On the rate of convergence of regularized boosting classifiers

Gilles Blanchard BLANCHAR@MATH.U-PSUD.FR
CNRS Laboratoire de Mathématiques

Université Paris-Sud

Batiment 425

91405 Orsay Cedex, France

Gdbor Lugosi LUGOSI@QUPF.ES
Department of Economics,

Pompeu Fabra University,

Ramon Trias Fargas 25-27, 08005 Barcelona, Spain

Nicolas Vayatis VAYATIS@QCCR.JUSSIEU.FR
Université Paris 6—Pierre et Marie Curie

Laboratoire de Probabilités et Modéles Aléatoires

4, place Jussieu - Boite courrier 188

75252 Paris cedex 05, France

Editor: Thore Graepel and Ralf Herbrich

Abstract

A regularized boosting method is introduced, for which regularization is obtained through

a penalization function. It is shown through oracle inequalities that this method is model
adaptive. The rate of convergence of the probability of misclassification is investigated. It
is shown that for a quite large class of distributions, the probability of error converges to
the Bayes risk at a rate faster than n~(V+2)/(4(V+1) where V is the vc dimension of the
“base” class whose elements are combined by boosting methods to obtain an aggregated
classifier. The dimension-independent nature of the rates may partially explain the good
behavior of these methods in practical problems. Under Tsybakov’s noise condition the
rate of convergence is even faster. We investigate the conditions necessary to obtain such
rates for different base classes. The special case of boosting using decision stumps is studied
in detail. We characterize the class of classifiers realizable by aggregating decision stumps.
It is shown that some versions of boosting work especially well in high-dimensional logistic
additive models. It appears that adding a limited labelling noise to the training data may
in certain cases improve the convergence, as has been also suggested by other authors.

Keywords: classification, boosting, consistency, rates of convergence, decision stumps

1. Introduction

The statistical and learning-theoretical literature has witnessed a recent explosion of the-
oretical work attempting to explain the often surprisingly good behavior of classification
methods related to boosting and other algorithms based on weighted voting schemes. Boost-
ing algorithms, originally introduced by Freund and Schapire (see Freund (1995), Freund
and Schapire (1997), and Schapire (1990)), are based on an adaptive aggregation of sim-
ple classifiers contained in a small “base class”. Originally, theoretical analysis was based
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on the observation that ADABOOST and related methods tend to produce large-margin
classifiers in a certain sense (see Schapire, Freund, Bartlett, and Lee (1998), Koltchinskii
and Panchenko (2002)). This view was complemented by Breiman’s observation (Breiman,
1998) that boosting performs gradient descent optimization of an empirical cost function
different from the number of misclassified samples, see also Mason, Baxter, Bartlett, and
Frean (1999), Collins, Schapire, and Singer (2000), Friedman, Hastie, and Tibshirani (2000).
Based on this new view, various versions of boosting algorithms have been shown to be con-
sistent in different settings, see Breiman (2000), Biihlmann and Yu (2003), Jiang (2003),
Lugosi and Vayatis (2003), Mannor and Meir (2001), Mannor, Meir, and Zhang (2002),
Zhang (2003).

The purpose of this paper is a deeper investigation of the convergence of the probability
of error of regularized boosting classifiers by deriving bounds for the rate of convergence.
The main point is the introduction of a boosting procedure with regularization by a penalty
function depending on the ¢; norm of the boosting coeflicients. The main result of the
paper is an oracle inequality showing that this procedure is model adaptive, and stating
in particular that the rate of convergence for the probability of error of the associated
classification rule converges to that of the Bayes classifier at a dimension-independent rate
faster than n~(V+2/(&(V+1)) _ where V is the vc dimension of the base classifiers — for a
large class of distributions. The class of distributions for which this rate holds is defined in
terms of properties of the function f* minimizing the expected cost function. If the base
classifier set if sufficiently rich, the class turns out to be quite large. The analysis also points
out a curious behavior of boosting methods: in some cases the rate of convergence can be
speeded up by adding (limited) random noise to the data!

We also note that under some additional natural assumption on the distribution, consid-
ered by Tsybakov (2003), Nedelec and Massart (2003), and Bartlett, Jordan, and McAuliffe
(2003), the rate of convergence may be even faster.

One of the main objectives of this paper is to better understand the behavior of boosting
methods using decision stumps. This special case is studied in detail first in a simple one-
dimensional setting and then in general. We characterize the class of classifiers realizable
by aggregating decision stumps. It is shown that some versions of boosting work especially
well in high-dimensional logistic additive models in that they do not suffer from the “curse
of dimensionality”.

The paper is organized as follows. In Section 2.1 our mathematical model of boosting
classification is described. The main results are stated in Section 3. In particular, rates of
convergence of a regularized boosting classifier are established under certain assumptions
on the distribution. The main result, Corollary 7 is then discussed in subsequent sections
in which various concrete examples are considered. Our introductory example is a one-
dimensional problem in which “decision stumps” are used as a base class. This example,
detailed in Section 4, sheds some light on the nature of the assumption guaranteeing a fast
rate of convergence. Also, this example reveals some interesting and surprising phenomena,
inherent in boosting classifiers. In particular, it is pointed out that adding random noise to
the labels in the data may improve the performance of regularized boosting. In Section 5 we
investigate, in detail, the example of boosting using decision stumps in higher-dimensional
problems. We point out that a sufficient condition for fast rates of convergence is that the
conditional probability function belongs to a logistic additive model, verifying the observa-



tion of Friedman, Hastie, and Tibshirani (2000) that boosting using decision stumps works
especially well in logistic additive models. We point out (see Corollary 12) that regularized
boosting using the logistic cost function and decision stumps has a remarkably good behav-
ior under the additive logistic model in high dimensional problems. We also characterize
the class of classifiers that can be realized by a convex combination of decision stumps. In
Section 6 several important special cases of base classes are studied briefly. These classes
are rich enough so that they allow universally consistent classification and have a fast rate
of convergence for a large classes of distributions. We also emphasize the scale and rotation
invariance of boosting methods based on several of these base classes. The proof of Theorem
1 is given in Section 7.

2. Setup

2.1 Problem formulation and notation

The binary classification problem we consider is described as follows. Let (X,Y) be a
pair of random variables taking values in X x {—1,1} where X is a measurable feature
space. Given a training data of n independent, identically distributed observation/label
pairs D, = (X1,Y1),...,(Xn,Ys), having the same distribution as (X,Y’), the problem is
to design a classifier g, : X — {—1,1} which assigns a label to each possible value of the
observation. The loss of g, is measured by

L(gn) = Plgn(X) #Y|Dy] .
The minimal possible probability of error is the Bayes risk, denoted by

L7 = inf L(g) = Emin(n(X),1 — n(X))

where the infimum is taken over all measurable classifiers ¢ : X — {—1,1} and n(z) =
P[Y = 1|X = z] denotes the posterior probability function. The infimum is achieved by the
Bayes classifier g*(z) = Ijz)>1/2) — Ijp(a)<1/2) (Where I denotes the indicator function).

The voting classifiers studied in this paper combine their decisions based on a weighted
majority vote of classifiers from a base class of classifiers C, whose elements g : X — {-1,1}
of C are called the base classifiers. We denote the vC dimension of C by V' and assume it is
finite. For simplicity we assume that C is symmetric in the sense that for any g € C we also
have —g € C. (This is equivalent to allowing negative weights in the voting schemes.)

We define by F) the class of real-valued functions f : X — R obtained as nonnegative
linear combinations of the classifiers in C with the sum of the coefficients equal to A > 0:

N N
Fr= f(m):ijgj(:c) : NEN;VlgjgN,ngC,ijO;ij:)\
7j=1 7j=1

Note that the symmetry of C implies that F), C F), whenever A\; < Xy. Each f € F,
defines a classifier g; by

1 iff(z)>0

—1 otherwise.

g9s(z) = {



To simplify notation, we write L(f) = L(gs) = Plgy(X) # Y] and

—~ 1 &
Ln(f) = n ;H[gf(Xi);ﬁYi] )

As mentioned in the introduction, boosting methods may be viewed as iterative methods
for optimizing a convex empirical cost function. The approach taken in this paper is similar
to that of Lugosi and Vayatis (2003) in that we ignore the dynamics of the optimization
procedure and simply consider minimizers of an empirical cost function.

To this end, let ¢ : R — RT be a twice differentiable, strictly increasing and strictly
convex function such that ¢(0) =1 and lim,_, o, ¢(x) = 0 which we call the cost function.
The corresponding risk functional and empirical risk functional are defined by

AG) = BH(-Y (X)) and An(f) = = $(-Yif (X1) .
i=1

We recall from Lugosi and Vayatis (2003) the simple fact that there exists an extended-
real-valued function f* minimizing A(f) over all measurable function, given by

fH(z) = arg;lRin {n(@)p(—a) + (1 —n(z))d(a)} .
We write A* = A(f*) = inf; A(f).
The estimates we consider take the form

]/”;2\ =argminA,(f) .
FeFA

(Note that the minimum may not be achieved in F,. However, to simplify the arguments
we implicitly assume that the minimum in fact exists. All proofs may be adjusted, in a
straightforward way, to handle appropriate approximate minimizers of the empirical cost
functional.) As argued in Lugosi and Vayatis (2003), the parameter A may be regarded as a
smoothing parameter. Large values of A improve the approximation properties of the class
F at the price of making the estimation problem more difficult.

The estimators considered in this paper use a value of A chosen empirically, by mini-
mizing a penalized value of the empirical cost A, (f%) To this end, consider a sequence of
real numbers (Ag)gen increasing to +oo and let ¢ : Rt — RT be a so-called penalty (or
regularization) function. Define the penalized estimator by

Fo = arg min{ A, (F%) + C(Ak)} - 1)
k>1

The role of the penalty is to compensate for overfitting which helps find an adequate value
of Ag. For larger values of A the class Fy, is larger, and therefore (()) should be larger
as well. By a careful choice of the penalty, specified in Theorem 1 below, one may find a
close-to-optimal balance between estimation and approximation errors. R

The main purpose of this paper is to investigate the probability of error L(fy) of the
classifier g 7 induced by the penalized estimator. The decision function g 7, may be regarded
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as a regularized boosting classifier where the regularization parameter A controls the sum
of the weights of the aggregated classifiers, and it is chosen by minimizing a penalized value
of the empirical cost function.

Remark 1. Choosing A in a countable set is done here to simplify the proof of the oracle
inequality in Theorem 1; the minimum over A € R" could also be considered with similar
results up to minor additional terms in the penalty.

