log(1 + x) − x, Chernoff’s bound implies

P

{
B > c

k2

m

}
≤ exp

(
−k2

m
h(c − 1)

)
.

On the other hand,

E[exp(μ2kB)] =
(

1 + k

m
exp(μ2k)

)k

,

and therefore the second term on the left-hand side of (4.1) is at most 2 whenever

1 + k

m
exp(μ2k) ≤ exp

(
k

m
h(c − 1)

)
.

Using exp( k
m

h(c − 1)) ≥ 1 + k
m

h(c − 1), we obtain the sufficient condition

μ ≤
√

1

k
logh(c − 1).

Summarizing, we have shown that R∗ ≥ 1/2 for all μ satisfying

μ ≤ 2 · min

(√
1

k
logh(c − 1),

√
m

ck2 log
(

1 + m log 2

k2

))
.

Choosing

c = m

k

log(m/k)

log(m log 2/k2)

[which is greater than 1 for k ≤ √
m(log 2)/e], the second term on the right-hand

side is at most
√

(1/k) log(m/k). Now observe that since h(c−1) = c log c−c+1
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is convex, for any a > 0, h(c − 1) ≥ c loga − a + 1. Choosing a = log(m/k)

log(m log 2/k2)
,

the first term is at least√
1

k
log

(
m

k
− log(m/k)

log(m log 2/k2)

)
≥
√

1

k
log

(
m

2k

)
,

where we used the condition that m log 2/k2 ≥ e and that x ≥ 2 logx for all x > 0.
�

REMARK (A related problem). A closely related problem arising in the ex-
ploratory analysis of microarray data [see Shabalin et al. (2009)] is when each
member of C represents the K edges of a

√
K × √

K biclique of the complete bi-
partite graph Km,m where m = √

n. (A biclique is a complete bipartite subgraph of
Km,m.) The analysis and the bounds are completely analogous to the one worked
out above, the details are omitted.

5. On the monotonicity of the risk. Intuitively, one would expect that the
testing problem becomes harder as the class C gets larger. More precisely, one may
expect that if A ⊂ C are two classes of subsets of {1, . . . , n}, then R∗

A(μ) ≤ R∗
C (μ)

holds for all μ. The purpose of this section is to show that this intuition is wrong in
quite a strong sense as not only such general monotonicity property does not hold
for the risk, but there are classes A ⊂ C for which R∗

A(μ) is arbitrary close to 1
and R∗

C (μ) is arbitrary close to 0 for the same value of μ.
However, monotonicity does hold if the class C is sufficiently symmetric. Call

a class C symmetric if for the optimal test

f ∗
C (x) = 1{(1/N)

∑
S∈C exp(μ

∑
i∈S xi )≥exp(Kμ2/2)},

the value of PT {f ∗
C (X) = 0} is the same for all T ∈ C . Note that several of the ex-

amples discussed in Section 4 satisfy the symmetry assumption, such as the classes
of K-sets, stars, perfect matchings, and cliques. However, the class of spanning
trees is not symmetric in the required sense.

THEOREM 5.1. Let C be a symmetric class of subsets of {1, . . . , n}. If A is an
arbitrary subclass of C , then for all μ > 0, R∗

A(μ) ≤ R∗
C (μ).

PROOF. In this proof, we fix the value of μ > 0 and suppress it in the notation.
Recall the definition of the alternative risk measure

RC (f ) = P0{f (X) = 1} + max
S∈C

PS{f (X) = 0},
which is to be contrasted with our main risk measure

RC (f ) = P0{f (X) = 1} + 1

N

∑
S∈C

PS{f (X) = 0}.
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The risk R is obviously monotone in the sense that if A ⊂ C then for every f ,
RA(f ) ≤ RC (f ). Let f ∗

C and f ∗
C denote the optimal tests with respect to both

measures of risk.
First, observe that if C is symmetric, then RC (f ∗

C ) = RC (f ∗
C ). But since

RC (f ) ≤ RC (f ) for every f , we have

RC (f ∗
C ) ≤ RC (f ∗

C ) = RC (f ∗
C ) ≤ RC (f ∗

C ) ≤ RC (f ∗
C ).

