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1. Introduction.

Concentration inequalities for functions of independent random variables estab-

lish upper bounds for the tail probabilities of such functions under general “smoothness”

conditions, see, e.g., Talagrand (1995, 1996a, 1996b), Ledoux (1997, 2001), Boucheron,

Lugosi, Massart (2000, 2003), McDiarmid (1998), etc. In this paper we take a closer look

at the distribution of certain functions of independent random variables and show that the

tail distribution exhibits a subgaussian (or subexponential) behavior in a stronger “local”

sense in many cases when concentration inequalities predict a subgaussian (subexponen-

tial) tail.

First we consider real-valued functions defined on the binary hypercube f : {0, 1}n →
IR. If X = (X1, . . . , Xn) is uniformly distributed on the hypercube, we are interested in

the distribution of the random variable f(X).

Our starting point is the following inequality, due to Talagrand (1994):

Var(f) ≤ 9

10

n∑

i=1

E
(
f(X) − f(X(i))

)2

1 + log

√
E(f(X)−f(X(i)))

2

E|f(X)−f(X(i))|

(1)

where X(i) = (X1, . . . , 1−Xi, . . . , Xn) is obtained by flipping the i-th bit of X and Var(f)

denotes the variance of the random variable f(X). The constants shown here follow from

a simple proof by Benjamini, Kalai, and Schramm (2003).

Note that (apart from numerical constants) Talagrand’s inequality improves upon

the well-known Efron-Stein inequality (see Efron and Stein, 1981; Rhee and Talagrand,

1986; Steele, 1986):

Var(f) ≤ 1

2

n∑

i=1

E
(
f(X) − f(X(i))

)2
.

In Section 2 we show how to use Talagrand’s inequality to prove “local” subgaussian

concentration inequalities. As a simple example, we show that if f : {0, 1}n → IR is

such that there exists a constant v such that
∑n

i=1(f(x) − f(x(i)))2
+ ≤ v, then for all

k = 1, 2, 3, . . . ,

ak+1 − ak ≤ c
√

v/k

where ak denotes a 1 − 2−k quantile of f(X) and c is a universal constant. The main

argument is based on an observation of Benjamini, Kalai, and Schramm (2003) who show

how Talagrand’s inequality may be used to obtain exponential concentration inequalities.

Even though Benjamini, Kalai, and Schramm do not mention the possibility of deriving

local concentration inequalities, it is their argument which is at the basis of our proofs.
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The purpose of this paper is to elaborate on this argument and to derive local concentra-

tion inequalities under different conditions. In Sections 3, 4, and 5 various variants and

extensions are introduced. In Section 3 local concentration inequalities are shown under

different conditions that are satisfied for numerous natural examples such as configuration

functions introduced by Talagrand (1995) of for self-bounding functions, see Boucheron,

Lugosi, and Massart (2000), Maurer (2006), McDiarmid and Reed (2006).

In Section 4 Talagrand’s inequality is extended from the binary hypercube to func-

tions defined on {0, 1, . . . , r − 1}n under the uniform distribution. The main technical

tool here is a suitable hypercontractive inequality proved by Alon, Dinur, Friedgut, and

Sudakov (2004). This extension allows us to generalize the results of Sections 2 and 3 to

functions defined on {0, 1, . . . , r − 1}n.

In Section 5 we illustrate the use of the results of Section 4 by considering two

classical, structurally similar, problems. We derive local concentration inequalities for

the cost of the minimum weight spanning tree of a complete graph with random uniform

weights on the edges and also for the assignment problem.

2. Functions with locally subgaussian behavior.

First we consider functions f : {0, 1}n → IR which satisfy the following properties:

for all x = (x1, . . . , xn) ∈ {0, 1}n

n∑

i=1

(f(x) − f(x(i)))2
+ ≤ v , (∗)

where v is a positive constant. (Here and throughout the paper, a+ = max(a, 0) and

a− = max(−a, 0) denote the positive and negative parts of the real number a.) Clearly, if

f is 1-Lipschitz under the Hamming distance then v ≤ n, but there are many interesting

examples in which v is significantly smaller than n. It is well known (see Ledoux (1997),

or Boucheron, Lugosi, and Massart (2003)) that for such functions

P{f(X) ≥ Ef(X) + t} ≤ e−t2/4v . (2)

Our basic result (Theorem 1) shows that tail quantiles of the random variable f(X) are

not far apart. In this sense, it is a local tail bound. For any α ∈ (0, 1), define the

α-quantile of f by

Qα = inf{z : P{f(X) ≤ z} ≥ α} .