Remark 2. For simplicity we assume that the base class C contains binary-valued functions
and that the class has a finite vC dimension. However, the results may be generalized
in a straightforward way to the case when C contains real-valued functions taking values
in [-1,1]. The assumption of finite VC dimension may be replaced by the more general
assumption that the covering numbers NV (g, C, L2 (Q)) are bounded by ce = for some positive
constants ¢ and V for any probability distribution Q).

Remark 3. (COMPUTATIONAL ISSUES.) To compute the penalized estimator f; in practice,
one may proceed by computing, for each Ag, the minimizer fZ‘k of the empirical cost function.
This may be done using iterative boosting algorithms which limit the sum of the weights of
the base classifiers, such as MARGINBOOST.L1 proposed by Mason, Baxter, Bartlett, and
Frean (1999). Furthermore, many other algorithms have also been proposed to solve directly
the regularized boosting problems of the type (1) when the minimization is performed over
all A > 0. We refer the reader to the recent comprehensive review of Meir and Réatsch
(2003). For additional discussion on the algorithmic issues we refer to Bennett, Demiriz,
and Rétsch (2002), Lugosi and Vayatis (2003).

2.2 Relation to earlier work

Margin bounds. The first theoretical bounds about boosting-type methods are so-called
“margin bounds”. Although the motivation for deriving these bounds was initially to study
the AdaBoost algorithm, these bounds are “agnostic” in the sense that they do not depend
on the precise algorithm used, and can be applied for any algorithm which returns an
estimator belonging to (J,- Fx. These bounds rely on the complexity of the base class C
and on an empirical quantity, called margin. Schapire, Freund, Bartlett, and Lee (1998)
proved the first bound of this type for boosting algorithms, and improved rates were obtained
by Koltchinskii and Panchenko (2002). Duffy and Helmbold (2000) used the former result to
study boosting-type algorithms with more general potential functions (such as the function
¢ considered in this paper). Margin bounds provide an explicit confidence interval for the
generalization error, although it is recognized that the bounds obtained are generally too
loose to be of practical interest.

Oracle inequalities. As opposed to margin bounds, oracle-type inequalities refer to a
precise algorithm, usually some adaptive empirical loss minimization procedure over a family
of models. Oracle inequalities ensure that the adaptive estimator does “almost” as well
(up to additional terms that should be as small as possible) as the best possible function
inside each model. Oracle inequalities do not provide an explicit confidence interval, but
a guarantee about the performance and good behavior of the estimator with respect to a
given collection of models. They allow, in particular, to derive bounds about convergence
rates of the procedures considered. This type of bound will be our main focus in this paper.



Convergence rates and model adaptivity. An oracle inequality for the estimator
defined by (1) was derived by Lugosi and Vayatis (2003) (see also Zhang (2003) for oracle
inequalities in a related but different framework), when the penalty function ( is of order
n~1/2. However, it was proved by Bartlett, Jordan, and McAuliffe (2003) that, when X is
fixed, the rate of convergence of A(}Z‘) towards inf;er, A(f) is of order n~(V+2)/R(V+1))
— hence strictly smaller than O(n~'/?). This result can be compared to the the improved
rates — which were of the same order — obtained by Koltchinskii and Panchenko (2002) for
margins bounds. One goal of the present paper is to provide an improved oracle inequality
that shows the adaptivity (and consistency) of the penalized estimator with respect to
these faster rates for a corresponding lighter penalty function (of order strictly smaller
than O(n~1/2)) . Note that — up to our knowledge — it is not straightforward to build
an adaptive estimator over the different models F, directly from the single-model analysis
of Bartlett, Jordan, and McAuliffe (2003). In the present paper, although we use similar
techniques, we require to use additional machinery and slightly different hypotheses for the
model adaptive estimator. Additional discussion can be found in Section 7.

3. Main results

To study the probability of error of the classifier g5, we first investigate the magnitude of

A(fn) — A* which is well-known to be related to the difference L(fn) — L*. All subsequent
results are based on the following theorem.

Theorem 1 Assume that the cost function ¢ is twice differentiable, strictly increasing and
strictly convex with ¢(0) = 1 and limy_, o ¢(z) = 0 such that the constant

Ly =0V max
FASIN

(2(¢'(w) +¢/(—a))

7+ 7 () —(¢($)+¢(—w))> (2)
& xz ra —T

is finite. (Here a V b denotes the mazimum of a and b.) Define

<
N

+

R\ n) = (V +2) 75 (g + 2)$(\) TFT (AF () VFTn 3741

(M

b(A) = (Lo +2)¢(N) ,

and let (Ar)ren be an increasing sequence in (1,400) such that Y, .y A * < 1 for some
a > 0. Then there exist positive constants c1,co such that if ( : Rt — R satisfies

n c2b(A) (alog(A) + € + log(2))

VA>0, ((A)=aR(AXn) -

for some positive number &, then, with probability at least 1 — exp(—¢), the penalized esti-
mator f defined by (1) satisfies

k>1 | f€Fx,

A(fa) — A(f) <2 inf{ inf (A(f) — A(f%)) +2C(/\1c)} :



The proof of this theorem is given in Section 7. A few remarks are in order.

Remark 1. (CONSTANTS.) Concrete values of the constants ¢; and ¢z may be obtained
from the proof. However, these values are not optimal and for clarity, and because our main
focus here is on the rate of convergence as a function of the sample size, we preferred not
to specify their values.

Remark 2. (CONFIDENCE.) The definition of the penalty given in the theorem depends on
the confidence parameter £&. However, note that its role is minor since it only appears in the
smaller order second term. Indeed, for concreteness, one may take, for example, £ = 2logn
without altering the obtained rate of convergence. This choice also allows one to deduce
“almost sure” convergence results by an application of the Borel-Cantelli lemma. The
theorem presented here is derived as a consequence of Theorem 7 in Blanchard, Bousquet,
and Massart (2003). (The statement of the cited result is given in Appendix A below.)
It is also possible, with a penalty function of the same order up to logarithmic terms, to
derive similar nonasymptotic upper bounds for the expected difference EA(f,) — A(f*)
using Theorem 8 of Blanchard, Bousquet, and Massart (2003). The corresponding result is
omitted for brevity.

Remark 3. (COST FUNCTIONS.) The properties required by Theorem 1 of the cost function
are not claimed to be necessary to derive the result. Especially the condition involving the
constant Ly may seem to be unnatural, although it is not overly restrictive. In particular the
most widely used strictly convex cost functions, the exponential and the “logit” functions
satisfy the property. Indeed, it is straightforward to check that for ¢(z) = €®, Ly = 0 while
for the logit cost ¢ = logo(1l + €*), Ly = 2 — 2log2. We give the corresponding explicit
corollary for these two cost functions (using some straightforward upper bounds and the
fact that A > 1):

Corollary 2 For the exponential cost function ¢(x) = exp(z), the penalty function

C(A) =c(V+2) exp()\))\VLJrlnfév_ﬁ + e exp(A)(alog A +¢) ,
n
and for the logit cost ¢(x) = log(1 + e) the penalty function
AMalog A+ &)

CN) = es(V + 2An"TVET 4o, 2B ATS)
n

(where c1,c2,c3,ca are appropriate constants) satisfy the requirements of Theorem 1.

In particular, for the logit cost, it is interesting to note that a penalization which behaves
linearly (up to a logarithmic factor) in A is sufficient. This corresponds to a regularization
function proportional to ||w||1, where w is the collection of coefficients defining a positive
linear combination of base class functions. This type of regularization has been proposed
by various authors (see, e.g., Meir and Rétsch (2003) for an overview).

How restrictive is condition (2) in the case of more general cost functions? Since we
assumed that ¢ is twice differentiable, strictly increasing and convex, Ly is finite if and
only if the limsup of the expression inside the maximum in (2), when  — +o0, is not +oo.
A simple sufficient condition for this to hold is that there exists some L > 0 such that



liminf, , o (¢"/¢')(x) > L and limsup, , o(¢'/#)(z) < L/2. Furthermore, if we assume
that 7(X) takes values in [e,1 — €] almost surely, then by a straightforward modification of
the proof of Theorem 1 (or, to be more precise, of Lemma 19 in Section 7) one sees that in
the definition of Ly, the maximum can be restricted to = € [—f¥, f], where f7 is the value
of f* at a point z such that n(z) = 1 — €. In this case Ly is necessarily finite. Note that
this assumption on 7 can be enforced by adding a small flipping noise on the data labels
(see the related discussion below).

We note that Bartlett, Jordan, and McAuliffe (2003) study the role of the cost function
in depth and derive convergence results on a fixed model Fy for much more general cost
functions. The more restrictive conditions needed here come from the fact that we consider
an adaptive estimator over the set of models.

In the case when the distribution of the (X,Y") happens to be such that the “approxi-
mation error” inf ¢ Fag A(f) — A* vanishes for some value of A\, the above theorem implies

the following immediate corollary for the rate of convergence of A(ﬁ) to A*.

Corollary 3 Assume that the distribution of (X,Y) is such that there exists a Ag > 0 such
that inffej.')\o A(f) = A(f*). Under the conditions of Theorem 1, if the penalty is chosen to

be
n cab(A)(alog(A) + 2logn + log 2)

n

C(A) = R(A,n)

then for every n, with probability at least 1 — 1/n?,

1(V+2)

AR = A(f*) < on 2 (VA

where the constant C depends on the distribution, on the class F, and on the cost function

@.

Note that the penalty function does not depend on Ag above, so that the procedure is truly
adaptive. R

Of course, our main concern is not the behavior of the expected cost A(f,) but the
probability of error L(f,) of the corresponding classifier. However for most cost functions
the difference L(f,) — L* may directly be related to A(f,) — A*. Next we recall a simple
but very useful inequality due to Zhang (2003). This result has been generalized to a great
extent by Bartlett, Jordan, and McAuliffe (2003) for very general cost functions but we do
not use the full power of their result.

Lemma 4 (ZHANG) Let ¢ be a nonnegative convex nondecreasing cost function such that
there exist constants ¢ and s > 1 satisfying, for any n € [0,1],

1

5—77

S

<c*(1—-H(n)

where H(n) = infyer (nd(—a) + (1 — n)d(@)). Then for any real-valued measurable function
f

L(f) = L(f7)

IA

/s
2 (E [(1 - H(H(X)))H[gf(X);ég*(X)]])1
< 2e(A(f) — A(F)V



We note here that for both the exponential and the logit cost functions the condition of
the lemma is satisfied with ¢ = +/2 and s = 2.

Lemma 4 implies that the rate of convergence of L(f) — L(f*) to zero is at least as
fast as the sth root of the rate of A(f) — A(f*) to zero. The next lemma shows that, in
fact, the excess probability of error L(f) — L(f*) always goes to zero strictly faster than
(A(f) — A(f*))"/* whenever s is strictly greater than one. (Recall that this is the case for
the exponential and logit cost functions that are our main concern in this paper.)

