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Abstract

A uniform k-dag generalizes the uniform random recursive tree by pick-
ing k parents uniformly at random from the existing nodes. It starts with k
”roots”. Each of the k roots is assigned a bit. These bits are propagated by a
noisy channel. The parents’ bits are flipped with probability p, and a major-
ity vote is taken. When all nodes have received their bits, the k-dag is shown
without identifying the roots. The goal is to estimate the majority bit among
the roots. We identify the threshold for p as a function of k below which the
majority rule among all nodes yields an error c + o(1) with c < 1/2. Above the
threshold the majority rule errs with probability 1/2 + o(1).
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1 Introduction

The interest in network analysis has been growing, in part due to its use in commu-
nication technologies, social network studies, and biology, see Coolen, Annibale,
and Roberts [6]. The problem we study here is the one of broadcasting on random
graphs. We study the setting where a bit propagates with noise and we want to
infer the value of the original bit. The question is not if and how the information
propagates, but if there is a signal propagating on the graph, or only noise. Varia-
tions of this binary classification problem have been studied. For example, in the
root-bit estimation problem, the root of a tree has a bit 0 or 1. The value of this
bit propagates from the root to the leafs, and at each propagation from a vertex to
the next it mutates (flips the bit) with probability p. One can try to infer the root’s
bit value from observing all the bits of the graph or only the leaf bits. This ques-
tion was first formulated in Evans, Kenyon, Peres, and Schulman [9] on general
trees, where it was shown that root bit reconstruction is possible depending upon
a condition on the branching number. More recently, the case of random recur-
sive trees (Addario-Berry, Devroye, Lugosi, and Velona [1], Desmarais, Holmgren,
and Wagner [8]) has been studied. Other variations of these problems on trees
include looking at asymmetric flip probabilities (Sly [21]), non-binary vertex val-
ues (Mossel [17]) and robustness to perturbation (Janson and Mossel [13]). We
refer the reader to Mossel [18] for a survey of reconstruction problems on trees.
Many problems are described by more general graphs rather than trees. The origi-
nal broadcasting question has been studied on deterministic graphs (Harutyunyan
and Li [10]) and Harary graphs (Bhabak, Harutyunyan, and Tanna [4], for exam-
ple). We are interested in the problem of noisy propagation in the spirit of the
root-bit reconstruction (Evans et al. [9]), but on a class of random graphs that we
call k-dag (for directed acyclic graph). A similar problem – for a different class
of random dags – has been studied in Makur, Mossel, and Polyanskiy [16]. In a
related probelm, Antunović, Mossel, and Rácz [2] studied the case of the prefer-
ential attachment model, where initial nodes have a color and the color of the new
nodes is a function of the colors of their neighbors.

Since we track the proportion of zero bits in our graph, we cast the pro-
cess as an urn model. A similar reformulation was already done in Addario-Berry
et al. [1] to study majority voting properties of broadcasting on random recursive
trees. The proportion of zero bits and the bit assignment procedure can be viewed
as random processes with reinforcement. A review of results can be found in Pe-
mantle [20] and is extensively used, alongside results of non-convergence found in
Pemantle [19]. As in Addario-Berry et al. [1], we make ample use of the properties
of Pólya urns (Janson [11], Knape and Neininger [14], Wei [22]). Variations of the
Pólya urn model that are useful for our analysis include an increase of the num-
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ber of colors over time (Bertoin [3]), the selection of multiple balls in each draw
(Kuba and Mahmoud [15]), and randomization in the color of the new ball (Janson
[12], Zhang [23]). We note, in particular, the multi-ball draw with a linear random-
ized replacement rule of Crimaldi, Louis, and Minelli [7]. In the present paper, we
consider multi-ball draws, but with non-linear randomized replacement.

The paper is organized as follows. After introducing the mathematical
model in Section 1.1, in Section 1.2 we present the main result of the paper (Theo-
rem 1) that shows that there are three different regimes of the value of the mutation
probability that characterize the asymptotic behavior of the majority rule. In Sec-
tion 2 we discuss the three regimes of p. In Section 3 we establish convergence
properties of the global proportion of both bit values assigned to vertices and in
Section 4 we finish the proof of Theorem 1 by studying the probability of error in
all three regimes. Finally, in Section 5 we establish a lower bound for the proba-
bility of error that holds uniformly for all mutation probabilities. We conclude the
paper by discussing avenues for further research.