In particular, we denote the median of f(X) by Mf = Q1/2.
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Theorem 1. Assume f satisfies (*) and let B = maxx,i |f(x) − f(x(i))|. Then for all

b > a ≥ Mf ,

b − a ≤
√

(72/5)vP{f(X) ∈ (a, b + B)}
P{f(X) ≥ b} log e2

2P{f(X)∈(a,b+B)}

≤
√

(72/5)vP{f(X) > a}
P{f(X) ≥ b} log e2

2P{f(X)>a}

.

Proof. Define the function ga,b : {0, 1}n → IR by

ga,b(x) =





b if f(x) ≥ b

f(x) if a < f(x) < b

a if f(x) ≤ a

First observe that

Var(ga,b(X)) ≥ P{f(X) ≥ b}
4

(b − a)2 .

On the other hand, we may use Talagrand’s inequality to obtain an upper bound for the

variance of ga,b(X). To this end, observe that

E
∣∣ga,b(X) − ga,b(X

(i))
∣∣ = 2E

(
ga,b(X) − ga,b(X

(i))
)
+

= 2E
[(

ga,b(X) − ga,b(X
(i))
)
+

1f(X)∈(a,b+B)

]

(by the definition of ga,b and B)

≤ 2
√

E (ga,b(X) − ga,b(X(i)))
2

+

√
P{f(X) ∈ (a, b + B)}

(by Cauchy-Schwarz)

=

√
2E (ga,b(X) − ga,b(X(i)))

2
√

P{f(X) ∈ (a, b + B)} .

On the other hand,

n∑

i=1

E
(
ga,b(X) − ga,b(X

(i))
)2

= 2

n∑

i=1

E
(
ga,b(X) − ga,b(X

(i))
)2
+

= 2E

[
1f(X)∈(a,b+B)

n∑

i=1

(
ga,b(X) − ga,b(X

(i))
)2
+

]

≤ 2vP{f(X) ∈ (a, b + B)}

where in the last step we used the fact that (*) implies that

n∑

i=1

(
ga,b(X) − ga,b(X

(i))
)2
+
≤

n∑

i=1

(
f(X) − f(X(i))

)2
+
≤ v .

Combining the lower bound for the variance with the upper bound obtained by Talagrand’s

inequality yields the claim.
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To make Theorem 1 more transparent, we state a simple corollary for quantiles of

f(X). Using P{f(X) > Q1−γ} ≤ γ and P{f(X) ≥ Q1−δ} ≥ δ, Theorem 1 implies the

following bound for the distance between any two quantiles in the upper tail:

Theorem 2. Assume f satisfies (*). Then for all δ < γ ≤ 1/2,

Q1−δ − Q1−γ ≤
√

(72/5)vγ

δ log e2

2γ

.

In particular, by choosing γ = 2−k and δ = 2−(k+1) for some integer k ≥ 1 and

introducing

ak = Q1−2−k ,

we get

ak+1 − ak ≤ 12√
5

√
v

(k − 1) log 2 + 2
≤ 4

√
v

k
. (3)

Summing over k = 1, 2, . . . , m−1 and using
∑m−1

k=1 (k−1)−1/2 ≤
∫ m−1

0
x−1/2dx = 2

√
m − 1,

we obtain

am ≤ a1 + 8
√

v(m − 1) ,

recovering (up to a constant factor) the subgaussian concentration inequality (2) for f .

However, Theorem 2 shows a subgaussian behavior in a significantly stronger sense. If

f(X) was a normal random variable with variance v, then one would have ak ∼
√

2vk log 2

and ak+1 − ak ∼
√

v log 2/k. This (up to a constant factor) is precisely of the form of

the upper bound (3) for a general function f satisfying (*). Thus, the whole quantile

sequence {ak} is a contraction of that of a normal random variable of variance a constant

times v. (We say that a sequence {xn} is a contraction of another sequence {yn} if for

every n = 1, 2, . . ., |xn+1 − xn| ≤ |yn+1 − yn|.)