Lemma 5 Let ¢ be a nonnegative convex nondecreasing cost function such that there exist
constants ¢ and s > 1 satisfying, for any n € [0,1],
1
2 7’

S

<c(1—-H(n) .

Let {fn} be a sequence of real-valued measurable functions with lim, , A(fn) = A(f*).

Then, as n — oo, L(f) - L(F)
(AF) - AT

PROOF. The proof is based on Lemma 4 and ideas from Devroye, Gyorfi, and Lugosi (1996,
Theorem 6.5). Let € € (0,1/2) be an arbitrary number. Then

L(fn) = L(f")
= E[2n(X)

- ll]I[gfn(X);ég*(X)]]
(see, e.g., Devroye, Gyorfi, and Lugosi (1996, Theorem 2.2))

E|[2n(X) - 1IH[gfn(X)¢g*(X)]Hnn(X)—l/z\sd]
+E [I2n(X ) — 1IH[gfn(X)?sg*<X)]H[|n(X)—1/2|>e]]

]1/5

IA

E _|2n(X) - 1|SH[gfn(X)¢g*(X)]

176-1/s
-(P 90,30 £ 47O, (X) 1721 < 6(X) #

+P[gy, (X) # g"(X),|n(X) —1/2| > 6](5—1)/5>
(by Holder’s inequality applied for both terms)

Using the assumption on ¢,

E [[20(X) = 11T}, (x40 0]

IN

(2¢)°E [(1 = Hn(X))I, (X);ég*(X)]]
(2¢)*(A(fn) — A(f))

by Lemma 4. Thus, it suffices to prove that the sum of the two probabilities above may
be made arbitrarily small for large n, by an appropriate choice of €. To this end, first note
that for any fixed e,

IN

Tim Plgg, (X) # " (X), [n(X) ~1/2| > d =0
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because otherwise L(f,) — L(f*) would not converge to zero, contradicting the assumption
that A(fn) — A(f*) converges to zero (by Lemma 4). On the other hand,

1

P |9, () 4" COLIn(X) = 1/2] S en(X) # 5| <P () = 1/21 < (%) #

which converges to zero as € — 0, and the proof is complete. |

Thus, when s > 1, L(f,) — L(f*) converges to zero faster than (A(f,) — A(f*))!/* for
all distributions. However, to obtain nontrivial bounds for the ratio of these two quantities,
one has to impose some assumptions on the underlying distribution. This may be done by
following Tsybakov (2003) who pointed out that under certain low-noise assumptions on
the distribution much faster rates of convergence may be achieved. Tsybakov’s condition
requires that there exist constants a € [0,1] and 8 > 0 such that for any real-valued
measurable function f,

Plgs(X) # ¢"(X)] < B(L(f) - L)* . (3)

Notice that all distributions satisfy this condition with &« = 0 and 8 = 1, while larger values
of « place more restriction on the distribution. Intuitively, a large value of o means that the
probability that n(X) is close to 1/2 is small. In the extreme case of @ = 1 it is easy to see
that n(X) stays bounded away from 1/2 with probability one. For more discussion on the
meaning of this condition we refer to Tsybakov (2003) and Bartlett, Jordan, and McAuliffe
(2003). In Bartlett, Jordan, and McAuliffe (2003) it is shown that under Tsybakov’s noise
condition, the rate in Lemma 4 may be improved as follows.

Lemma 6 (BARTLETT, JORDAN, AND MCAULIFFE) Let ¢ be a cost function satisfying the
conditions of Lemma 4 and assume that condition (3) holds for some a € [0,1] and 8 > 0.
Then

25 1/(s—sa+a)

@

For the cost functions that are most important for the present paper, s = 2 and in that
case, as @ moves from zero to one, the exponent 1/(s — sa + «) changes from 1/2 to 1.
Thus, large values of « significantly improve the rates of convergence of L(f) to L*.

Combining Corollary 3 with Lemmas 4, 5, and 6 we obtain the following result. Even
though it may be generalized trivially for other cost functions, for concreteness and sim-
plicity we only state it for the two cost functions that have been most important in various
versions of boosting classifiers. Recall that for both of these cost functions the condition of
Lemma 4 is satisfied with s = 2.

uﬁ—LUﬂs( cﬂﬂ—Auwﬁ

Corollary 7 Let ¢ be either the exponential or the logit cost function and consider the
penalized estimate ﬁL of Corollary 8. Assume that the distribution of (X,Y) is such that
there exists a A > 0 such that infrcr, A(f) = A(f*). Then for every n, with probability at
least 1 — 1/n?, the probability of error L(ﬁl) of the associated classifier satisfies

1(V+2)

L(fn) — L* < Cn~ 1Vt

¥1
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where the constant C depends on the distribution, on the class F, and on the cost function
¢. Also, with probability one,

lim (L(fn) _ L*) WED Z o

n—,oo
If, in addition, condition (3) holds for some « € [0,1] and B > 0, then with probability at
least 1 — 1/n?,

V+2)

L(ﬁz) —L* < C,nfz(zl—a)(v_ﬂ

Corollary 7 is the main result of this paper on which the rest of the discussion is based.
The remarkable fact about this corollary is that the obtained rate of convergence is inde-
pendent of the dimension of the space in which the observations take their values. The rates
depend on the vC dimension of the base class which may be related to the dimension of the
input space. However, this dependence is mild and even if V is very large, the rates are
always faster than n1/(22=a))_ In the rest of the paper we consider concrete examples of
base classes and argue that the class of distributions for which such surprisingly fast rates
can be achieved can be quite large. The dependence on the dimension is mostly reflected
in the value of the constant C'. Recall from Theorem 1 that the value of C is determined
by the smallest value of A for which infscr, A(f) = A(f*) and its dependence on X is de-
termined by the cost function ¢. For complex distributions, high-dimensional input spaces,
and simple base classes, this constant will be very large. The main message of Corollary 7
is that, as a function of the sample size n, the probability of error converges at a fast rate,
independently of the dimension. To understand the meaning of this result, we need to study
the main condition on the distribution, that is, that the minimizer f* of the expected cost
falls in the closure of F) (in the sense that inf;cr, A(f) = A(f*)) for some finite value of .
In the next sections we consider several concrete important examples which help understand
the real meaning of Corollary 7.

Remark. (APPROXIMATION ERROR). In Corollary 7 we only consider the case when
infrcr, A(f) = A(f*) for some finite value of X. In this paper we focus on this simplest
situation and try to understand the nature of the distributions satisfying such conditions.
On the other hand, under general conditions it can be guaranteed that the approximation
error infrer, A(f) — A(f*) converges to zero as A — o0, see, for example, Lugosi and
Vayatis (2003), and Section 6 of the present paper. In this case Theorem 1 implies that
A(fn) — A(f*) with probability one, so that the procedure is always consistent (thus
improving the results of Lugosi and Vayatis (2003) since the penalty we consider in the
present paper is of strictly smaller order in n). Furthermore, Theorem 1 tells us more: the
penalized procedure effectively finds a tradeoff between the approximation properties of the
sets Fy and the estimation error. A precise study of these approximation properties and
of the corresponding rates of convergence is a complex, important, and largely unexplored
problem.

4. Decision stumps on the real line

In this section we consider the simple one-dimensional case when X = [0,1] and when the

base class contains all classifiers g of the form g(z) = s () = Ip>y — [p<y and of the
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form g(z) = s; (z) = Ip<y — Ip>g where ¢ € [0,1] can take any value. (We note here
that all results of this section may be extended, in a straightforward way, to the case when
X = R by the scale invariance of the estimates we consider.) Clearly, the vC dimension of
C is V = 2. In order to apply Corollary 7 it remains to describe the class of distributions
satisfying its conditions. The next lemma states a simple sufficient condition.

Lemma 8 Assume that the cost function and the distribution of (X,Y) are such that the
function f* is of bounded variation. If | - |gy denotes the total variation, define |f|pvo1 =

3(F*(0) + f*(1) +f*|Bv). Then infrex, A(f) = A(f*) whenever X > |f*|pvio,1-

PROOF. Assume that f* has a bounded variation. Then f* may be written as a sum
of a nondecreasing and a nonincreasing function. A nondecreasing function h on [0, 1]
may be approximated by a finite mixture of stumps as follows. Denote C' = h(1) — h(0).
Let N be a positive integer and let ¢,...,txy be 1/N,..., N/N-quantiles of h, that is,
t; =sup{z : h(z) < h(1)i/N},i=1,...,N. Then the function

is at most C'/N away from h in the supremum norm. Note also that he Flhlpyo,- Similarly,
a nonincreasing function g may be approximated by a function g € F svo. Such that

SUPgeo,1]19(z) — g(z)| < (9(0) — g(1))/N. Thus, the function f =h+ g is such that
h(1) — h(0) +9(0) —g(1) _ |f*|Bv

mzl[zl’)” |f*(z) = f(z)] < ~ =%

N
_ h(1) +h(0 C
l‘>t1 2 +Z:ZI 2N8t7f

ZIQ

and moreover f € Flf+5vo, since |h|py +|g|pv = |f*|pv. Thus, since N is arbitrary, f* is
in the closure of Fjs«| sy, With respect to the supremum norm. The statement now follows
by the continuity of ¢ and the boundedness of the functions in the closure of Fj with
respect to the supremum norm. ||

|BV,0,1

Thus, the fast rates of convergence stated in Corollary 7 can be guaranteed whenever
f* is everywhere finite and has a bounded variation. Recall that for the exponential cost
function f* = (1/2)log(n/(1 — n)) and for the logit cost function f* = log(n/(1 —7n)). In
both cases, it is easy to see that f* has a bounded variation if and only if 5 is bounded
away from zero and one and has a bounded variation. In particular, we obtain the following
corollary matching the minimax rate of convergence for the probability of error obtained
with a different method by Yang (1999a).

Corollary 9 Let X € [0,1]. Let ¢ be either the exponential or the logit cost function and
consider the penalized estimate ﬁb of Corollary 3 based on decision stumps on the real line.
If there exists a constant b > 0 such that b < n(X) < 1 — b with probability one and 1 has
a bounded variation, then for every n, with probability at least 1 — 1/n?, the probability of
error L(fn) of the associated classifier satisfies

L(fa) ~L* < Cn~s
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where the constant C depends on b and |n|py. Also, with probability one,

. 1 - <\
nlgrolons (L(fn) —L ) =0.
If, in addition, condition (3) holds for some o € [0,1] and B > 0, then for every n, with
probability at least 1 —1/n?,

L(fy) - L* < Cn 57

The dependence of the value of the constant C on b and |n|py may be determined in
a straightforward way from Theorem 1. If \;, is the smallest value for which inf ;¢ Fag A(f) =

A*, then the constant C in the first inequality is proportional to ((Lg + 2)(;5(/\16))1/6 ()\kgb'(/\k))l/3.
Clearly, Ax can be bounded as a function of b and |n|py as shown in Lemma 8. Concrete
values are given in Corollary 12 below in the more general multivariate case.