This means that all inequalities are equalities and, in particular, f ∗
C = f ∗

C .
Now if A is an arbitrary subclass of C , then

R∗
C = RC (f ∗

C ) = RC (f ∗
C ) ≥ RA(f ∗

C ) ≥ RA(f ∗
C ) ≥ RA(f ∗

A) = R∗
A,

which completes the proof. �

THEOREM 5.2. For every ε ∈ (0,1) there exist n, μ, and classes A ⊂ C ⊂
{1, . . . , n} such that R∗

A(μ) ≥ 1 − ε and R∗
C (μ) ≤ 2ε.

PROOF. We work with L1 distances. For any class L, denote φL(x) = 1
N

×∑
S∈L φS(x). Recall that

R∗
L(μ) = 1 − 1

2

∫
|φ0(x) − φL(x)|dx.

Given ε, we fix an integer K = K(ε) large enough that K + 1 ≥ 1/ε and that√
log(4(K + 1)ε2)

K + 1
≥
√

8

K
log

(
2

ε

)
,

and let n = n(ε) = (K + 1)2. We let A consist of K + 1 disjoint subsets of
{1, . . . , n}, each of size K +1. We let B consist of all sets of the form {1, . . . ,K, i},
where i ranges from K +1 to n, and assume A has been chosen so that A ∩ B = ∅.
We then let C = A ∪ B. We take

μ =
√

log(4(K + 1)ε2)

K + 1
,

so that, as seen in Section 4.1, we have R∗
A(μ) ≥ 1 − ε. We will require an upper

bound on R∗
B(μ), which we obtain by considering the averaging test on variables

1, . . . ,K ,

f (x) = 1{∑K
i=1 xi≥(μK)/2}.

Just as in Proposition 2.1, we have R(f ) ≤ ε whenever μ ≥
√

8
K

log(2
ε
), which is

indeed the case by our choices of μ and K . It follows that R∗
B(μ) ≤ ε. We remark

that ∫
|φ − φA| = 2 − 2R∗

A(μ) ≤ 2ε.
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We let M = |B| = (K + 1)2 −K ; then N = |C| = M +K + 1 = (K + 1)2 + 1, and
note ∫

|φ − φC | =
∫ ∣∣∣∣φ − (K + 1)φA + MφB

N

∣∣∣∣
=
∫ ∣∣∣∣(K + 1)(φ − φA) + M(φ − φB)

N

∣∣∣∣
≥ M

N

∫
|φ − φB| − (K + 1)

N

∫
|φ − φA|

≥ (1 − ε)

∫
|φ − φB| − 2ε2

= (1 − ε)
(
2 − 2R∗

B(μ)
)− 2ε2

≥ 2 − 4ε.

Thus, R∗
C (μ) ≤ 2ε. �

Observe that nonmonotonicity of the Bhattacharyya affinity also follows from
the same argument. To this end, we may express ρC (μ) = 1

2

∫ √
φ0(x)φS(x) dx in

function of the Hellinger distance

H(φ0, φC) =
√∫ (√

φ0(x) −
√

φC (x)
)2

dx

as ρC (x) = 1
2 − 1

4H(φ0, φC )2. Recalling [see, e.g., Devroye and Györfi (1985),
page 225] that

H(φ0, φC )2 ≤
∫

|φ0(x) − φC (x)| ≤ 2H(φ0, φC ),

we see that the same example as in the proof above, for n large enough, shows the
nonmonotonicity of the Bhattacharyya affinity as well.

