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Abstract

We show that every N -player K1 × · · · × KN game possesses a
correlated equilibrium with at least

∏N
i=1 Ki − 1 − ∑N

i=1 Ki(Ki − 1)
zero entries. In particular, the largest N -player K×· · ·×K games with
unique fully supported correlated equilibrium are two-player games.
Keywords Correlated equilibrium; support; finite games.

1 The result

Consider an N -player K1 × · · · ×KN normal form game γ = (N, S, {γi}N
i=1),

where, for each player i = 1, . . . , N , Si is a set of pure strategies with
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Ki = #Si ≥ 2 and γi : S → IR is a payoff function defined on the set

of pure strategy profiles S = ×N
i=1Si. Denote by ∆(S) the set of probability

distributions on S and by S−i = ×j 6=iSj the set of pure strategy profiles of

the players other than i. Given si ∈ Si and s−i ∈ S−i, we sometimes write

s = (s−i, si) for a generic element of S.

A probability distribution p = (p(s))s∈S ∈ ∆(S) is a correlated equilibrium

of the game γ if it satisfies, for all i = 1, . . . , N , and all si, ti ∈ Si with si 6= ti,

∑

s−i∈S−i

p(s−i, si)
(
γi(s−i, si)− γi(s−i, ti)

)
≥ 0.

We refer to these
∑N

i=1 Ki(Ki − 1) inequalities as the incentive constraints.

The notion of correlated equilibrium was introduced by Aumann [2] as a

rich generalization of Nash equilibrium. The set C ⊂ ∆(S) of correlated

equilibria is a nonempty convex polytope defined by the incentive constraints,

as well as the nonnegativity constraints, p(s) ≥ 0, s ∈ S, and the constraint
∑

s∈S p(s) = 1, the latter two guaranteeing p ∈ ∆(S). Recall that a correlated

equilibrium that is a product measure is also a Nash equilibrium.

The purpose of this note is to point out that games with many players

have sparsely supported correlated equilibria. More precisely, the main result

is the following.

Theorem 1 Any N-player K1× · · · ×KN game possesses a correlated equi-

librium with at least
∏N

i=1 Ki − 1−∑N
i=1 Ki(Ki − 1) zero entries.

To better understand the result, consider an N -player 2× · · · × 2 game.

There are 2N pure strategy profiles, yet the theorem implies the existence of

a correlated equilibrium with at least 2N−1−2N zeros in its support. Thus,

there always exists a correlated equilibrium concentrated on an exponentially

small fraction of pure strategy profiles.

The result also has implications for the (non)existence of games with

unique fully supported correlated equilibria.
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Corollary 1 For N ≥ 3, there exist no K×· · ·×K games with unique fully

supported correlated equilibrium.

To see this, notice that, for any N ≥ 3 and K ≥ 2, we have

KN−1 −N(K − 1) ≥ 1.

Hence KN−NK2+NK = K(KN−1−N(K−1)) ≥ 2 since K ≥ 2. Therefore,

N∏

i=1

Ki − 1−
N∑

i=1

Ki(Ki − 1) = KN −NK2 + NK − 1 ≥ 1,

which means that, for N ≥ 3, there always exists a correlated equilibrium

with at least one zero entry and which cannot be fully supported.

This is to be contrasted with Nitzan [4], who shows that the set of two-

player K ×K games possessing a unique fully supported correlated equilib-

rium has positive measure for any K. It complements Nitzan’s results by

showing that not only do such games have zero measure as soon as N ≥ 3,

but that such games simply cannot exist in these “remaining” cases.

Finally, recall that if an N -player game has a unique correlated equilib-

rium, then it must also be a Nash equilibrium and hence a product measure.

For simplicity, consider again 2× · · · × 2 games. The correlated equilibrium

has at least 2N − 1− 2N zero entries and thus at most 2N + 1 atoms, and,

since it is a product measure, there are at most log2(2N +1) non-degenerate

marginal distributions. This implies the following fact suggesting that large

games with a unique correlated equilibrium must be quite “degenerate” in

some sense.

Corollary 2 Consider an N-player 2×· · ·×2 game with a unique correlated

equilibrium. At this equilibrium there are at most log2(2N + 1) players who

use a non-degenerate mixed strategy, all others play a pure strategy.
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2 The proof

To simplify notation, set d =
∏N

i=1 Ki−1, m =
∑N

i=1 Ki(Ki−1), and assume,

without loss of generality, d > m. We identify a probability distribution

p ∈ ∆(S) over the set of pure strategy profiles with a (d+1)-vector p of non-

negative components pj, satisfying
∑d+1

j=1 pj = 1. Each incentive constraint

takes the form of a linear inequality, which can be written as Ckp ≥ 0,

k = 1, . . . , m.