The condition that n(z) is bounded away from zero and one may seem to be quite unnat-
ural at first sight. Indeed, values of n(x) close to zero and one mean that the distribution
has little noise and should make the classification problem easier. However, regularized
boosting methods suffer when faced with a low-noise distribution since very large values of
A are required to drive the approximation error inf e 7, A(f)— A* close to zero. (Note, how-
ever, that even when 7 does not satisfy the conditions of Corollary 9, lim,, L(]/”;L) =L*
almost surely, under a denseness assumption, by Corollary 7.) The next simple example
illustrates in part that phenomenon: indeed, if A is not sufficiently large to make F) contain
f*, then the classifier minimizing A(f) over F) may indeed have a very large probability of
error because the function minimizing the A-risk puts all its mass on points for which 7 is
close to 0 or 1, while “neglecting” other points.

Example 1. (MINIMIZING A COST FUNCTION FOR A FIXED A MAY BE BAD.) This example
shows a situation in which if A is not large enough, even though the class F, contains a
function f such that the corresponding classifier g; equals the Bayes classifier g*, the func-
tion f, minimizing the expected cost A(f) over F induces a classifier with a significantly
larger probability of error.

Consider a simple problem where the distribution of X is atomic, distributed uniformly
on the four points z1,...,z4. The base class C contains five classifiers: for each ¢ =1,...,4
there is a g;(7) = 2[[;—,,] — 1 and also C contains the trivial classifier go(z) = 1. Obviously,
for any A > 0, the functions in F) induce all possible 16 classifiers on the four-point set
X = {z1,...,z4}. Now consider the distribution defined by n(z1) = 1/2+9, n(z2) = 1/2—9,
n(z3) = 1, and n(z4) = 0. Then it is easy to show that if ¢ is a convex strictly increasing
differentiable cost function and A is such that ¢'(—Xg) = 24, then for any A < Mg, the
optimizer of the cost function 7)\ puts positive weight on z3 and x4 and zero weight on x; and
x2 and thus has a probability of error L(gﬁ) = 1/4 while the Bayes error is L* = 1/4—§/2.
The details of the proof are given in Appendix B. Note that the fact that n is 1 and 0
on z3 and z4 is only to make the example simpler; we could assume 7n(z3) = 1/2 + A,
n(z4) = 1/2 — A with A > § and observe a comparable behavior.

If 7 can be arbitrarily close to 0 and 1, then f* takes arbitrarily large positive or
negative values and thus cannot be in any F, (since functions in this set take values in
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[-A,A\]). However, one may easily force the condition of Corollary 9 to hold by adding
some random noise to the data. Indeed, if, for example, we define the random variable Y’
such that it equals Y with probability 3/4 and —Y with probability 1/4, then the function
n'(z) =PY' =1|X = z] = 1/4+n(x)/2 takes its values in the interval [1/4,3/4] (a similar
transformation was also proposed by Yang (1999a), Yang (1999b)). More importantly, the
Bayes classifier ¢’ for the distribution (X,Y”) coincides with the Bayes classifier g* of the
original problem. Also, recalling from Devroye, Gyorfi, and Lugosi (1996) that for any
classifier g,

L(g) — L* = Ell{g(x)2¢(x)]|120(X) — 1

and denoting the probability of error of g under the distribution of (X,Y”) by L'(g) and
the corresponding Bayes error by L'*, we see that for any classifier g,

L(g) - L* =2(L'(g) - L") . (4)

This means that if one can design a classifier which performs well for the “noisy” problem
(X,Y"), then the same classifier will also work well for the original problem (X,Y"). Thus, in
order to enlarge the class of distributions for which the fast rates of convergence guaranteed
by Corollary 9 holds, one may artificially corrupt the data by a random noise, replacing each
label Y; by a noisy version Y, as described above. Then the distribution of the noisy data
is such that 7'(z) is bounded away from zero. If we also observe that |7'|sy = (1/2)|n|Bv
and that if n(z) satisfies condition (3) for some « € [0,1] and 8 > 0 then 7/ (z) also satisfies
condition (3) with the same « € [0, 1] but with 8’ = 2%, we obtain the following corollary.

Corollary 10 Let X € [0,1]. Let ¢ _be either the exponential or the logit cost function
and consider the penalized estimate f, based on decision stumps, calculated based on the
noise-corrupted data set described above. If n(x) has a bounded variation, then for every n,
with probability at least 1 — 1/n?, the probability of error L(f,) of the associated classifier
satisfies

L(fs) —L* < Cn~s

where the constant C' depends only on |n|py. If, in addition, condition (3) holds for some
a € 1[0,1] and B8 > 0, then

L(f,) - L* < Cn 5% |

Of course, by corrupting the data deliberately with noise one loses information, but
it is a curious property of the regularized boosting methods studied here that the rate
of convergence may be speeded up considerably for some distributions. (Indeed, this fact
was already pointed out by Yang in establishing general minimax rates of convergence in
various settings (see Yang (1999a), Yang (1999b)).) Besides, recall that, in the case we
consider a cost function ¢ such that the constant Ly is infinite in equation (2), Theorem
1 cannot be applied in general; however since the noise-degraded 7’ is bounded away from
0 and 1, Ly can be replaced by some finite constant (see the remark about cost functions
following Theorem 1), and hence Theorem 1 can be applied for the noisy distribution. For
many distributions, the performance deteriorates by adding noise, but at least the rate of
convergence is guaranteed to stay the same, and only the value of the constant C' will be
affected. Unfortunately, it is impossible to test whether 7 is bounded away from zero or
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not, and it may be safe to add a little noise. Of course, the level of the added noise (i.e., the
probability of flipping the labels in the training set) does not need to be the 1/4 described
above. Any strictly positive value may be used and Corollary 10 remains true. While a
more precise study is out of the scope of this paper, let us just remark that a sensible choice
of the noise level based on the present bounds should be able to find a tradeoff between
the improvement of the bias in the A-risk and the performance degradation as appearing
in equation (4).

Finally, a natural question is whether the improved convergence rate that could be ob-
tained by adding a small labelling noise to the training data really is a practical consequence
of using a “surrogate” convex loss (the function ¢) instead of the 0 — 1 loss, or if it is just
an artefact of the analysis. Namely, consider a case where the data is completely separable
with some margin 6 > 0 by some function f € Fj. In this situation the margin bounds of
Koltchinskii and Panchenko (2002) ensure that the convergence rates are as fast as in our
analysis, and no labelling noise is needed. However, in a generic situation the problem with
using the surrogate A-risk is the disequilibrium between regions where the target function
f* is very large or even infinite, and other regions where it is relatively small (of course in
such a situation the data is not separable). In this situation, it may very well happen that
the estimator will tend to concentrate all of its efforts on the former regions while neglect-
ing the latter, as was shown prototypically in Example 1. Then, adding a small amount
of noise could effectively bring the estimator to improve on the latter regions, which would
have a definite effect on generalization error. Whether adding noise artificially is helpful in
practice should be investigated by an adequate experimental study.

5. Decision stumps in higher dimensions

5.1 Stumps and generalized additive models

In this section we investigate the case when X = [0,1]? and the base class C contains
all “decision stumps”, that is, all classifiers of the form s;':t(m) = H[z<i>>t] — H[x(i) <] and

$;4(T) = H[z(i)<t] — H[z@)Zt]’ t€[0,1],i=1,...,d, where () denotes the i-th coordinate of

An important property of boosting using decision stumps is that of scale invariance.
Indeed, if each component of the observation vectors X; is transformed by a (possibly
different) strictly monotone transformation then the resulting classifier does not change.
This remark also implies that the assumption that the observations take their values from
the bounded set [0, 1]? is not essential, we use it for convenience.

A straightforward extension of the proof of Lemma 8 in the previous section shows that
the closure of F) with respect to the supremum norm contains all functions f of the form

f@) = filW) + - + fa(zD)

where the functions f; : [0,1] — R are such that |fi|pvo1 + -+ +|falBv,0,1 < A. Therefore,
if f* has the above form, we have infcr, A(f) = A(f*).
Recalling that the function f* optimizing the cost A(f) has the form

n(z)

ff(z) = %logm
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in the case of the exponential cost function and

n(z)

f(z) = 1081_777@)

in the case of the logit cost function, we see that boosting using decision stumps is especially
well fitted to the so-called additive logistic model in which 7 is assumed to be such that
log(n/(1—n)) is an additive function (i.e., it can be written as a sum of univariate functions of
the components of ), see Hastie and Tibshirani (1990). The fact that boosting is intimately
connected with additive logistic models of classification has already been pointed out by
Friedman, Hastie, and Tibshirani (2000). The next result shows that indeed, when 7 permits
an additive logistic representation then the rate of convergence of the regularized boosting
classifier is fast and has a very mild dependence on the distribution.

Corollary 11 Let X € [0,1]? with d > 2. Let ¢ be either the ezponential or the logit cost
function and consider the penalized estimate f, of Corollary 8 based on decision stumps.
Let Vo =3, V3 = 4,Vy = 5, and for d > 5, Vy = |2logy(2d)]|. If there exist functions

fiy--osfn 1 [0,1] = R of bounded variation such that log 1Z(n$()z) = Zle fi(zD) then for

every n, with probability at least 1 — 1/n?, the probability of error L(ﬁb) of the associated
classifier satisfies

~ _l(w)
L(fy) - 1* < on~iin

where the constant C depends on 2?21 |filBvo,1- If, in addition, condition (3) holds for

some a € [0,1] and B > 0, then

> V2
L(F) - L* < on~7em (75)

PROOF. The statements follow from Corollary 7. The only detail that remains to be checked
is the vc dimension V; of the class C of decision stumps. This may be bounded by observing
that the shatter coefficient (i.e., the maximum number of different ways n points in [0, 1]¢
can be classified using decision stumps) is at most min(2d(n + 1),2"). Thus, for d > 5,
2d(n + 1) < 2™ if and only if n > logy(2d) + logy(n + 1) which is implied by n > 2log,(2d).
For d < 4, just notice that decisions stumps are linear splits and the vC dimension of the
class of all linear splits in R? equals d +1. |

Remark. (DEPENDENCE ON THE DIMENSION.) Under the assumption of the additive logis-
2
tic model, the rate of convergence is of the order of n_m (%) where V; depends on d in
a logarithmic fashion. Even for large values of d, the rate is always faster than n—1/2(2-),
It is also useful to examine the dependence of the constant C' on the dimension. A quick
look at Theorem 1 reveals that C' in the first inequality of Corollary 11 may be bounded
by a universal constant times 1/Vgp(\)1/Va @' () where X is the smallest number such that
infrcr, A(f) = A*. Thus, we may take \ = S | filBvoa. Since Vi = |2logy(2d)], the
dependence on the dimension is primarily determined by the growth of the cost function
¢. Here there is a significant difference between the behavior of the exponential and the

logistic cost functions in high dimensions. For the purpose of comparison, it is reasonable
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to consider distributions such that A = 3>%_, | fi|pv.0.1 is bounded by a linear function of d.
In that case the constant C depends on d as O(y/delogd) in the case of the exponential
cost function, but only as O(y/dlogd) in the case of the logistic cost function (using directly
Theorem 1 instead of the upper bound mentioned above). In summary, regularized boosting
using the logistic cost function and decision stumps has a remarkably good behavior under
the additive logistic model in high dimensional problems, as stated in the next corollary.