6. Lower bounds on based random subclasses and metric entropy. In this
section, we derive lower bounds for the Bayes risk R∗ = R∗

C (μ). The bounds are
in terms of some geometric features of the class C . Again, we treat C as a metric
space equipped with the canonical distance d(S,T ) = √

E0(XS − XT )2 [i.e., the
square root of the Hamming distance dH (S,T )].

For an integer M ≤ N , we define a real-valued parameter tC (M) > 0 of the class
C as follows. Let A ⊂ C be obtained by choosing M elements of C at random, with-
out replacement. Let the random variable τ denote the smallest distance between
elements of A and let tC (M) be a median of τ .

THEOREM 6.1. Let M ≤ N be an integer. Then for any class C ,

R∗
C ≥ 1/4,
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whenever

μ ≤ min

(√
log(M/16)

K
,

8 log(
√

3/8)√
K − tC (M)2/2

)
.

To interpret the statement of the theorem, note that

K − τ 2/2 = max
S,T ∈A
S �=T

|S ∩ T |

is the largest overlap between any pair of elements of A. Thus, just like in Proposi-
tion 3.2, the distribution of the overlap between random elements of C plays a key
role in establishing lower bounds for the optimal risk. However, while in Proposi-
tion 3.2 the moment generating function E exp(μ2|S ∩ T |) of the overlap between
two random elements determines an upper bound for the critical value of μ, here
it is the median of the largest overlap between many random elements that counts.
The latter seems to carry more information about the fine geometry of the class. In
fact, invoking a simple union bound, upper bounds for E exp(μ2|S ∩ T |) may be
used together with Theorem 6.1.

In applications, often it suffices to consider the following special case.

COROLLARY 6.1. Let M ≤ N be the largest integer for which zero is a me-
dian of maxS,T ∈A,S �=T |S ∩ T | where A is a random subset of C of size M [i.e.,
tC (M)2 = 2K]. Then R∗

C (μ) ≥ 1/4 for all μ ≤ √
log(M/16)/K .

EXAMPLE (Sub-squares of a grid). To illustrate the corollary, consider the
following example which is the simplest in a family of problems investigated by
Arias-Castro, Candès and Durand (2009): assume that n and K are both perfect
squares and that the indices {1, . . . , n} are arranged in a

√
n×√

n grid. The class C
contains all

√
K ×√

K sub-squares. Now if S and T are randomly chosen elements
of C (with or without replacement) then, if (K + 1)2 ≤ 2

√
n,

P{|S ∩ T | �= 0} ≥ (
√

n − 2K)2

(
√

n − K + 1)2 · K

(
√

n − K + 1)2 ≥ K

n

and therefore

P

{
max

S,T ∈A
S �=T

|S ∩ T | = 0
}

= 1 − P

{
max

S,T ∈A
S �=T

|S ∩ T | > 0
}

≥ 1 − M2 K

n
,

which is at least 1/2 if M ≤ √
n/(2K) in which case tC (M)2 = 2K . Thus, by

Corollary 6.1, R∗
C (μ) ≥ 1/4 for all μ ≤ √

log(n/(512K))/(2K). This bound is of
the optimal order of magnitude as it is easily seen by an application of Proposi-
tion 2.2.
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In some other applications, a better bound is obtained if some overlap is allowed.
A case in point is the example of stars from Section 4.4. In that case, any two
elements of C overlap but by taking M = N(= m), we have K − tC (M)2/2 = 1,
so Theorem 6.1 still implies R∗

C (μ) ≥ 1/4 whenever μ ≤ √
(1/K) log(m/16).

The main tool of the proof of Theorem 6.1 is Slepian’s lemma which we re-
call here [Slepian (1962)]. [For this version, see Ledoux and Talagrand (1991),
Theorem 3.11.]

LEMMA 6.1 (Slepian’s lemma). Let ξ = (ξ1, . . . , ξN), ζ = (ζ1, . . . , ζN) ∈ R
N

be zero-mean Gaussian vectors such that for each i, j = 1, . . . ,N ,

Eξ2
i = Eζ 2

i for each i = 1, . . . ,N and Eξiξj ≤ Eζiζj for all i �= j .