Fix q0 ∈ C, which exists since C is nonempty, (e.g., Aumann [2], Hart and

Schmeidler [3]), and consider the affine subspace,

H0 = {p ∈ IRd+1 :
d+1∑

j=1

pj = 1 and Ckp = Ckq
0, k = 1, . . . ,m}.

By the dimension theorem, (e.g., Artin [1]), H0 has dimension at least d −
m, and any point in H0 satisfies all the incentive constraints defining C.

Moreover, since H0 ⊂ IRd+1 is defined by m + 1 equalities, there exist d−m

entries whose values can be set arbitrarily, yet the system of m+1 equations

defining H0 has a solution with these restricted values in the d−m entries.

In particular, there exists q0 ∈ H0 in which d −m entries are equal to, say,

−1, and, without loss of generality, we can assume q0 to be of the form

q0 = (−1, . . . ,−1; pd−m+1, . . . , pd−m1 ; pd−m1+1, . . . , pd+1), m1 ≤ m,

where the first d−m entries are−1’s, the next m−m1 entries, pd−m−1, .., pd−m1 ,

are nonpositive, and the remaining m1 + 1 entries, pd−m1+1, .., pd+1, are pos-

itive (m1 + 1 is thus the number of positive entries of q0).

Consider now the line segment L ⊂ H0 between q0 and q0. It intersects

the union of hyperplanes, ∪d−m1
j=1 {p : pj = 0}, at least once and at most

d −m1 times. Take the first intersection encountered when moving from q0

(∈ C) towards q0 along L and denote the point of intersection by q1 ∈ C. Let

N1 ⊂ {1, . . . , d − m1} be the set of nonnegativity constraints holding with
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equality at q1. Set #N1 = n1 and notice that, since d − m > 0, we have

n1 > 0. If d −m − n1 ≤ 0, then we are done, since we have found a point

q1 ∈ C with at least n1 ≥ d −m zero entries. If, however, d −m − n1 > 0,

then repeating the procedure (at most d−m times) will eventually lead to a

point in C with the desired property. More specifically, starting with ` = 1,

consider the following.

PROCEDURE: Suppose q` ∈ C is given, together with the corresponding set

N` ⊂ {1, . . . , d−m`}, and numbers n` and m`, and suppose d−m− n` > 0.

Consider the affine subspace

H` = {p ∈ IRd+1 : pj = 0, j ∈ N`,
d+1∑

j=1

pj = 1, Ckp = Ckq
`, k = 1, . . . ,m}.

By the dimension theorem, H` has dimension at least d −m − n`, and any

point in H` satisfies: the nonnegativity constraints in N` with equality, the

constraint
∑d+1

j=1 pj = 1, and all the incentive constraints defining C. Therefore

there exists q` ∈ H` in which d −m − n` entries are equal to, say, −1, and,

again without loss, the positive entries coincide with the last m`+1+1 entries,

for some 0 ≤ m`+1 ≤ m; (it is always possible to relabel the coordinates and

the matrix C defining the incentive constraints at each iteration `).

Next, as before, consider the line segment from q` (∈ C) to q`. Again,

the segment is entirely contained in H` and it eventually leads to a (first)

intersection, say at q`+1 ∈ C, with one or more of the hyperplanes defining

∪d−m`+1

j=1,j /∈N`
{p : pj = 0}. Once again, the point q`+1 implies a corresponding set

N`+1 ⊂ {1, . . . , d−m`+1} of nonnegativity constraints holding with equality

at q`+1, as well as numbers n`+1 = #N`+1 (> n`) and m`+1 (≤ m), where

m`+1 + 1 is the number of positive entries of q`.

If d − m − n`+1 ≤ 0, then, again, we are done; otherwise, repeat the

above procedure with ` = ` + 1. Notice that while d−m−n` > 0, repeating

the procedure always yields a new point q` with at least one entry equal
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to −1, which in turn yields a point q`+1 ∈ C with at least one additional

entry equal to zero, thus n`+1 > n`. Therefore, there exists ` ≤ d − m,

such that repeating the procedure ` times, eventually yields an affine space

H` of dimension greater or equal to zero, and a point q` satisfying at least

d−m nonnegativity constraints with equality, the constraint
∑d+1

j=1 pj = 1, as

well as all the incentive constraints defining C. In other words, it eventually

yields a point p = q` ∈ C with at least d −m zero entries, which completes

the proof.
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