1.1 The model

We start by describing the evolution of the uniform random recursive k-dag and
the assigned bit values that we represent by two colors; red and blue.

Let us fix an odd integer k > 0. The growth process is initiated at time k.
At time k, the graph consists of k isolated vertices. A fraction Rk are red and a
fraction Bk = 1−Rk are blue. We set R1 = · · · = Rk and B1 = · · · = Bk. The network is
grown recursively by adding a new colored vertex and at most k edges at each time
step. At time n, a new vertex n connects to a sample of k vertices chosen uniformly
at random with replacement among the n− 1 previous vertices. (Possible multiple
edges are collapsed into one so that the graph remains simple.) The color of vertex
n is determined by the following randomized rule:

• the colors of the k selected parents are observed;

• each of these is independently flipped with probability p (if a parent is se-
lected more than once, its color is flipped independently for each selection);

• the color of vertex n is chosen according to the majority vote of the flipped
parent colors.
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Figure 1: A realisation of the process up to time 6, for k = 3, starting with
R3 = 1/3.

If one is only interested in the evolution of the proportion of red and blue
vertices (but not the structure of the graph), one may equivalently describe it by
an urn model with multiple draws and random (nonlinear) replacement. The urn
process is defined as follows. The urn is initialized with an odd number k of balls,
a fraction Rk being red and Bk = 1−Rk blue. At each time n ≥ k + 1,

• k balls are drawn from the urn, uniformly at random with replacement, and
returned to the urn;

• the color of each drawn ball is flipped with probability p (i.e., a drawn ball
that is red is observed as blue with probability p);

• a new ball is added to the urn, whose color is chosen as the majority of the k
observed colors.

In the root-bit estimation problem considered here, the statistician has ac-
cess to an unlabelled and undirected version of the graph at time n, along with the
vertex colors. The goal of the statistician is to estimate the colors assigned to the
k roots. More precisely, based on the observed graph, one would like to guess the
majority color at time k.

This problem has been studied in depth by [1] in the case when k = 1, that
is, when the produced graph is a uniform random recursive tree. Two types of
methods for root-bit estimation were studied in [1]. One is based on first trying
to localize the root of the tree–disregarding the vertex colors. If one finds a vertex
that is close to the root, one may use the color of that vertex as a guess for the root
color. Such a vertex is the centroid of the tree. Indeed, it is shown in [1] that the
color of the centroid is a nearly optimal estimate of the root color. In the same
paper, the majority rule is also studied. This method disregards the structure of
the tree and guesses the root color by taking a majority vote among all vertices.
It is shown that for small mutation probabilities the majority rule is also nearly
optimal.
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In the more general problem considered in this paper, one may also try to
estimate the colors of the k roots by finding nearby vertices. However, this problem
becomes significantly more challenging as the k-dag does not have a natural cen-
troid. The interested reader is referred to the recent paper of Briend, Calvillo, and
Lugosi [5] on root finding in random k-dags. Instead of pursuing this direction, we
focus on the majority vote. More precisely, we are interested in characterizing the
values of the mutation probability p such that the asymptotic probability of error
is strictly better than random guessing.

At time n, the majority vote, denoted by bmajn , is defined as follows:

b
maj
n =



“R” (red) if Rn > 1/2

“B”(blue) if Rn < 1/2

Ber(1/2) if Rn = 1/2 (a random coin flip) .

We define the probability of error by

Rmaj(n,p) = P
{
b
maj
n , b

maj
k

}
.

Note that bmajk depends on the initial vertex colors that are assumed to be chosen
arbitrarily. Hence, Rmaj(n,p) is a function of the initial proportion Rk but to avoid
heavy notation, we supress this dependence.

1.2 Related results and our contribution

Our broadcasting model is an extension of the broadcasting on uniform random
recursive trees that was extensively studied in Addario-Berry et al. [1]. In this
problem, k = 1 and the only parameter is p, the mutation probability. For the
majority voting rule, they prove the following:

(i) There exists a constant c > 0 such that

limsup
n→∞

Rmaj(n,p) ≤ cp .