Corollary 12 Let X € [0,1]¢ with d > 2. Let ¢ be the logit cost function and consider the
penalized estimate f, of Corollary 3 based on decision stumps. Let B be a positive constant.
If there exist functions fi,...,fn : [0,1] = R with A = Z?:l |filBv,0,1 < Bd such that
log 12(;&) = 2?21 fi(z®) then for every n, with probability at least 1 —1/n?, the probability
of error L(f,) of the associated classifier satisfies

~ ,l(Vd+2)
L(fn) —L* < C+/dlogd n *\Va+!

where C is a universal constant and Vy is as in Corollary 11. If, in addition, condition (3)
holds for some « € [0,1] and 8 > 0, then

~ 1 Vq+2

L(F) - I* < C(dlogd) ™= n 7= (V1)

Remark 1. (ADDING NOISE.) Just like in the one-dimensional case, the conditions of
Corollary 11 require that  be bounded away from zero and one. To relax this assumption,
one may try to add a random noise to the data, just like in the one-dimensional case.
However, this may not work in the higher-dimensional problem because even if f* is an
additive function, it may not have this property any longer after the noise is added.

Remark 2. (CONSISTENCY.) The results ~obtained in this paper (for instance, Corollary
7) imply the consistency of the classifier f,, under the only assumption that f* may be
written as a sum of functions of the components, that is, that L(f) — L* almost surely.
The additional assumption on the bounded variation of the components guarantees the
fast rates of convergence. However, if f* is not an additive function, consistency cannot
be guaranteed, and the example of the previous section shows that boosting is not robust
in the sense that it is not even guaranteed to perform nearly as well as the best classifier
contained in the class. Still, it is important to understand the structure of the classifiers
that can be realized by aggregating decision stumps. The rest of this section is dedicated
to this problem.

5.2 Set approximation properties of mixtures of stumps

In what follows we investigate what kind of sets A C [0, 1]¢ can be well approximated by sets
of the form A; = {z|f(x) > 0}, where f € F) is a linear combination of decision stumps.

It helps understand the main properties of these sets if we first consider the discrete
case, that is, when X is a grid of the form X = {0,1/k,...,k/k}¢. If d = 1, obviously any
function can be written as a mixture of stumps since it is always of finite variation in this
discrete setting.
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Figure 1: Points or regions belonging to the set A are in black. Left: four points in XOR position.
Right: a counterexample to theorem 14 when X is not a cube: if the center square is not
part of X, the non-XOR requirement is satisfied, but any way to “extend” X and A to
the center square will lead to a creation of an XOR position.

Next consider the case d = 2. It is then easy to see that if a set A is obtained as the
support of the positive part of an additive function of the form f(z) = fi(z(V) + fo(z®)
then there cannot exist four points z,y, z, w, such that these points are the corners of a
rectangle aligned with the axes, the two corners on one diagonal are elements of A, and the
two points of the other diagonal are not in A. We call this the “XOR” position. It turns out
that this simple property, which we call for brevity the “non-XOR requirement”, is actually
a necessary and sufficient condition for a set to be of the form Af for f € F, for any A > 0.

Next we generalize this idea to d-dimensions and characterize completely the sets one
can obtain with the additive models in the discrete setting. For this we need a more general
definition of the XOR position (see also Figure 1).

Definition 13 Let X = {0,1/k,...,k/k}? and A C X. We say that four points z,y, z,w
are in XOR position with respect to A if there exists an 1 < iy < d such that

{_/E(ZO) = y(io)’ 2(10) = w(m);

2@ =20 40 = @ for i +£ i, ©

and z,w € A but y,z & A.

For a discrete grid we have the following characterization of sets realizable as the positive
part of the mixture of stumps. Recall that a set S is called a monotone layer in R? if it has
one of the following properties: either (1) for any z € S all points y < z are also in S, or
(2) for any = € S all points y > z are also in S. (We say that y < z if the inequality holds
componentwise. )

Theorem 14 Let X = {0,1/k,...,k/k}¢ and A C X. The following properties are equiv-
alent:

(i) There exists f such that A = {z|f(z) > 0} where f(x) = fi(zM) + ... + fa(z(¥);

(7i) There does not exist any x,y,z,w € X in XOR. position with respect to A;

(iii) A can be transformed into a monotone layer by a permutation of the order along
each azis, that is, there exist permutations o1,...,04 of {0,...,k} such that the image of
A by the function s : z = (i1/k,...,iq/k) — s(z) = (01(i1)/k, - ..,04(iq) /k) is a monotone
layer.
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PROOF. (i) = (ii): consider four points z,y, z, w satisfying (5). Suppose that z,w € A and
y ¢ A, which means f(z), f(w) > 0, f(y) < 0. Note that condition (i) and (5) imply that
f(x)+ f(w) = f(y) + f(2). Hence we must have f(z) > 0 and the points cannot be in XOR
position.

(ii) = (iii): consider “slices” of X perpendicular to the first coordinate axis, that is,
St ={ze€ x|z = i/k}. Define an order on the slices by saying that S} < S} if and
only if for any z = (i/k,zs,...,74) € S}, if we denote y = (ji/k,za,...,7q) € S}, then
Ta@) < ]I[A(y)ﬂ' Now, note that (ii) implies that this order is total, that is, for any i,
either Sz-l =< Sj or SJI- < Sz-l. As a consequence, we can rearrange the order along the first
coordinate using a permutation o1, so that the slices are sorted in increasing order. By
doing this we do not alter the non-XOR property, hence we can repeat the corresponding
procedure along all the other coordinates. It is then easy to see that the image of A by
these successive reorderings is now a monotone layer.

(iii) = (i): first note that any monotone layer can be represented as a set of the form
described in (i). Therefore, any set obtained from a monotone layer by permutations of
the order along each of the axes can also be represented under this form, since it is just a
matter of accordingly rearranging, separately, the values of f1,..., fg. |1

Note that it is essential in the last theorem that X is an hypercube [0,1]¢. In Figure
1 we show a contrived counterexample where X is not a cube and satisfies condition (ii)
of the above theorem; yet it is not possible in this case to find a function f satisfying (i),
because there is no way to “complete” the middle square so that the non-XOR requirement
is still satisfied.

In the general case when X = [0,1]¢, we can derive, based on the discrete case, an
approximation result for sets whose boundary is of measure zero. The approximation is
understood in the sense of L! distance between indicators of sets with respect to the prob-
ability measure of X on X (or, equivalently, the measure of the symmetric difference of the
sets). Note that this distance is always at least as large as the excess classification error.

Theorem 15 Let A C X be a set whose boundary dA is of measure zero. Suppose there do
not exist four points x,y,z,w € X in XOR position with respect to A. Then there exists a
sequence (fy) of linear combinations of decision stumps such that

lim P[|Tjz, x)>0) — Iixeayl] = 0 -

n—oo

PROOF. We approximate X by discrete grids. Fix some n € N and for I = (41,...,14) €
{0,...,n —1}* denote 27 = (i1 /n,...,iq/n) and let B(I) be the closed box z; + [0,1]%. Let
A, be the set of indices I such that B(I) contains at least a point of the boundary of A,
and B, = U[eAnB(I).

Now consider the discrete set X, = {xj, Ie{0,...,n— l}d} and the projection A, =

ANX,. Now in X, A, satisfies the hypothesis (ii) of Theorem 14, and hence (i) is satisfied
as well and there exists a function f,,(z) = fu1(zW)+.. .+ fr.a(z(?) defined for z € X,, with
A, = {z € &,|f(z) > 0}. Extend the functions f,; on [0,1] by defining (with some abuse
of notation) fy, j(i/n +€) = fn (i/n) for € € (0,1/n). Obviously, the extended functions
fn,j are still mixtures of stumps.
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Let now g, (z) = Ij, (2)>0, ¢ € X. We have g, (z) = Ija(4)) for z ¢ B, by construction,
and therefore

P[|Li, (x)>00 — Ixeall]l < P[X € By,

which converges to zero as n — oo, since I[g,] — Ij54] pointwise. [

Remark. (DISREGARDING THE BOUNDARY.) Since we concentrate on sets A with boundary
of measure 0, it is equivalent in the sense of the L' distance between sets to consider A, its
closure A or its interior int(A). One could therefore change the above theorem by stating
that it is sufficient that the “non-XOR requirement” be satisfied by some set C such that
int(A) C C C A. It would be even nicer, if only of side interest, only to take into account
quadruples of points not on the boundary of A to satisfy the non-XOR requirement, so that
any problem arising with the boundary may be disregarded. In Appendix C we show that
this is actually the case whenever P(0A) = 0 for some measure P having full support e.g.,
the Lebesgue measure).

The theorems above help understand the structure of classifiers that can be realized by
a linear combination of decision stumps. However, for boosting to be successful it is not
enough that the Bayes classifier g* can be written in such a form. It may happen that even
though g* is in the class of classifiers induced by functions in F), the classifier corresponding
to f, minimizing the cost A(f) in F) is very different. This is the message of Example 1
above. The next example shows a similar situation in which for any A > 0 there exists an
[ € F) such that g; = g*.