Remark 1. (constants.) Even though we offer explicit numerical constants in the

inequalities derived throughout the paper, no optimality of these values is claimed. In

fact, quite often we sacrifice better constants for convenience in the notation or for simpler

arguments.
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Example 1. (convex distance.) One of the main examples of a function satisfying

(*) is Talagrand’s convex distance (Talagrand, 1995) defined as follows. Let A ⊂ {0, 1}n

and define f as

f(x) = sup
α∈[0,∞)n:‖α‖=1

inf
y∈A

∑

i:xi 6=yi

|αi|

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Talagrand shows that for any set A with

P{X ∈ A} ≥ 1/2,

P{f(X) ≥ t} ≤ 2e−t2/4 .

(Note that Talagrand’s result is true in any product space with product measure.) It is

shown by Boucheron, Lugosi, and Massart (2003) that f satisfies (*) with v = 1. This

implies that for all k = 1, 2, 3, . . . ,,

ak+1 − ak ≤ 4√
k

.

Example 2. (largest eigenvalue of a random graph.) Let f(X) denote the

largest eigenvalue of the adjacency matrix of a random graph G(m, 1/2) on m vertices such

that each edge appears with probability 1/2. Thus, n =
(

m
2

)
and Xi = 1 if and only if edge

i is present in the graph. Füredi and Komlós (1981) showed that f(X) is asymptotically

normally distributed with expectation m/2 and variance 1/2. Alon, Krivelevich, and Vu

(2002) show that f(x) satisfies (*) with v = 4 (see also Maurer (2006)) and conclude that

ak ≤ Mf(X)+
√

32(k + 2) log 2. Theorem 2 implies the nonasymptotic local subgaussian

estimate

ak+1 − ak ≤ 8√
k

for k = 1, 2, . . .. Note that Alon, Krivelevich, and Vu also prove a concentration result

for the r-th largest inequality of the form ak ≤ Mf(X) + Cr
√

k. Their argument may be

combined with ours to obtain an analogous local concentration inequality.

Example 3. (rademacher averages.) Another example is a Rademacher average

of the form

f(x) = sup
α∈A

n∑

i=1

αi(xi − 1/2)

where A ⊂ IRn is a set of vectors α with ‖α‖ ≤ 1. It is easy to see that condition (*) is

satisfied with v = 1.
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Remark 2. (asymmetric distributions.) We note here that Talagrand proved

his inequality (1) in a more general setup in which the components Xi of X are i.i.d.

Bernoulli(p) random variables for some p ∈ (0, 1). In this more general case Theorem 2

becomes

Q1−δ − Q1−γ ≤
√

Cvγ

δ log 1
2γ

log
1

p(1 − p)

for some constant C.

One obtains a corollary of a slightly different flavor by choosing, in Theorem 1,

a = k and b = k + 1 for some integer k ≥ Mf , Theorem 1 implies the following local

lower bound for the distribution of f :

Corollary 1. Assume f satisfies (*). Then for all k ≥ Ef +
√

4v log 2,

qk∑
i≥k+1 qi

+ 1 ≥ 5

288

(k −Ef)2

v2
+

5

72v
log

e2

2

where qk = P{f(X) ∈ [k, k + 1)}.

Proof. This follows immediately by noting that, on the one hand by Theorem 1, for

k ≥ Mf ,

∑

i≥k

qi ≤ (72/5)v
qk +

∑
k+1≤i≤k+B+1 qi

log e2

2(qk+
∑

k+1≤i≤k+B+1 qi)

≤ (72/5)v
qk +

∑
i≥k+1 qi

log e2

2(qk+
∑

i≥k+1 qi)

so that

qk +
∑

i≥k+1

qi ≥
e2

2
exp

(
−(72/5)v

(
qk∑

i≥k+1 qi
+ 1

))
.