Let F : RN → R be such that for all x ∈ R
N and i �= j ,

∂2F

∂xi ∂xj

(x) ≤ 0.

Then EF(ξ) ≥ EF(ζ ).

PROOF OF THEOREM 6.1. Let M ≤ N be fixed and choose M sets from C
uniformly at random (without replacement). Let A denote the random subclass of
C obtained this way. Denote the likelihood ratio associated to this class by

LA(X) = 1/M
∑

S∈A φS(X)

φ0(X)
= 1

M

∑
S∈A

VS,

where VS = eμXS−Kμ2/2. Then the optimal risk of the class C may be lower
bounded by

R∗
C (μ)−R∗

A(μ) = 1
2

(
E0|LA(X)−1|−E0|LC (X)−1|)≥ −1

2E0|LA(X)−LC (X)|.
Denoting by Ê expectation with respect to the random choice of A, we have

R∗
C (μ) ≥ ÊR∗

A(μ) − 1

2
E0Ê

∣∣∣∣ 1

M

∑
S∈A

VS − 1

N

∑
S∈C

VS

∣∣∣∣
≥ ÊR∗

A(μ) − 1

2

√√√√E0Ê

(
1

M

∑
S∈A

VS − 1

N

∑
S∈C

VS

)2

≥ ÊR∗
A(μ) − 1

2

√√√√E0

[
1

M
· 1

N

∑
T ∈C

(
VT − 1

N

∑
S∈C

VS

)2]
(since the variance of a sample without replacement

is less than that with replacement)

= ÊR∗
A(μ) − 1

2
√

M

√√√√ 1

N

∑
T ∈C

E0

(
VT − 1

N

∑
S∈C

VS

)2

.
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An easy way to bound the right-hand side is by writing

E0

(
VT − 1

N

∑
S∈C

VS

)2

≤ 2E0(VT − 1)2 + 2E0

(
1 − 1

N

∑
S∈C

VS

)2

≤ 2E0(VT − 1)2 + 2

N

∑
S∈C

E0(1 − VS)2

= 4 Var(VT ) = 4(eμ2K − 1).

Summarizing, we have

R∗
C (μ) ≥ ÊR∗

A(μ) −
√

eμ2K − 1

M
≥ ÊR∗

A(μ) − 1

4
,

where we used the assumption that μ ≤ √
(1/K) log(M/16). Thus, it suffices to

prove that ÊR∗
A(μ) ≥ 1/2.

We bound the optimal risk associated with A in terms of the Bhattacharyya
affinity

ρA(μ) = 1

2
E0

√
(1/M)

∑
S∈A φS(X)

φ0(X)
= 1

2
E0

√√√√ 1

|A|
∑
S∈A

VS.

Recalling from Section 3 that R∗
A(μ) ≥ 1 −

√
1 − 4ρA(μ)2 and using that√

1 − 4x2 is concave, we have

ÊR∗
A(μ) ≥ 1 −

√
1 − 4(ÊρA(μ))2.

Therefore, it suffices to show that the expected Bhattacharyya affinity ÊρA(μ)

corresponding to the random class A satisfies

ÊρA(μ) = 1

2
ÊE0

√√√√ 1

|A|
∑
S∈A

VS ≥
√

3

4
.

In the argument below, we fix the random class A, relabel the elements so that
A = {1,2, . . . , |A|}, and bound ρA(μ) from below. Denote the minimum distance
between any two elements of A by τ . To bound ρA(μ), we apply Slepian’s lemma
with the function

F(x) =
√√√√√ 1

|A|
|A|∑
i=1

eμxi−Kμ2/2,
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where x = (x1, . . . , x|A|). Simple calculation shows that the mixed second partial
derivatives of F are negative, so Slepian’s lemma is indeed applicable.