(ii) For all p ∈ (0,1/2],

lim
n→∞

Rn =
1
2

with probability one .
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(iii) For p ∈ [0,1/4)

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iv) For p ∈ [1/4,1/2]

limsup
n→∞

Rmaj(n,p) =
1
2
.

In other words, even though the proportion of vertices that have the same
color as the root converges to 1/2, for mutation probabilities smaller than 1/4,
sufficient information is preserved about the root color for the majority vote to
work with a nontrivial probability.

We generalize these results to k-dags and characterize the values of p for
which majority voting outperforms random guessing. In order to state the main
result of the paper, we introduce some notation.

For any odd positive integer k, let

αk :=
1

2k−2

k∑
i>k/2

(
k
i

)
(i − k/2) = 4E

[(
Bin(k,1/2)− k

2

)
+

]
. (1.1)

For example, α1 = 1, α3 = 3/2, and by a simple application of the central limit
theorem, for large k,

αk ∼
√

2k
π
. (1.2)

In the statement of our main theorem, we assume, without loss of generality,
that initially red vertices are in majority, that is, Rk > 1/2.
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Theorem 1. Let k be an odd positive integer and consider the broadcasting pro-
cess on a random k-dag described above. Assume that initially Rk > 1/2.

(i) If p < 1
2 −

1
2αk

, then there exist β1 ∈ (0,1/2) and β2 = 1 − β1 (whose value
only depends on k but not on the initial color configuration) such that

P {Rn→ β1}+P {Rn→ β2} = 1 and P {Rn→ β1} < P {Rn→ β2} .

In particular, regardless of the initial value of Rk,

limsup
n→∞

Rmaj(n,p) <
1
2
.

(ii) If 1
2 −

1
2αk
≤ p < 1

2 −
1

4αk
, then Rn→ 1/2 a.s. and

limsup
n→∞

Rmaj(n,p) <
1
2
.

(iii) If 1
2 −

1
4αk
≤ p ≤ 1

2 then Rn→ 1/2 a.s. and

lim
n→∞

Rmaj(n,p) =
1
2
.

Theorem 1 shows that for all k ≥ 3, there are three regimes of the value
of the mutation probability. In the low-rate-of-mutation regime the proportion of
red balls almost surely converges to one of two numbers, both different from 1/2.
Moreover, the limiting proportion is positively correlated with the initial value. In
the intermediate phase, the vertex colors are asymptotically balanced, but there is
enough signal for the majority vote to perform strictly better than random guess-
ing. Finally, in the high-rate-of-mutation regime, the majority vote is equivalent
to a coin toss, at least asymptotically.

Note that for k = 1, α1 = 1, so 1/2− 1/(2α1) = 0, and therefore the low-rate-
of-mutation regime does not exist. Of course, this is in accordance with the results
of [1] cited above.

On the other hand, for k = 3 the two thresholds are 1/2− 1/(2α3) = 1/6 and
1/2 − 1/(4α1) = 1/3, meaning that from k = 3 onward the three different regimes
can be observed. For large k, both threshold values are of the order 1/2−Θ(1/

√
k).

A closely related model has been studied by Makur et al. [16]. They study
different random dags, where important parameters are the number of vertices at
distance k from the root and the indegree of vertices. They also suppose that the
position of the root vertex is known. Two rules of root bit estimation are studied:
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a noisy majority rule and the NAND rule. Makur et al. [16] show that if the num-
ber of vertices of depth k is Ω (log(k)) then there is a threshold on the mutation
probability for which root bit estimation is possible.

As a first step, we study the convergence of the proportion of red balls.
To this end, it suffices to study the generalized urn process defined above. We
mention here that Crimaldi et al. [7] study a somewhat related urn process, though
with linear replacement rules.

2 Different regimes

We start by studying the evolution of Rn. Let us denote by cn the color of the n-
th vertex appearing in the graph. After possible mutation, each edge connecting
vertex n+ 1 to an older vertex carries a signal. This signal is red with probability

f (Rn) := (1− p)Rn + p(1−Rn) = (1− 2p)Rn + p .