By the concentration inequality (2), for all k ≥ Ef ,

qk +
∑

i≥k+1

qi = P{f(X) ≥ k} ≤ e−(k−Ef)2/4v .

Since Mf ≤ Ef +
√

4v log 2, combining the upper and lower bounds implies the corollary.
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Remark 3. (monotonicity of the tail.) An obvious corollary is that qk+1 ≤ qk

whenever k ≥ Ef + (25/
√

5)v.

In some applications, even though (∗) is not satisfied, the similar condition

n∑

i=1

(f(x) − f(x(i)))2
− ≤ v , (∗−)

holds. For such cases the next analog of Theorem 1 is true. The proof is omitted as it is

a straightforward modification. In Section 5 we present some applications of this result.

Theorem 3. Assume f satisfies (∗−) and let B = maxx,i |f(x) − f(x(i))|. Then for all

b > a ≥ Mf ,

b − a ≤
√

(72/5)vP{f(X) ∈ (a − B, b)}
P{f(X) ≥ b} log e2

2P{f(X)∈(a−B,b)}

.

In particular, for all δ < γ ≤ 1/2, by taking a = Q1−γ + B and b = Q1−δ, we have

Q1−δ − Q1−γ ≤ B +

√
(72/5)vγ

δ log e2

2γ

.

3. Configuration functions.

In this section we consider functions defined on the binary hypercube. Just as in

Section 1, let f : {0, 1}n → IR and assume that X is uniformly distributed over {0, 1}n.

Often, the sum of the squared changes appearing in condition (*) cannot be

bounded by a constant but it can be related to the value of the function itself. Con-

sider the following conditions:

|f(x) − f(x(i))| ≤ B for all x and i and
n∑

i=1

(f(x) − f(x(i)))2
+ ≤ φ(f(x)) (∗∗)

where φ is a fixed nonnegative nondecreasing function defined on the reals. In many

applications, such as for configuration functions, one may take φ to be the identity and in

some others it has the form φ(u) = au + b (see Talagrand (1995), Boucheron, Lugosi, and

Massart (2000, 2003), Devroye (2002)). For example, it is shown by Boucheron, Lugosi,

and Massart (2003) (for various extensions see also Maurer, 2006; Reed and McDiarmid,

2006) that if (**) is satisfied with φ(u) = u and B ≤ 1, then

P{f(X) ≥ Ef(X) + t} ≤ e−t2/(2Ef(X)+2t/3) .
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Boucheron, Lugosi, and Massart (2003) offer concentration inequalities for the case when

φ(u) = cuα for some α ∈ (0, 2).

A straightforward modification of the proof of Theorem 1 yields the following:

Theorem 4. Assume f satisfies (**) and let B = maxx,i |f(x) − f(x(i))|. Then for all

b > a ≥ Mf ,

b − a ≤
√

(72/5)φ(b + B)P{f(X) > a}
P{f(X) ≥ b} log e2

2P{f(X)>a}

.

Also, for all δ < γ ≤ 1/2,

Q1−δ − Q1−γ ≤
√

(72/5)φ(Q1−δ + B)γ

δ log e2

2γ

.

In particular, recalling the notation ak = Q1−2−k ,

ak+1 − ak ≤ 4

√
φ(ak+1 + B)

k
.

Example 4. (self-bounding functions.) In many interesting applications, φ may

be taken to be the identity function and B = 1. These functions have been called self-

bounding, see Boucheron, Lugosi, and Massart (2000), Maurer (2006), McDiarmid and

Reed (2006). In general, if φ(u) is linear, then by the above-mentioned concentration

inequality, for all k ≥ Ef(X), ak ≤ ck, and therefore

ak+1 − ak ≤ C

where c, C are constants. Thus, in this case the quantile sequence {ak} is a contraction

of that corresponding to an exponentially distributed random variable with parameter

O(1), in a similar sense that functions satisfying (*) had a quantile sequence contracting

a gaussian quantile sequence.
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Example 5. (longest increasing subsequence.) Let now x = (x1, . . . , xn) ∈
{0, 1, . . . , r − 1}n and define f(x) to be the length of the longest increasing subsequence

of x1, . . . , xn, that is, the largest positive integer m for which there exist 1 ≤ i1 < · · · <

im ≤ n such that xi1 ≤ xi2 ≤ . . . ≤ xim . Tracy and Widom (2001) and Johansson (2001)

showed that if X is uniformly distributed over {0, 1, . . . , r−1}n, then (f(X)−n/r)/
√

2n/r

converges, in distribution, to a random variable whose distribution depends on r (see

also Its, Tracy, and Widom, 2001). In the binary case (i.e., when r = 2), f(x) is the

longest subsequence of the form 000 · · ·00111 · · ·11, and Theorem 4 may be readily used.