Example 2. (BAYES CLASSIFIER MAY BE DIFFERENT FROM THE ONE CHOSEN BY BOOST-
ING.) Consider a two-dimensional problem with only two non-trivial classifiers in C given
by two linear separators, one vertical and one horizontal, and the trivial classifier assigning

—1 to everything. We have four regions (denoted (g; gi)) and only three parameters

(only one parameter per classifier including the trivial one). By considering only symmetric
situations where 7 is the same on D; and Dy, we see that f, the function minimizing A(f)
over (5o F», must also be symmetric and hence we reduce (after re-parameterization) to
a+b)/2 a )
b (a+b)/2 )

First consider a situation in which X falls in D; or D4 with probability zero. Then in
this case f = f* on Dy and D3. Furthermore, by choosing suitably 7 in these regions, one
may assume that ¢ > 0 > b but a + b > 0. Now suppose that we put a tiny positive weight
€ on regions D1 and Dy, with the Bayes classifier on these regions being class —1. But by
continuity, the associated f. will stay positive on these regions if ¢ is small enough. Then
97, # ¢g* on these regions, while obviously for any A > 0 we can find an appropriate function

[ € M) such that g; = g* = (j _11) in this case.

two parameters a,b. The minimizer f is then of the form f = ((

6. Examples of consistent base classes

The results of the previous section show that using decision stumps as base classifiers may
work very well under certain distributions such as additive logistic models but may fail if
the distribution is not of the desired form. Thus, it may be desirable to use larger classes
of base classifiers in order to widen the class of distributions for which good performance
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is guaranteed. Recent results on the consistency of boosting methods (see, e.g., Breiman
(2000), Bihlmann and Yu (2003), Jiang (2003), Lugosi and Vayatis (2003), Mannor and
Meir (2001), Mannor, Meir, and Zhang (2002), Zhang (2003)) show that universal consis-
tency of regularized boosting methods may be guaranteed whenever the base class is so that
the class of linear combinations of base classifiers is rich enough so that every measurable
function can be approximated. In this section we consider a few simple choices of base
classes satisfying this richness property. In particular, we recall here the following result
(Lugosi and Vayatis, 2003, Lemma 1):

Lemma 16 (LUGOSI AND VAYATIS) Let the class C be such that its convex hull Fi contains
all the indicators of elements of By, a subalgebra of the Borel o-algebra B(R?) of RY, such
that By generates B(RY). Then

W55 B A=A

More generally, a straightforward modification of this Lemma shows that whenever F =
Uixso Fa is dense in L1 (u), then it is true that infycr A(f) = A(f*).
We consider the following examples; in all cases we assume that X = RY.

(1) Ciin contains all linear classifiers, that is, functions of the form g(z) = 2Ij,.,<p) — 1,
ac€RY beER.

(2) Crect contains classifiers of the form g(z) = 2[cg) — 1 where R is either a closed
rectangle or its complement in RY.

(3) Cpay contains classifiers of the form g(z) = 2[,cp) — 1 where B is either a closed ball
or its complement in R%.

(4) Cey contains classifiers of the form g(z) = 2lIcp) — 1 where either E a closed ellipsoid
or its complement in R%.

(5) Ciree contains decision tree classifiers using axis parallel cuts with d+ 1 terminal nodes.

Clearly, the list of possibilities is endless, and these five examples are just some of the
most natural choices. All five examples are such that |J,.,F) is dense in L;(u) for any
probability distribution g (In the cases of Crect, Cpar, and Cey this statement is obvious.
For Cy;;, this follows from denseness results of neural networks, see Cybenko (1989), Hornik,
Stinchcombe, and White (1989). For Ciee, see Breiman (2000).) (We also refer to the
general statement given as a universal approximation theorem by Zhang (2003) and which
shows that, for the classical choices of the cost function ¢, we have, for any distribution,
infreyy, o7 A(f) = A* as soon as |J,- F» is dense in the space of continuous functions
under the supremum norm.) In particular, the results in the present paper imply that in all
cases, the penalized estimate f, of Corollary 3 is universally consistent, that is, L(f,) — L*
almost surely as n — oo.

Recall that the rates of convergence established in Corollary 7 depend primarily on the
vC dimension of the base class. The vC dimension equals V = d + 1 in the case of C;,,
V =2d+1 for Crect, V = d+ 2 for Cpqy, and is bounded by V = d(d + 1)/2 + 2 for C¢y
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and by V = dlogy(2d) for Cyee (see, e.g., Devroye, Gyorfi, and Lugosi, 1996). Clearly, the
lower the VC dimension is, the faster the rate (estimation is easier). The following question
arises naturally: find a class with VC dimension as small as possible whose convex hull is
sufficiently rich in L;(p). A recent result by Lugosi and Mendelson (2003) establishes the
existence of such a class with VC dimension at most 2. This fact reveals that the combina-
torial complexity of a class is not always a reliable measure of the approximation capacity of
its convex hull. However, the construction by Lugosi and Mendelson is theoretical and there
is probably more to say if one is concerned with practical implementations of boosting meth-
ods (see also Remark 1 below). In all cases, for even moderately large values of d, the rate
of convergence stated in Corollary 7 is just slightly faster than n—1/(22-®) and the most
interesting problem is to determine the class of distributions for which inf;cr A(f) = A*
for some finite value of X. In all the above-mentioned special cases this class is quite large,
giving rise to a remarkably rich class of distributions for which the dimension-independent
rates of convergence holds. The characterization of these classes of distributions similar to
the one given in the one-dimensional case is far from being well understood. In the case of
Ciin the problem is closely related to the approximation properties of neural networks. We
merely refer to Barron (1992, 1993), Darken, Donahue, Gurvits, and Sontag (1997), Girosi
and Anzelloti (1993), Maiorov, Meir, and Ratsaby (1999), Meir and Maiorov (2000), Pinkus
(1999), Sontag (1992) for related results. Most of these references provide quantitative re-
sults relating the approximation error to the smoothness of the target function. However,
there are very few attempts to characterize the functions that can actually be reconstructed
with given dictionaries. In one dimension, the problem is well-understood: the closure un-
der the uniform norm of the class of piecewise constant functions is the class of regulated
functions (for which both left and right limits exist at each point). Hence, by limiting
the bounded variation, we lose the ability to approximate these regulated functions with
linear combinations of decision stumps. In R%, there is no straightforward generalization of
regulated functions. Another interesting question is to investigate the approximation rates
in terms of the smoothing parameter A for universal base classes when the approximating
function is taken in F), and the work by Meir and Maiorov (2000), Mannor, Meir, and
Zhang (2002), may provide some hints for a systematic approach.

Remark 1. (COMPUTATIONAL PROBLEMS.) Using the above-mentioned classes as base
classifiers may cause computational problems in high-dimensional problems. Typical boost-
ing algorithms perform an iterative gradient descent optimization to minimize the empirical
cost A,(f) and each iteration step involves optimization over the class C. This may be effi-
ciently computed when C is the class of decision stumps but in any of the cases considered in
this section, optimization may be problematic. There seems to exist a tradeoff between the
richness of the base class and computational feasibility of the optimization. In practice one
may try to find classes “in between”, that is, base classes larger than decision stumps which
may not give rise to universally consistent classifiers but still allow efficient optimization.
Here we do not pursue this issue further.

Remark 2. (INVARIANCE.) In the previous section we already emphasized that the classifier
fn is invariant under monotone transformations of the coordinate axes, when C is the class
of decision stumps. This invariance property is important in situations when the different
components of the feature vector X belong to incomparable physical quantities. Scale
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invariance shared by the method based on the classes Cy ¢t and Cyree but not with the rest.
On the other hand, the rest of the examples have different important invariance properties.
For example, boosting based on Cy,, Cpen, and Cey are rotation invariant, and Cp, and
Cey are invariant under arbitrary invertible linear transformations of the feature space. The
choice of the base class should be influenced by the desirable invariance property in practice.

7. Proof of Theorem 1 and related results

In this section we apply general abstract single-model and model selection theorems appear-
ing in Blanchard, Bousquet, and Massart (2003) (recalled in Appendix A for completeness)
in the regularized boosting setting to derive Theorem 1. We state here single-model con-
vergence rate theorems as well since the hypotheses to satisfy are essentially the same.
This way we can recover a theorem that is similar to results appearing in Bartlett, Jordan,
and McAuliffe (2003) (see a short discussion below). The theorems cited in Appendix are
extensions of model selection methods by penalization originating in works by Birgé and
Massart (1998), Massart (2000). We also use the technique of localized Rademacher aver-
ages for fine-scale estimates of the capacity of function classes, a principle that has been
put forward in Bartlett and Mendelson (2002), Bartlett, Bousquet, and Mendelson (2002),
and Bousquet (2003).

7.1 Rates of convergence in a fixed model

In this section we first restrict our attention to the empirical risk minimization estimator on
a fixed model F). Define ]/”2 = argminge 7 A, (f). We then have the following theorems.

Theorem 17 Assume that the base class C has VC dimension V. Then, for any C > 1,
with probability at least 1 — exp(—3), we have:

AE) = A7) < G (ot (A = 4G + i m) + T,

C —1 \fer, n
where V42 1 v 1 V42
Ra(hm) = ea(V + 275 (L + 2)600) 757 (0 () P $58E

and

bi(A) = co(Lg + 2)p(N),

where c1,cy are numerical constants, and Ly is defined by (2).

Theorem 18 (EXACT BIAS; BARTLETT, JORDAN, AND MCAULIFFE.) Assume that the base
class C has VC dimension V. Then, with probability at least 1 — exp(—9), we have:

AR = AU < jnf (A() = A7) + Rolym) + 2202,

where

1% V+

RZ()\,n) = Cl(V + 2)“;'_1% max (M(A)_lqsl()\)Q,gﬁ(A))ﬁ (A¢’(A))V+ln_%v_+1

N
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and
ba(A) = c2(¢' N> M(N) ™" + 6(N)),

where c1,c2 are numerical constants, and M (X) = inf e[y " (x).

Remark. These two theorems are also consequences of a general theorem recalled in
Appendix A—the difference comes from a slight difference in the application of the latter.
We mention these two statements here to draw a short comparison. Theorem 18 is almost
identical to Theorem 17 of Bartlett, Jordan, and McAuliffe (2003) (more precisely it is a
special case of the latter, since, as already pointed out earlier, our general assumptions about
¢ are stronger in this paper). Note also that the proofs use very similar tools, although in
the present paper a good part of them is wrapped up into the general theorem quoted in
Appendix A. Theorem 17 on the other hand, is really the single-model counterpart of the
penalized procedure of Theorem 1.