Because the k parents are chosen independently and that the color is chosen by the
majority,

P {cn+1 = R} = P {Bin(k,f (Rn)) ≥ k/2} , (2.1)

where, conditionally on Rn, Bin(k,f (Rn)) is a binomial random variable. Moreover,
we know that the number of red vertices evolves as (n+ 1)Rn+1 = nRn+1(cn+1 = R),
where 1 is the indicator function. We rewrite this as

Rn+1 = Rn +
1(cn+1 = R)−Rn

n+ 1
. (2.2)

A key to understanding Rn is then to study the random variable 1(cn+1 = R) −Rn.
We define, for t ∈ [0,1],

g(t) := E [1(cn+1 = R)−Rn|Rn = t] = P {Bin(k,f (t)) > k/2} − t . (2.3)

The evolution of Rn is entirely determined by the function g. Observe first that for
any t ∈ [0,1], f (1− t) = 1− f (t). Also, since k is odd,

P {Bin(k,1− f (t)) > k/2} = 1−P {Bin(k,f (t)) > k/2} ,

which implies that
g(1− t) = −g(t) .

The extremal values of g are
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g(0) = P {Bin(k,p) > k/2} > 0 ,

and
g(1) = P {Bin(k,1− p) > k/2} − 1 < 0 .

Since g is continuous, the polynomial g has at least one root. From the symmetry
property we have g(1/2) = −g(1−1/2) = −g(1/2), so g(1/2) = 0. Moreover we obtain

g ′(1/2) =
1− 2p
2k−2

k∑
i>k/2

(
k
i

)
(i − k/2)− 1 .

Recalling the definition of αk from (1.1), we have g ′(1/2) = (1 − 2p)αk − 1. Since
αk ≥ 1, we conclude:

g ′
(1
2

) 
< 0 if p > 1

2 −
1

2αk
,

> 0 if p < 1
2 −

1
2αk

.

To understand the other potential zeros of g, let us study its convexity.

Lemma 1. The function g is strictly convex on (0,1/2) and strictly concave on (1/2,1).

Proof. We may use the elementary identities

P
{

Bin(k,x) ≥ k + 1
2

}
= P

{
Beta

(
k + 1

2
,
k + 1

2

)
< x

}
, (2.4)

where Beta(a,b) is a beta(a,b) random variable. Hence,

g(t) =
∫ f (t)

0
(x(1− x))

k−1
2

Γ (k + 1)

Γ 2
(
k+1

2

)dx − t ,
and therefore

g ′(t) = (1− 2p) (f (t)(1− f (t)))
k−1

2
Γ (k + 1)

Γ 2
(
k+1

2

) − 1 . (2.5)

Since f (t)(1 − f (t)) = −(1 − 2p)t(t − 1) + p(1 − p) is increasing for t ∈ (0,1/2) and
decreasing for t ∈ (1/2,1), g is strictly convex on (0,1/2) and strictly concave on
(1/2,1).

9



In summary, if p > 1
2 −

1
2αk

, then g ′(1/2) < 0, and thus g is monotonically
decreasing on [0,1] and has only one zero in [0,1]. If g ′(1/2) = 0, then there is
only one zero (at 1/2) and g exhibits an inflection point at 1/2. If p < 1

2 −
1

2αk
, then

g ′(1/2) > 0 and thus g has exactly one zero in (0,1/2) and by symmetry, it also has
one zero on (1/2,1). We denote these zeros by β1 and β2, respectively.

Figure 2 shows two examples of the graph of the function g.

Figure 2: g as a function of t ∈ [0,1], for k = 3, with the choices p = 0.18 > 1/6 and
p = 0.12 < 1/6.

It is also interesting to know the position of β1 (recall that β2 = 1−β1). First,
we note that for fixed k, if p tends to the threshold 1−1/(2αk), then β1 tends to 1/2.
In the following lemma we study the case when p is far enough from the threshold,
that is, when p ≤ 1

2 −
C

2αk
, for a sufficiently large constant C.

Lemma 2. Let p ≤ 1
2 −

C
2αk

for C ≥
√

8log(2)
π . Then

β1 ≤ exp
(
−
k(1− 2p)2

8

)
.

Proof. β1 is the smallest root of g(t) and since g(0) > 0, its smallest root is smaller
than the smallest root of any upper bound of g. On the other hand,

g(t) = P
{

Bin(k,f (t)) ≥ k
2

}
−t ≤ exp

(
−2k

(1
2
− f (t)

)2)
= exp

(
−2k(1− 2p)2

(1
2
− t

)2)
−t .