It is immediate to see that f satisfies (**) with B = 1 and φ(u) = u and therefore

Theorem 4 implies a nonasymptotic local subexponential concentration inequality. (To

see why (**) is satisfied, fix a maximal increasing subsequence in x and observe that

(f(x) − f(x(i)))+ = 0 whenever xi is not in this maximal sequence.) The same inequality

holds when f(x) = log2 N(x) where N(x) is the number of all increasing subsequences

of x. The fact that log2 N(x) satisfies (**) with B = 1 and φ(u) = u was observed by

Boucheron, Lugosi, and Massart (2000). If r > 2, one may use the results of Section 4

below to obtain analogous bounds.

Remark 4. (concentration inequalities.) The recursion for the sequence {ak}
given by Theorem 4 allows one to derive concentration inequalities for general functions

φ. We illustrate this for the example when φ(u) ≤ cuα for some c > 0 and α ∈ [0, 2].

Then Theorem 4 implies, after some work, that there exist constants C, t0 such that for

t ≥ t0,

P{f(X) ≥ t} ≤
{

Ce−t2−α/C if 0 ≤ α < 2 ,

Ce−(log t)2/C if α = 2 .

The case α < 2 has already been dealt with by Boucheron, Lugosi, and Massart (2003),

but the α = 2 case seems to be new.
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4. Functions defined on the r-ary hypercube.

The purpose of this section is to extend the results of Theorems 1, 2, and 3 to

functions f defined on the r-ary cube {0, 1, . . . , r−1}n, equipped with the uniform distri-

bution. In order to do this, we need to generalize Talagrand’s variance inequality to this

case. In particular, we prove the following:

Theorem 5. Let r ≥ 2 be a positive integer and let f : {0, 1, . . . , r−1}n → IR be a real-

valued function. Suppose X = (X1, . . . , Xn) is uniformly distributed on {0, 1, . . . , r−1}n.

For 1 ≤ i ≤ n, 0 ≤ j ≤ r−1 and for each x = (x1, . . . , xn), denote xi,j = (x1, . . . , xi−1, xi⊕
j, xi+1, . . . , xn) where ⊕ stands for addition modulo r. Writing

∆if(x) = f(x) − 1

r

r−1∑

j=0

f(xi,j) ,

we have

Var(f) ≤ 10(log Cr)
n∑

i=1

E (∆if(X))2

1 + log

√
E(∆if(X))2

E|∆if(X)|

.

where Cr = (9/2)r3 is the constant of Lemma 1 below.

As a consequence, Theorems 1,2,3, and 4 may now be extended to functions defined

on {0, 1, . . . , r − 1}n with the only difference that in the conditions on f , f(x) − f(x(i))

is replaced by ∆if(x) and the upper bounds in all four theorems are multiplied by

(10/3)
√

log Cr. For example, we will use the following result in Section 5:
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Corollary 2. Assume f : {0, 1, . . . , r − 1}n → IR is such that there exists v > 0 such

that
n∑

i=1

(∆i)
2
− ≤ v

and let B = maxx,i |∆if(x)|. Then for all k = 1, 2, 3, . . .,

ak+1 − ak ≤ B + 14
√

log Cr

√
v

k
.

The proof of Theorem 5 is analogous to Talagrand’s (1994) original argument

which was based on the Beckner-Bonami hypercontractive inequality (see Bonami, 1970;

Beckner, 1975) of Fourier analysis on the binary hypercube. Here we use an extension of

this inequality to functions defined on {0, 1, . . . , r−1}n due to Alon, Dinur, Friedgut, and

Sudakov (2004) which we recall below.