An advantage of Theorem 18 is the exact bias term, that is, the absence of the factor
of (C+1)/(C —1) in front of the approximation error. Note, however, that this exact bias
is lost anyway when one turns to the true classification risk using Lemma 6. Also, since in
our corollaries we assume the bias to be zero, this improvement becomes irrelevant. On the
other hand, the dependence in V' of the multiplicative constant is slightly better in Theorem
17 (note that a factor of order qS(/\)V%rl is replaced by (¢I(A)2M(A)7l)%ﬁ in Theorem 18:
for instance taking ¢ as the exponential loss, the latter expression is the third power of
the former; for the logit cost, this even more noticeable: the latter expression is of order
exp(A/(V + 1)) while the former is only of order >\V+r1)

Finally, note that neither of these theorems can be used directly (at least up to our
knowledge) to derive an oracle bound for a penalized procedure. For the proof of Theorem
1 we need additional model selection machinery which in particular only works under the
hypotheses of Theorem 17.

7.2 Proofs

PROOF OF THEOREM 1. Theorem 1 will be derived as a consequence of Theorem 22 in
Appendix A. According to the notations used in the Appendix, we define the loss function
L(z,y) = ¢(—=zy) and write £(f) as a shorthand notation for the function (z,y) — £(f(x),y),
so that A(f) = E[4(f)].

We define the reference space & as the set of functions f from X into R U {—o00, +00}
such that £(f) € L?(P) where P denotes the probability measure induced by (X,Y). Note
that f* € & (even if f* is infinite at some points, because for any fixed point € X, the
average loss E[£(f*(X),Y)|X = z| is always bounded by 1). We consider the countable
family of models (F), ),k € N.

Next we verify assumptions (i) — (v) of Theorem 22. In the sequel, ¢ will denote a
numerical constant whose value is not necessarily the same in different lines. We first need
to choose a pseudo-distance d on &. We use

d*(f, f') = El(e(f) - €(f")?].
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This makes assumption (i) trivially satisfied. Hypothesis (447) (model-wise boundedness
assumption) is also straightforward: for any f € F),

£(F) (@, 9)| = |p(=yf(2))] < (),

so that hypothesis (i7) is satisfied with by = ¢(\g).
The verification of hypothesis (i) is summarized in the following Lemma.

Lemma 19 Assume ¢ : R — Ry is a twice differentiable, strictly increasing and strictly
convez function. Denote

L¢ = 0V max
r€ER

<2<¢'(x> + ¢/(—x))
¢ (z) + & (—2)

If Ly < o0, then for any function f € F\, we have
E[(£(f) = £(F*)] < (6(N) + d(=A) + Ly)EL(f) — £(f)] -

Thus, hypothesis (ii) holds with Cy = (Lg 4+ 2)p(Ax)-
Finally, we turn to hypothesis (iv) which contains the most information about the
models. The goal is first to bound, for any fy € F,,

— (¢(z) + ¢(—$))> :

Ex(r)=E| sup [(P—F)(f)—£(fo))l|,
JEFA
d2(f7f0)51'

where Pf and P, f denote the expectation of f under P and under the empirical probability
distribution P,, respectively. If we define the set of functions

Gx.jo = {L(f) — L(fo)|f € Fa}s
then

Fx(r)=E | sup [(P— P)g|
[SOWN
Pg?<r

n

i=1

2
< —EpE. sup
n 9E€GA, fo
Pg%<r

bl

where the ¢; are i.i.d. Rademacher variables, by a standard symmetrization argument.
We use the following lemma (which is essentially the same as Lemma 2.5 in Mendelson
(2002), except that we need to make some multiplicative factors explicit).

Lemma 20 (MENDELSON). Let F be a class of functions such that || f|l,, < T for all
f € F. Setr? = supfej_-Epf2 and assume that for some v > 0 and p < 2, for any
empirical measure Py,

log N (g, F, La(P,)) < ye~P.
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(where N (e, F,Lo(P,)) denotes the e-covering number of F with respect to the distance
Ly(P,)). Then, putting B = 7%(2 —p) L, we have

n

> eif(Xi)

=1

1 2-p 4 2-p _12-p
—EpE, sup < cmax (BT 2 BT T2rn 22+P)

Vvn feF

To apply the lemma we need to estimate the entropy numbers of class G, f,. First, since
C is of finite dimension V', we have that for any empirical measure P,,

log NV (g, conv(C), L*(P,)) < ce7?,

where p = %, as a consequence of Theorem 2.6.9 of van der Vaart and Wellner (1996,
p.142). Now note that for a class of real functions F over X, if we define G as the set of
functions over X x {—1;1} that can be written as (z,y) — yf(z) for some f € F, then the
covering numbers of F for L?(P,) are the same as the covering numbers of set G for L%(Q,,)
provided the marginal of @,, on X is P,.

Furthermore, functions in F) take values in [—\, A], and ¢ has Lipschitz constant ¢'(\)
on this interval. Therefore, by standard arguments (translation by a fixed function, dilation,

application of a Lipschitz function, see, e.g., Pollard (1984) for the necessary tools), we have
_&
A¢'(A)
We can now apply Lemma 20 to the class G, f,, with

log (&, Oosos La(Py)) < log ( 7, L2<Pn)) < AP (N)Pe .

= sup P¢’<r,

[ISOWN
Pg’<r

Ty = $(A), and 75 = ¢(A¢'(N))?, so that we obtain, putting By = (A¢'()))?/2(2 — p)~ 1,

1 n 2p _yho 2P 13
—E sup Zeig(Xi,Yi) < cmax (B)\TALP,Bf“’TAQ“’n 2 2+§) . (6)
\/7_7/ geg/\,fo i=1
Pg’<r

To study the behavior of the last upper bound, we determine when then first term is
dominant in the above max. This is the case when

4 2
r > (Th\By)*rn 2 . (7)
Thus, if the above condition over r is satisfied, we have

Fa(r) < a(r) = “= By’

Vn
for some numerical constant A that we can assume to be greater than 1, and ) is a sub-root
function as requested.
Finally, the solution 7} of the equation v (r) = r/C) is given by
4 2
ry = (AB)\C))2*rn 2.

For A = X\i, we take C), = C = (24 Lg)$(Ag) so that, since A > 1 and Cj, > T),, condition
(7) is ensured whenever r > rp = r3 . This concludes the check for hypothesis (iv).
To wrap up, hypotheses (i) — (iv) of Theorem 22 are satisfied with the following choices
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o b = d(\e);
o Cp = (Lg +2)p(Mr);

4 2 V42 V. _1V42
o 1 = c(BAOy)¥rn 2 = c((V + 2)(Lg + 2)(A)) V1 (AY' (X)) VFIn ™2 Vi
Eventually, set z; = alog Ar which concludes the proof. |

PROOF OF LEMMA 19. It suffices to look at a fixed point = and to take the expectation as
a final step. We therefore first omit the dependence on z to simplify the notation. Recall
that if we denote n = P(Y = 1), then

fr(n) = arg min {nd(—a) + (L —n)é(a)}
is defined implicitly as the solution of
nd' (=) =1 —n)¢'(f7) - (8)

Since ¢ is strictly convex and increasing, ¢'(z)/¢'(—z) is increasing from R onto R;. It is
then easy to deduce that f* is an increasing function of 7 and that f*([0,1]) = R, so that f*
is invertible. Furthermore, by the implicit function theorem f* is a differentiable function
of 7.

Consider some function f € F) and put a@ = f(x) at the point z considered. Note that
|a| < A. Define

and

D(n,a) =By [£(f) — £(f)]
=1 (¢(=a) = ¢(=f*(1)) + (1 = n) (d(a) — ¢(f*(n))) -
The goal is to show that N < C(a)D. To this end, first note that N((f*)~!(a),a) =

D((f*)'(a),a) = 0. We then compare the derivatives of N and D with respect to n. We
have

%—? — ($(=0) = $(=1")) = ($(e) — $(/*)) + (0 (=1*) = (1 =)' ("))

= (¢(=a) = ¢(=1")) — (¢(e) — 8(f7)),

using (8). Note that 0D /0n is therefore positive for f* > « (or, equivalently, for n >
(f*)"!(a)) and negative otherwise. We now turn to the derivative of N:

%—JZ — (B(—a) — $(— ) — ($(a) — B(f*))?
2 (1)) = $(-1) = (L= ()6~ 67°))

= (p(=a) = (=17) + ¢() = 8(f7)) (d(=0a) = ¢(=f7) = (¢(e) — &(/7)))

df*
dn
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+ ' (=) + @ =m)d' () (4(=a) = d(—f") = ((a) — &(f)))

_ 8D
=

(¢(04) +é(—a) + (g (—f) + (L —m¢'(f) = — (6(F) + ¢(—f*))> :
where the second equality follows from (8) again. If we now denote

a*
dn

Ly=0V max (<n¢'<—f*) +(1-n)d (/)

n€(0,1]

(67" + ¢(—f*))) ,

we have, for all n > (f*)~!(a),

ON oD
By < (@) +d(=a) + Ly) 5,

and the opposite inequality for n < (f*)~!(«). By integrating over 7 to the left or to the
right of (f*) (), we deduce that for any 7 € [0, 1],

N < (¢() + ¢(—a) + Lg)D < (¢(A) + ¢(=X) + Lg) D,

where the second inequality follows from the convexity of ¢. Integration over z leads to the
desired inequality.
For a slightly more explicit expression of Ly, note that by differentiating (8) we obtain

i PP
dn  nd"(—=f*)+ (L —n)¢"(f*)
Then we can rewrite the ratio
ng' (=) + L —n)d'(f") _ ¢ (=) +4'(f")
ng"(—f*) + (L —ne"(f*) ZL¢"(-

B~
\.9:
+
S
—~
~
\..):

where we have used (8) again at the last line. This yields the expression for Ly given in the
statement of the Lemma.

SKETCH OF THE PROOF OF LEMMA 20. Putting

> eif(Xo)

=1

1
R, p = —=EpE, sup
" Vvn feF

7

we have, following the proof of Lemma 2.5 in Mendelson (2002), and after applying stan-
dard chaining techniques (see Dudley, 1978) and contraction inequalities (see Ledoux and
Talagrand, 1991),

-

2

Ry p SCQ’Y (T2+T7’L_%Rn,13)%(l_%).

-p
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(Note the slight difference as compared to Mendelson (2002) here as in this reference the

1

author assumed 7' = 1). Now putting B = 7% (2 —p) ", we have

R, p <cB max(Tz, Tn_%Rn,p) 2(1-%),

Now solving separately for the two terms of the above maximum, we obtain the conclusion.

PROOF OF THEOREM 17. The theorem is a consequence of Theorem 21 quoted in Appendix
A. The hypotheses to satisfy are exactly the same as for Theorem 1 (but for one single
model F)), so one can just recycle the previous proof. |

PROOF OF THEOREM 18. This theorem is again a consequence of Theorem 21 but this time
we pick a different reference space . We choose ® = F, and denote f, = arg min rer, EIE(f)]-
(Again, we suppose here that the above minimum is attained to simplify the argument; the
proof may easily be adjusted accordingly if this is not the case.)