Thus, β1 is at most the first zero of b(t) := exp
(
c1

(
1
2 − t

)2
)
− t, for c1 = 2k(1 − 2p)2.

Since b(0) > 0, if for some t∗, b(t∗) ≤ 0 then the first zero of b and therefore β1 is at
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most t∗. Taking t∗ = e−c1/16, we have

b(t∗) ≤ 0 ⇐⇒
(1
2
− e−c1/16

)2
≥ 1/16 ⇐⇒ c1 ≥ 32log(2) .

From (1.2) and the expression of c1, we have that by taking C ≥
√

8log(2)
π ,

2k(1− 2p)2 ≥ 32log(2) .

This shows that for p ≤ 1
2 −

C
2αk

, we have

β1 ≤ exp
(
−
k(1− 2p)2

8

)
.

3 Convergence of the proportion of red balls

In order to analyze the probability of error of the majority vote, first we establish
convergence properties of Rn. The two possible regimes of g suggest that there
are two distinct regimes of the evolution of Rn. From (2.2) we note that Rn has a
positive drift if g(Rn) is positive, and a negative drift otherwise. This suggests that
in the high-rate-of-mutation regime, Rn converges to 1/2 and in the low-rate-of-
mutation regime it converges to either β1 or β2. The following section investigates
this intuition, using Lemma 2.6 and Corollary 2.7 from Pemantle [20] about the
convergence of reinforced random processes. We state them here.

Lemma 3 (Pemantle [20]). Let {Xn; n ≥ 0} be a stochastic process in R adapted to a
filtration {Fn}. Suppose that Xn satisfies

Xn+1 −Xn =
1
n

(F(Xn) + ξn+1 +En) ,

where F is a function on R, E [ξn+1 | Fn] = 0 and the remainder term En goes to 0
and satisfies

∑∞
n=1n

−1|En| < ∞ almost surely. Suppose that F is bounded and that
E
[
ξ2
n+1 | Fn

]
< K for some finite constant K . If for a0 < x < b0, F(x) ≥ δ for some

δ > 0, then for any [a,b] ⊂ (a0,b0) the process {Xn} visits [a,b] finitely many times
almost surely. The same result holds if F(x) ≤ −δ.

Corollary 1 (Pemantle [20]). If F is continuous on R, then Xn converges almost surely
to the zero set of F.
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3.1 The high-rate-of-mutation regime
(

1
2 −

1
2αk
≤ p ≤ 1

2

)
Rewrite (2.2) as

Rn+1 −Rn =
1

n+ 1

(
P
{

Bin(k,f (Rn)) ≥ k
2

}
−Rn

)
+

1
n+ 1

(
1(cn+1 = R)−P

{
Bin(k,f (Rn)) ≥ k

2

})
.

Since g(Rn) = P {Bin(k,f (Rn)) ≥ k/2} −Rn, we see that

Rn+1 −Rn =
g(Rn) + ξn+1

n+ 1
, (3.1)

where ξn+1 = 1(cn+1 = R) − P {Bin(k,f (Rn)) ≥ k/2}. Because g is continuous and
E [ξn+1|Rn] = 0, our process satisfies all the requirements for Corollary 1. It states
that Rn converges almost surely to the set of zeros of g. In this regime, this implies
that Rn converges to 1/2 almost surely.

3.2 The low-rate-of-mutation regime
(
0 < p < 1

2 −
1

2αk

)
In this regime, the requirements of Corollary 1 are still met. So Rn converges
almost surely to the set of zeros of g, which is {β1,1/2,β2}. We first show that Rn
does not converge to 1/2: 1/2 seems to be an unstable equilibrium point, since the
drift in the process has a tendency to pull Rn away from 1/2. We state Theorem 2.9
from Pemantle [20] here:

Theorem 2 (Pemantle [20]). Suppose {Xn} satisfies the conditions of Lemma 3 and
that for some w ∈ (0,1) and ε > 0, signF(x) = sign(x −w) for all x ∈ (w − ε,w + ε). For
ξ+
n+1 = max(ξn+1,0) and ξ−n+1 = max(−ξn+1,0), suppose that E[ξ+

n+1 | Fn] and E[ξ−n+1 |
Fn] are bounded above and below by positive numbers when Xn ∈ (w − ε,w + ε). Then
P{Xn→ w} = 0.