For any S = (S1, . . . , Sn) ∈ {0, 1, . . . , r − 1}n, define the function

uS(x) = ω〈S,x〉

where ω = e2πi/r and 〈S, x〉 =
∑n

i=1 Sixi mod r. It is easy to see (see Alon, Dinur, Friedgut,

and Sudakov (2004)) that the uS form an orthonormal basis of the space of complex-valued

functions defined over {0, 1, . . . , r − 1}n. To simplify notation, we will write

∫
f =

1

rn

∑

x∈{0,1,...,r−1}n

f(x) and ‖f‖q =

(∫
f q

)1/q

.

Denote by

f̂(S) =

∫
fuS

the Fourier coefficients of f where uS stands for the complex conjugate of uS. A key

ingredient of the proof is the following hypercontractive inequality:
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Lemma 1. (Alon, Dinur, Friedgut, and Sudakov (2004)). For any f : {0, 1, . . . , r−1}n →
IR and k = 1, . . . , n,

∥∥∥∥∥∥
∑

S:|S|≤k

f̂(S)uS

∥∥∥∥∥∥
4

≤ Ck
r


 ∑

S:|S|≤k

f̂(S)2




1/2

where Cr = (9/2)r3.

Proof of Theorem 5. Writing fi,j(x) = f(xi,j), it is easy to see that f̂i,j(S) =

f̂(S)ωjSi. Thus,

1

r

r−1∑

j=0

f̂i,j(S) =

{
f̂(S) if Si = 0 ,

0 if Si 6= 0 ,

and therefore the Fourier coefficients of ∆if satisfy

∆̂if(S) =

{
0 if Si = 0 ,

f̂(S) if Si 6= 0 .

This and Parseval’s identity imply that

Var(f) = ‖f‖2
2 −

(∫
f

)2

=
∑

S 6=0

f̂(S)2 =
n∑

i=1

∑

S 6=0

∆̂if(S)2

|S|

where |S| denotes the number of nonzero components of S and 0 is the all-zero vector.

Thus, in order to prove the theorem, it suffices to show that for any f : {0, 1, . . . , r−
1}n → IR,

∑

S 6=0

f̂(S)2

|S| ≤ 10 log Cr
‖f‖2

2

1 + log ‖f‖2

‖f‖1

which is what we do in the remaining part of the proof. Fix k ≤ n and observe that

∑

S:|S|=k

f̂(S)2 =

∫ 
 ∑

S:|S|=k

f̂(S)uS


 f

≤

∥∥∥∥∥∥
∑

S:|S|=k

f̂(S)uS

∥∥∥∥∥∥
4

· ‖f‖4/3 (by Hölder)

≤ Ck
r


 ∑

S:|S|=k

f̂(S)2




1/2

· ‖f‖4/3 (by Lemma 1) .

This implies ∑

S:|S|=k

f̂(S)2 ≤ C2k
r ‖f‖2

4/3
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and we have, for all positive integers m,

∑

S:1≤|S|≤m

f̂(S)2

|S| ≤ ‖f‖2
4/3

m∑

k=1

C2k
r

k
≤ K

C2m
r

m
‖f‖2

4/3

where K = 362/2
362/2−1

. At the last step we used the fact that Cr ≥ 36 and therefore

C
2(k+1)
r /(k + 1) ≥ (362/2)C2k

r /k. Now we may write

∑

S 6=0

f̂(S)2

|S| =
∑

S:1≤|S|≤m

f̂(S)2

|S| +
∑

S:|S|>m

f̂(S)2

|S|

≤ K
C2m

r

m
‖f‖2

4/3 +
1

m + 1

∑

S:|S|>m

f̂(S)2

≤ 1

m + 1

(
2KC2m

r ‖f‖2
4/3 + ‖f‖2

2

)
.

Now we choose m as the largest integer such that C2m
r ‖f‖2

4/3 ≤ e1/3‖f‖2
2 so that

m + 1 ≥ log
(
e1/3‖f‖2/‖f‖4/3

)

log Cr

and
∑

S 6=0

f̂(S)2

|S| ≤ 1

m + 1
· (2K + 1)‖f‖2

2 ≤
(2K + 1)‖f‖2

2 log Cr

log
(
e1/3‖f‖2/‖f‖4/3

) .