Next, we introduce the random vectors ξ and ζ . Let the components of ξ be
indexed by elements S ∈ A and define ξS = XS =∑

i∈S Xi . Thus, under P0, each
ξS is normal (0,K) and EF(ξ) is just the Bhattacharyya affinity ρA(μ). To define
the random vector ζ , introduce M + 1 independent standard normal random vari-
ables: one variable GS for each S ∈ A and an extra variable G0. Recall that the
definition of τ guarantees that the minimal distance between any two elements of
A as at least τ . Now let

ζS = GS

τ√
2

+ G0

√
K − τ 2

2
.

Then clearly for each S,T ∈ A, Eζ 2
S = K and EζSζT = K − τ 2/2 (S �= T ). On the

other hand, Eξ2
S = K and

EξSξT = |S ∩ T | = K − d(S,T )2

2
≤ K − τ 2

2
= EζSζT .

Therefore, by Slepian’s lemma, ρA(μ) = EF(ξ) ≥ EF(ζ ). However,

EF(ζ ) = E

√√√√ 1

|A|
∑
S∈A

eμζS−Kμ2/2

= E

√√√√eμ
√

K−τ 2/2G0−(K−τ 2/2)μ2/2 1

|A|
∑
S∈A

eμτGS/
√

2−τ 2μ2/4

= Eeμ
√

K−τ 2/2G0/2−(K−τ 2/2)μ2/4
E

√√√√ 1

|A|
∑
S∈A

eμτGS/
√

2−τ 2μ2/4

= e−μ2(K−τ 2/2)/8
E

√√√√ 1

|A|
∑
S∈A

eμτGS/
√

2−τ 2μ2/4.

To finish the proof, it suffices to observe that the last expression is the Bhat-
tacharyya affinity corresponding to a class of disjoint sets, all of size τ 2/2, of
cardinality |A| = M . This case has been handled in the first example of Section 4
where we showed that

E

√√√√ 1

|A|
∑
S∈A

eμτGS/
√

2−τ 2μ2/4 ≥ R∗
A ≥ 1 − 1

2

√
1

M
eμ2τ 2/2 ≥ 3

4
,

where again we used the condition μ ≤ √
log(M/16)/K and the fact that τ 2/

2 ≤ K .
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Therefore, under this condition on μ, we have that for any fixed A,

ρA(μ) = 1
2EF(ζ ) ≥ 3

8e−μ2(K−τ 2/2)/8

and therefore

ÊρA(μ) ≥ 3
16e−μ2(K−tC (M)2/2)/8,

where tC (M) is the median of τ . This concludes the proof. �

REMARK (An improvement). At the risk of losing a constant factor in the
statement of Theorem 6.1, one may replace the parameter tC (M) by a larger quan-
tity. The idea is that by thinning the random subclass A one may consider a sub-
set of A that has better separation properties. More precisely, for an even integer
M ≤ N we may define a real-valued parameter t C (M) > 0 of the class C as fol-
lows. Let A ⊂ C be obtained by choosing M elements of C at random, without
replacement. Order the elements S1, . . . , SM of A such that

min
i �=1

d(S1, Si) ≥ min
i �=2

d(S2, Si) ≥ · · · ≥ min
i �=M

d(SM,Si)

and define the subset Â ⊂ A by Â = {A1, . . . ,AM/2}. Let the random variable τ

denote the smallest distance between elements of Â and let t C (M) be the median
of τ . It is easy to see that the proof of Theorem 6.1 goes through, and one may
replace tC (M) by t C (M) (by adjusting the constants appropriately). One simply
needs to observe that since each VS is nonnegative,

ρA(μ) = 1

2
E0

√√√√ 1

|A|
∑
S∈A

VS ≥ 1

2
E0

√√√√ 1

|A|
∑
S∈Â

VS = 1√
2
ρÂ(μ).

If t C (M) is significantly larger than tC (M), the gain may be substantial.