Corollary 2. In the low-rate-of-mutation regime, almost surely the process Rn does not
converge to 1

2 .

Proof. Since the conditional distribution of ξn+1, given Rn = 1/2 does not depend
on n, it is immediate that

c < E[ξ+
n+1|Rn = 1/2] < 1 ,

and
c < E[ξ−n+1|Rn = 1/2] < 1 ,
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for some c > 0 that does not depend on n. Since t 7→ E[ξ±n+1|Rn = t] is continuous
and does not depend on n, there exists ε > 0 such that for all t ∈ (1/2− ε,1/2 + ε),

c
2
< E[ξ±n+1|Rn = t] < 2 .

Moreover, g is negative on (1/2− ε,1/2) and positive on (1/2,1/2 + ε). So, by Theo-
rem 2,

P
{
Rn 7→

1
2

}
= 0 .

Corollary 3. In the low-rate-of-mutation regime, the processRn converges almost surely,
either to β1 or to β2, that is,

P {Rn→ β1}+P {Rn→ β2} = 1 .

Proof. It suffices to check that Rn converges to β1 or β2 and does not oscillate
between them. Between 1/2 and β2 the function g is positive, so there exists 1/2 <
a0 < a1 < β2 and δ > 0 such that for all t ∈ (a0, a1), g(t) > δ .

Lemma 3 shows that Rn visits any set [a,b] ⊂ (a0, a1) finitely often almost
surely. Because the step sizes of Rn are of order 1/n, if Rn visits [a,b] finitely many
times, it crosses it finitely many times. Indeed, for n large enough it cannot cross
[a,b] without visiting [a,b]. Since Rn converges almost surely to the set {β1,β2},
but Rn crosses the set (a0, a1) finitely many times, we see that Rn converges almost
surely either to β1 or β2, as claimed.

4 Is majority voting better than random guessing?

As a first step of understanding if majority voting is better than random guessing,
we prove the following lemma. It gives an equivalent condition to the success of
majority voting in terms of the first time the majority flips.

Lemma 4. Let T denote the random time at which the majority flips for the first time,
that is,

T = min
{
n ∈ N : bmajn , b

maj
k

}
.

Then limsupn→∞R
maj(n,p) < 1/2 if and only if P {T = +∞} > 0 .

Proof. From the definition of Rmaj(n,p),

limsup
n→∞

Rmaj(n,p) = 1− liminf
n→∞

P
{
b
maj
n = bmajk

}
.
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Fix a positive ε. Since the sequence of events {∀i ∈ [n] : bmaji = bmajk } is decreasing,

and {T = +∞} = {∀i > k; bmaji = b
maj
k }, by continuity of measure we can choose n

such that
P
{
∀i ∈ [n] : bmaji = bmajk

}
≤ P {T = +∞}+ ε .

For N ≥ n+ 1, we have

P
{
b
maj
N = bmajk

}
=P

{
b
maj
N = bmajk and ∀i ∈ [n] : bmaji = bmajk

}
+P

{
b
maj
N = bmajk and ∃i ∈ [n] : bmaji , b

maj
k

}
.

(4.1)

The second term on the right-hand side decomposes as

P
{
b
maj
N = bmajk and ∃i ∈ [n] : bmaji , b

maj
k

}
=

(
1−P

{
∀i ∈ [n] : bmaji = bmajk

})
P
{
b
maj
N = bmajk

∣∣∣∣ ∃i ∈ [n] : bmaji , b
maj
k

}
.

From the definition of our process, if Ri = 1/2, then, conditionally on this event,
the distribution of RN for N > i is symmetric. Therefore

P
{
b
maj
N = bmajk

∣∣∣∣ ∃i ∈ [n] : bmaji , b
maj
k

}
=

1
2
. (4.2)

Plugging this into (4.1) yields

P
{
b
maj
N = bmajk

}
=P

{
b
maj
N = bmajk ∩ ∀i ∈ [n] : bmaji = bmajk

}
+

1
2

(
1−P

{
∀i ∈ [n] : bmaji = bmajk

})
,

(4.3)

The first term of the right-hand side is bounded from below by P {T = +∞}, which
transforms (4.3) into

P
{
b
maj
N = bmajk

}
≥ 1

2
+P {T = +∞}−

1
2
P
{
∀i ∈ [n] : bmaji = bmajk

}
.