The proof is finished by observing that
∫

f 4/3 = ‖f 3/2‖8/9
8/9 ≤ ‖f 3/2‖8/9

1 ≤
(
‖f‖1 · ‖f‖2

2

)4/9

by the Cauchy-Schwarz inequality, and therefore ‖f‖3
4/3 ≤ ‖f‖1 · ‖f‖2

2, which is equivalent

to
e‖f‖2

‖f‖1
≤
(

e1/3‖f‖2

‖f‖4/3

)3

.

Remark 5. (logarithmic sobolev inequalities). An alternative route, yielding

better numerical constants than Lemma 1, would be to use a sharp logarithmic Sobolev

inequality of Diaconis and Saloff-Coste (1996, Theorem A.1) which implies hypercontrac-

tivity by Gross’ theorem, see Gross (1993).
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5. Minimum weight spanning tree and the assignment problem.

In this section we derive local concentration bounds for two classical problems:

the minimum weight spanning tree and the assignment problem. In these examples the

random variables of interest are functions of independent random variables uniformly

distributed in [0, 1]. By simple discretization we may approximate them by functions

defined over {0, 1, . . . , r−1}n and use the result of the previous section. Since in Corollary

2 the dependence on r is only logarithmic, we may take r to be quite large (proportional

to n in these cases) and still obtain meaningful results.

Concentration inequalities for both cases may be derived, for example, by Tala-

grand’s (1995) results. In fact, Talagrand works out the case of the assignment problem.

In order to conveniently use general concentration inequalities, Talagrand uses a trunca-

tion argument, a technique we also adopt below. Interestingly, the proofs in both examples

below are identical and use simple structural properties of the function at hand.

Example 6. (minimum weight spanning tree.) Consider the random variable

Tm defined as the sum of weights on the minimum spanning tree of the complete graph

Km with independent uniformly distributed (on [0, 1]) weights Yi,j (1 ≤ i < j ≤ m) on

the edges. A classical result of Frieze (1985) shows that limm→∞ ETm = ζ(3). Janson

(1995) and Wästlund (2005c) prove that if the edge weights are exponentially distributed

with parameter 1, then
√

m(Tm − ζ(3)) converges, in distribution, to a centered normal

random variable with variance 6ζ(4)− 4ζ(3). Here we study the related random variable

Tm obtained when the Yi,j are replaced by min(Yi,j, δm) where δm > 0 is a small positive

number. Note that if δm = c log m/m for some c > 1 then Tm = Tm with high probability.

In order to see this just observe that Tm 6= Tm implies that the largest edge weight in the

minimum spanning tree is greater than δm. But this is just the probability that the random

graph G(m, δm) is not connected which is at most 2
(
em(1−c)/2 − 1

)
+2m+1m−(c−1)m/4 (see,

Erdős and Rényi, 1960; Palmer, 1985), which is at most 4m−c/4, if c ≥ 2.

To be able to use Corollary 2, we need to approximate Tm by a function defined

on {0, 1, . . . , r − 1}n under the uniform distribution where n =
(

m
2

)
. In order to do this,

we replace the random variables Yi,j by their “discretized” approximation brYi,jc/r. If we

denote the cost of the minimum spanning tree defined by the edge costs min (brYi,jc/r, δm)

by T̃m, then clearly |Tm− T̃m| ≤ m/r. The random variable T̃m may now be considered as

a function of n =
(

m
2

)
independent variables Xi,j, all uniformly distributed on {0, 1 . . . , r−

1}, by defining brYi,jc = Xi,j. Now we may use Corollary 2. Clearly, we may take B = δm.
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On the other hand, ∑

1≤i<j≤m

(∆i,j)
2
− ≤ mδ2

m

and therefore, denoting by ãk the 1 − 2−k-quantile of T̃m, we obtain

ãk+1 − ãk ≤ δm + 14

√
mδ2

m

k

√
log(9r3/2) .