If the class C is symmetric then thanks to Theorem 5.1, the theorem above
can be improved and simplified. If the class is symmetric, instead of having to
work with randomly chosen subclasses, one may optimally choose a separated
subset. Then the bounds can be expressed in terms of the metric entropy of C ,
more precisely, by its packing numbers with respect to the canonical distance
d(S,T ) =√

E0(XS − XT )2.
We say that A ⊂ C is a t-separated set (or t-packing) if for any S,T ∈ A,

d(S,T ) ≥ t . For t <
√

2K , define the packing number M(t) as the size of a maxi-
mal t-separated subset A of C . It is a simple well-known fact that packing numbers
are closely related to the covering numbers introduced in Section 2 by the inequal-
ities N(t) ≤ M(t) ≤ N(t/2).
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THEOREM 6.2. Let C be symmetric in the sense of Theorem 5.1 and let t ≤√
2K . Then

R∗
C ≥ 1/2,

whenever

μ ≤ min
(√

log(M(t)/16)

K
,

8 log(
√

3/2)√
K − t2/2

)
.

PROOF. Let A ⊂ C be a maximal t-separated subclass. Since C is symmetric,
by Theorem 5.1, R∗

C ≥ R∗
A so it suffices to show that R∗

A ≥ 1/2 for the indicated
values of μ. The rest of the proof is identical to that of Theorem 6.1. �

To interpret this result, take t = √
2K(1 − ε) for some ε ∈ (0,1/2). Then, by

the theorem, R∗ ≥ 1/2 if

μ ≤ 1√
K

min
(

8 log(
√

3/2)√
ε

,

√
log

(
M
(√

2K(1 − ε)
)
/16

))
.

As an example, suppose that the class C is such that there exists a constant V > 0
such that M(t) ∼ (n/t2)V . (Recall that all classes with VC dimension V have an
upper bound of this form for the packing numbers, see remark on page 3069.) In
this case, one may choose ε−1 ∼ V log(n/K) and obtain that R∗ ≥ 1/2 whenever
μ ≤ c

√
(V/K) log(n/K) (for some constant c). This closely matches the bound

obtained for the maximum test by Dudley’s chaining bound.

7. Optimal versus maximum test: An analysis of the type I error. In all
examples considered above, upper bounds for the optimal risk R∗ are derived by
analyzing either the maximum test or the averaging test. As the examples show,
very often these simple tests have a near-optimal performance. The optimal test
f ∗ is generally more difficult to study. In this section, we analyze directly the
performance of the optimal test. More precisely, we derive general upper bounds
for the type I error (i.e., the probability that the null hypothesis is rejected under
P0) of f ∗. The upper bound involves the expected value of the maximum of a
Gaussian process indexed by a sparse subset of C and can be significantly smaller
than the maximum over the whole class that appears in the performance bound of
the maximum test in Proposition 2.2. Unfortunately, we do not have an analogous
bound for the type II error.

We consider the type I error of the optimal test f ∗

P0{f ∗(X) = 1} = P0{L(X) > 1} = P0

{
1

N

∑
S∈C

eμXS > eKμ2/2
}
.
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An easy bound is 1
N

∑
S∈C eμXS ≤ eμmaxS∈C XS so

P0{L(X) > 1} ≤ P0

{
max

S
XS > Kμ/2

}
.

Thus, P0{L(X) > 1} ≤ δ whenever μ ≥ (1/K)E0 maxS XS + √
(2/K) log(1/δ).

Of course, we already know this from Proposition 2.2 where this bound was de-
rived for the (suboptimal) test based on maxima.

In order to understand the difference between the performance of the opti-
mal test f ∗ and the maximum test, one needs to compare the random variables
(1/μ) log 1

N

∑
S∈C eμXS and maxS∈C XS .

PROPOSITION 7.1. For any δ ∈ (0,1), the type I error of the optimal test f ∗
satisfies

P0{f ∗(X) = 1} ≤ δ,

whenever

μ ≥ 2

K
E0 max

S∈A
XS +

√
32 log(2/δ)

K
,

where A is any
√

K/2-cover of C .