In this case hypothesis (4i7) is changed as compared to the previous theorem. This, in
turn, changes the definition of the factor C'\ and hence of r}. To check hypothesis (iii) we
may apply directly Lemmas 15 and 16 from Bartlett, Jordan, and McAuliffe (2003). These
imply that if ¢ has Lipschitz constant L on [—\, A] and satisfies the uniform convexity
assumption

Vz,y € [—A, A

¢($)—2F¢(y) _¢(w;ry> > 6(z —y)?

then for any f € F,,

B(U() — €(2))?) < 2 FIAT) — ()] -

In our setting we can take L = ¢'()) and § = cM(}) (by second-order Taylor expansion).
Thus we can take Cy = c.¢'(A\)2M(X\)~!. To satisfy hypothesis (ii4) we use equation (6)
again so that we can use the sub-root function

4 2—p
-~ 2-p _1 5T5 3T, ——2_
Pa(r) = cmax (B,\T T2, BT T 2+P),

with the same notation as in the proof of Theorem 1. Solving the equation 1;)\(7") =r/ 6;0
we then apply Theorem 21. The constant C > 1 appearing in that theorem can be taken
arbitrarily close to 1, so that with probability 1 — exp(—4) the following bound holds:

AP — AG,) < Ro(yn) + 20

n

(where Ry and by are defined in the statement of the theorem). Adding A(f,) — A(f*) on
each side finishes the proof. |
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Appendix A: general theorems for single-model and model selection
estimator convergence

This section is devoted to recalling, in a compact version, the statements of abstract the-
orems appearing in Blanchard, Bousquet, and Massart (2003) (respectively: Proposition 1
and Theorem 7 in the latter reference).

Setup

We recall that X denotes a measurable feature space. Let 4(z,y) : R x {—1,1} — R be
a loss function. Given a function g : X — R, the notation #(g) is used for the function
(z,y) € X x{—1,1} — £(g9(z),y). Let P be a probability distribution on X x {—1,1} and
& a set of extended-real functions on X such that £(®) C Lo(P). The target function g* is
defined as
g" = arg min P{(g)
9ed
and for any g € & we denote

L(g,9%) = Elt(g)] — E[t(g7)] -

Let ((Xi,Y;))i=1,...,n be an i.i.d. n-sample drawn from the probability distribution P and let
P, denote the associated empirical measure. For a real function f on X x {—1,1}, Pf is an
alternative notation for Ep[f] (so that also P,f = 1 37 | f(X;,Y;)). We say that a function
9 : [0,00) — [0,00) is sub-root if it is non-negative, non-decreasing, and if r — 1(r)//T is
non-increasing for r > 0.

Rate of convergence in a single model

Let G be a subset of &. The empirical risk minimization estimator over the model G is
defined by
g = arg min P, £4(g).

geg
Theorem 21 Assume that there ezists
e a pseudo-distance d on &
e a sub-root function ¥
e constants b and C
such that
(4) Vg,g' €8, P(lg) —£g")* < d*(g,9);
(1) Vg €g, d*(g,9") < CL(g,9");

(111) Y(z,y), Vg €G, [lg(z),y)| <b;
and, if v* denotes the solution of ¥(r) =1/C,

(iv) Vgeg,Vr>r* E sup (P — Py)(4(g) — £(g0))|| < (r).
9€G:d?(g,90)<r
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Then for all x > 0 and all K > 1 the following inequality holds with probability at least
1—e %

L(g,g") <

K+1/. ™  (2CK + 18b)z
fL * 100K — + ———— ) .
1(;& (9,97) + 100K = + - )

Model Selection Theorem (Deviation Bound)

Let (Gk)ren be a countable family of models with Gy C & for all & € N. If pen is a real
function on N, then the penalized minimum empirical risk estimator over the family of
models is defined as

g = arg min (P,£(g) + pen(k)) .
kEN,
9€G

Theorem 22 Assume that there exist
e a pseudo-distance d on &;
e a sequence of sub-root functions (Vy);

e two real, nondecreasing sequences (by) and (Cy);

such that
(1) Vg,q' € &, P(t(g) — (d))* < d*(g9,9");
(i4) Vk €N, Vg € Gy, d*(g,9%) < CkL(g,9%);

(i5) Vk €N, Vg € Gg, V(z,y), [L(9(z),y)| < by;

and, if rj denotes the solution of iy (r) =r/Cl,

(iv) VEEN, Vgo € Gy, Vr >1; E Sup |(P = Pn)(£(g) = £(go))| | < tk(r).
9€Yk,
dz(gagok)gr

Let (zy) be a nondecreasing sequence of real numbers such that ), e ™ < 1. Let £ >
0, K > 1 be some real numbers to be fized in advance. If we define a penalty function pen(k)
such that

Vk e N pen (k) > 250K2k + (65K Cy, + 56bk)3(:;k +&+ log(2)),
k

then, for the corresponding penalized minimum empirical risk estimator g, the following
inequality holds with probability greater than 1 — exp(—£):

K+1
L(g,9%) < s inf (mf L(g,g%) + 2pen(k)> .

K — 1 keN \ geg,
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Appendix B: Details of Example 1.

First, we prove the following statements:

(i) If f is such that 37, f(z;) = 0, then f € Fy if and only if A > 1 3, |f (= )|

(i) If f* (defined as in the rest of the paper) is such that f*(a:l) [*(x2) = f*(x3) +
f*(x4) =0, then so is f, for all \.

PROOF. Denoting z; = f(w;), we have f = ), zily,). For all 4, I, = (g0 + gi), and the

linear relation Z;l:l 9i + 290 = 0 holds, so that the only ways to write f as a combination
of the base functions are exhaustively given by

4
1
f:§<z;zz+ﬂgz (Zzz+2ﬂ>90>aN€R-
i

If in addition we assume ) ,z; = 0, then the above combination is in ¥y for any A >
=3, |7+ p| + |- Tt is easily seen that the minimum value of this upper bound is obtained
for p = 0. This proves (i).

For (ii), let f € F). Consider f’ obtained from f by switching its values on 1,z and
x3,74 respectively. Then f' € F) by symmetry of F) and A(f') = A(f) by the symmetry
assumption on f*. So f" = %(f + f') € F» by convexity of Fy and A(f") < A(f) by
convexity of ¢; furthermore f” satisfies the same symmetry relations as f. This proves (ii).

Now for any A > 0, put z()\) = f,(z1) > 0 and y(\) = f,(z3) > 0. Clearly these
functions are increasing and hence almost everywhere differentiable functions. From (i) and
(ii) we deduce that

A=z(A) +y(A)

and that _
A(fx) =2((0.5 4 0)¢(—z(A)) + (0.5 — §)d(x(N)) + d(—y(})) -
Differentiating these two equalities we get
y' () +2'(N) =1,
and

dAd(/J\c )y (z'(N)[(0.5 = 8)¢'(z(N)) — (0.5 4 6)¢' (—z(N\)] — ' (N (—y(N)) -

Clearly z' and v’ must be such that % is the lowest possible given the constraint
z' +y' = 1. Therefore as long as (0.5 — §)¢'(z(X)) — (0.5 + 8)¢' (—z(N)) > —¢'(—y(A)) we
must have z'(A\) = 0 and 3'(\) = 1. Since 2(0) = y(0) = 0 and ¢'(0) = 1, one deduces that
as long as ¢'(—\) > 24, we have y(A) = \,z(A\) = 0.

Appendix C: refinement of the non-xOR condition in a continuous setup

In this section we give a slight refinement concerning Theorem 15. In this theorem the
assumption is that no quadruple of points is in an XOR condition with respect to A and
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that P(6A) = 0. In that case the theorem says that we can approximate the indicator of
A in the L'(P) sense by taking the sign of mixtures of stumps. We noticed that the result
is unchanged if we replaced A by any set C such that int(4) C C C A (where int(A) and
A denote interior and closure for the usual topology on [0,1]%). A natural idea would then
be that the “non-XOR condition” should only be required for points not on the boundary
of A, so that any problem arising with points on the boundary could be disregarded.

If such a results holds, it means that, assuming that any four points not on the boundary
of A cannot be in a XOR position, there is a way of choosing a set C such that int(A) C C C A
and satisfying the full “non-XOR” requirement. The counterexample shown on the right-
hand side of Figure 1 shows that we cannot expect such a result to hold in all generality,
even if the boundary of A is of P-measure zero (consider the case where the center square
is of P-measure 0, and the boundary of A is dense in this square).

Nevertheless, the following elementary topological lemma states that this result holds if
we assume that 0 A is of Lebesgue measure zero.

Lemma 23 Suppose that §A is of P-measure zero for some measure P having full support
X. Assume that there do not exist any four points z,y,z,w € X \ A in XOR position with
respect to A. Then any four points x,y,z,w € X cannot be in XOR position with respect to

C = int(A) (the closure of the interior of A).

PROOF. Suppose that xg,yo, 20, wo are in XOR position with respect to C, so that xg,wy €
C;yo,20 ¢ C. We show this leads to a contradiction. Note that, if z,y, z, w satisfy (5), then
knowing z, w and i entirely determines y, z. Consider ¢y as fixed and denote the associated
application (exchanging the ip-th coordinates) F : (z,w) — (z,y) = F(z,w) from X x X
into itself.

Let ¢ be a positive real and denote B(u,e) the open e-ball centered in u. Denote
Dy, = (B(zo,e) Nint(A)) and D} = Dy, \ 6A. Since zg € C = int(A), Dy, is a nonempty
open set and thus P(Dy,) > 0 since P has full support. Hence, P(Dj ) = P(Dg,) > 0
since P(0A) = 0 and D;, is also a nonempty open set. Define similarly D;, and consider
H = F(D},, x Dy,)) and H = H\ (6A x 0A). H is a nonempty open set of X x X because
F is a bicontinuous bijection, so P® P(H') = P® P(H) > 0, and therefore H' is non-void.

From this we deduce that there exist (z,w) € (B(zo,e) Nint(A4)) x (B(wo,e) Nint(A)),
and (z,y) = F(z,w) such that z,y,z, w satisfy (5) and that none of these four points is
in 0A. This way we construct a sequence (Zp, Yn, 2n, W) of quadruples satisfying (5), and
converging to (z,y,z,w) while staying outside of § A, with z,,,w, € int(A). By hypothesis
(Zns Yns 2n, wy) are not in a XOR position with respect to A, hence y, or z, must belong to
int(A). Therefore either infinity many y,’s or infinitely many z,’s belong to int(A). Thus,
Yo or 2o belongs to int(A) = C, in contradiction with the initial hypothesis. |
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