This, in turn implies that if ak denotes the 1 − 2−k-quantile of Tm, then, for all k =

1, 2, 3, . . .,

ak+1 − ak ≤ 2m/r + δm + 14

√
mδ2

m

k

√
log(9r3/2) .

By choosing, say, r = m2 and δm = c log m/m for some constant c > 1, we obtain

ak+1 − ak ≤ C



√

log3 m

mk
+

log m

m




for a constant C depending on c only. This inequality shows a local subgaussian behavior

whenever k ≤ m log m. It may be regarded as a local nonasymptotic version of the limit

theorem of Janson and Wästlund, up to the logarithmic factors we needed to give up for

technical reasons. For larger values of k the second term dominates the first one, which

corresponds to a subexponential behavior in the far tail. We do not know if this term is

necessary. In order to convert this into a useful bound for the original problem Tm, one

needs to choose c so large that the bound P{Tm 6= Tm} ≤ 4m−c/4 does not dominate 2−k.

Choosing c = max(2, 4(k + 2) log 2/ log m), one obtains

ak+1 − ak−1 ≤





2
m

+ 4(k+2) log 2
m

+ 56 log 2
√

3(k+2)
m

log 9m6

2
if k + 2 > log m

2 log 2

2
m

+ 2 log m
m

+ 28
√

log2 m
km

log 9m6

2
if k + 2 ≤ log m

2 log 2

In order to compare this local bound to concentration inequalities, note that The-

orem 7 of Boucheron, Lugosi, and Massart (2003) implies that P{Tm ≥ ETm + t} ≤
e−t2m/(4(e−1)c2 log2 m), or in other words, that

ak ≤ ETm +

√
kc2 log2 m log 2

4(e − 1)m
.

Again, choosing c = max(2, 4(k + 2) log 2/ log m), one obtains

ak−1 ≤ ETm +

√
log 2

e − 1
max



√

k log2 m

m
,

√
4(k + 2)3

m


 .
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By summing the “local” inequality in k, one obtains a concentration inequality that is

only slightly weaker than the one derived here, as we get an extra factor of
√

log m. This

is due to the approximation by discretization, necessary to apply Corollary 2.

Example 7. (the assignment problem.) In the assignment problem, given an

m × m array {Yi,j}m×m of independent random variables distributed uniformly on [0, 1],

one considers the random quantity

Zm = min
π

m∑

i=1

Yi,π(i)

where the minimum is taken over all permutations π of {1, . . . , m}. Culminating a long

series of partial results, Aldous (2001) showed that limm→∞ EZm = ζ(2). In the case

when the Yi,j are exponentially distributed with parameter 1, Linusson and Wästlund

(2004) and Nair, Prabhakar, and Sharma (2005) independently proved that for all m,

EZm =
∑m

i=1 i−2. See also Wästlund (2005a). Wästlund (2005b) also derives an explicit

formula for the variance of Zm. In particular, he proves that Var(Zm) = 4(ζ(2)−ζ(3))/m+

O(m−1/2). Talagrand (1995) proves (in the uniform model) an exponential concentration

inequality very similar to the one described for the minimum weight spanning tree above.

In fact, in order to get local concentration inequalities, one may proceed exactly

as we did in the previous example: first one replaces the Yi,j by the truncated variables

min(Yi,j, δm). If Zm denotes the cost of the optimal assignment based on the truncated

variables, then Proposition 10.3 of Talagrand (1995) implies that there exists a constant K

such that P{Zm 6= Zm} ≤ e−mδm/K , an inequality that is completely analogous to the one

we used in the study of the minimum weight spanning tree. Second, we use the discretized

approximation of the truncated variables. Then just as for the minimum weight spanning

tree, we may take B = δm in Corollary 2 and observe that
∑

1≤i<j≤m

(∆i,j)
2
− ≤ mδ2

m

which leads to inequalities completely analogous to those obtained for the minimum weight

spanning tree example above. In particular, if ak denotes the 1−2−k quantile of Zm, then

there exists a constant C such that

ak+1 − ak−1 ≤ C max


 k

m
+

√
k log m

m
,
log m

m
+

√
log3 m

km


 .

¡
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J. Wästlund. Evaluation of Janson’s constant for the variance in the random mini-
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