If A is a minimal
√

K/2-cover of C , then

(1/K)E0 max
S∈A

XS ≤
√

2 logN(
√

K/2)

K
.

By “Sudakov’s minoration” [see Ledoux and Talagrand (1991), Theorem 3.18] this
upper bound is sharp up to a constant factor.

It is instructive to compare this bound with that of Proposition 2.2 for the per-
formance of the maximum test. In Proposition 7.1, we were able to replace the
expected maximum E0 maxS∈C XS by E0 maxS∈A XS where now the maximum is
taken over a potentially much smaller subset A ⊂ C . It is not difficult to construct
examples when there is a substantial difference, even in the order of magnitude,
between the two expected maxima so we have a genuine gain over the simple upper
bound of Proposition 2.2. Unfortunately, we do not know if an analog upper bound
holds for the type II error (1/N)

∑
S∈C PS{f ∗(X) = 0} of the optimal test f ∗. In

cases when E0 maxS∈A XS � E0 maxS∈C XS , we suspect that the maximum test
is far from optimal. However, to verify this conjecture, one would need a similar
analysis for the type II error as well.

PROOF OF PROPOSITION 7.1. Introduce the notation

MC (μ) = E0
1

μ
log

(
1

N

∑
S∈C

eμXS

)
.
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Then

P0

{
1

N

∑
S∈C

eμXS > eKμ2/2
}

= P0

{
1

μ
log

(
1

N

∑
S∈C

eμXS

)
>

Kμ

2

}

= P0

{
1

μ
log

(
1

N

∑
S∈C

eμXS

)
− MC (μ) >

Kμ

2
− MC (μ)

}
.

We use Tsirelson’s inequality (Lemma 2.1) to bound this probability. To this end,
we need to show that the function h : RN → R defined by

h(x) = 1

μ
log

(
1

N

∑
S∈C

eμ
∑

i∈S xi

)
is Lipschitz [where x = (x1, . . . , xN)]. Observing that

∂h

∂xj

(x) = 1/N
∑

S∈C 1{j∈S}eμxS

1/N
∑

S∈C eμxS
∈ (0,1),

we have

‖∇h(x)‖2 =
n∑

j=1

(
∂h

∂xj

(x)

)2

≤
n∑

j=1

∂h

∂xj

(x) = K

and therefore h is indeed Lipschitz
√

K . By Tsirelson’s inequality, we have

P0{f ∗(X) = 1} ≤ exp
(
−(Kμ/2 − MC (μ))2

2K

)
.

Thus, the type I error is bounded by δ if

μ ≥ 2MC (μ)

K
+
√

8

K
log

1

δ
.

It remains to bound MC (μ).
Let t ≤ √

2K be a positive integer and consider a minimal t-cover of the set C ,
that is, a set A ⊂ C with cardinality |A| = N(t) such that, if π(S) denotes an
element in A whose distance to S ∈ C is minimal then d(S,π(S)) ≤ t for all S ∈ C .
Then clearly,

MC (μ) ≤ E0
1

μ
log

(
1

N

∑
S∈C

eμ(XS−Xπ(S))

)
+ E0 max

S∈A
XS.

To bound the first term on the right-hand side, note that, by Jensen’s inequality,

E0
1

μ
log

(
1

N

∑
S∈C

eμ(XS−Xπ(S))

)
≤ 1

μ
log

(
1

N

∑
S∈C

E0e
μ(XS−Xπ(S))

)
≤ μt2

2
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since for each S, dH (XS,Xπ(S)) ≤ t2 and therefore XS − Xπ(S) is a centered nor-
mal random variable with variance dH (XS,Xπ(S)). For the second term, we have

E0 max
S∈A

XS ≤
√

2K logN(t).

Choosing t2 = K/4, we obtain the proposition. �
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