Taking the limit on N and recalling the choice of n gives

liminf
N→∞

P
{
RN >

1
2

}
≥ 1

2
+

1
2
P {T = +∞}−

ε
2
.

Since the above holds for any ε, if P {T = +∞} > 0 then liminfN→∞P
{
b
maj
N = bmajk

}
>

1/2. This proves the “if” direction of the statement.
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On the other hand, from (4.3),

P
{
b
maj
N = bmajk

}
≤ P

{
∀i ∈ [n] : bmaji = bmajk

}
+

1
2

(
1−P

{
∀i ∈ [n] : bmaji = bmajk

})
.

Taking the limit on N and recalling the choice of n yields

liminf
N→∞

P
{
b
maj
N = bmajk

}
≤ 1

2
+

1
2
P
{
∀i ∈ [n] : bmaji = bmajk

}
≤ 1

2
+

1
2
P {T = +∞}+

ε
2
.

As this holds for any positive ε, if liminfN→∞P
{
b
maj
N = bmajk

}
> 1/2, then P {T = +∞} >

0. This concludes the proof.

Lemma 5. If

limsup
n→∞

Rmaj(n,p) ≥ 1
2
,

then
lim
n→∞

Rmaj(n,p) =
1
2
.

Proof. If limsupn→∞R
maj(n,p) ≥ 1

2 then Lemma 4 shows that T is almost surely
finite. But since

P
{
b
maj
n , b

maj
k | T ≤ n

}
=

1
2
,

this implies

P
{
b
maj
n , b

maj
k , T ≤ n

}
=

1
2
P {T ≤ n} .

Moreover, since T is finite almost surely, limn→∞P {T ≤ n} = 1 and by the continu-
ity of measure,

lim
n

P
{
b
maj
n , b

maj
k , T ≤ n

}
= P

{
b
maj
n , b

maj
k

}
.

This concludes the proof of the the lemma.

4.1 The low-rate-of-mutation regime
(
0 < p < 1

2 −
1

2αk

)
As explained in Section 3.2, if p < 1

2 −
1

2αk
, then Rn converges to either β1 or β2.

Next we show that if R1 > 1/2, then Rn is more likely to converge to β2 than to β1.
To do so, recall (2.2) and write it as

15



Rn+1 =
n

n+ 1
Rn +

1
n+ 1

Bn(g(Rn) +Rn) ,

where the Bn are independent Bernoulli random variables. We fix τ ∈ (1/2,β2).
From the analysis of g we know that g(τ) > 0. Since g(t) + t = P {Bin(k,f (t)) ≥ k/2}
and f is increasing, for all t ≥ τ ,

g(t) + t ≥ g(τ) + τ .

Fix a positive integer N and introduce the mapping

t 7→ h(t) :


h(t) = 1/2 if t < τ

h(t) = g(τ) + τ otherwise .

Then define Dk = 1. For n ≥ k, let

Dn+1 =
n

n+ 1
Dn +

1
n+ 1

B′n (h(Dn)) ,

where B′n are independent Bernoulli random variables. From the definition of the
process (Dn), on the event {Dn ≥ τ, ∀n ≥ 1}

nDn ≥Dk + Bin(n− k,g(τ) + τ) .

Hence, by the union bound and Hoeffding’s inequality,

P {∃i ≥N : Di ≤ τ | ∀n ∈ [k,N ] : Dn ≥ τ} ≤
∑
i≥N

P {Bin(i − k,g(τ) + τ) ≤ iτ} ≤
2e−(N−k)g(τ)2

1− e−2g(τ)2 .

Choosing N such that the last term above is less than one yields

P {∀i ≥N : Di ≥ τ | ∀n ∈ [k,N ] : Dn ≥ τ} > 0 .

Since

P {∀i ≥ k : Di ≥ τ} = P {∀i ∈ [k,N ] : Di ≥ τ}×P {∀i ≥N : Di ≥ τ | ∀n ∈ [k,N ]; Dn ≥ τ} ,

we just proved that
P {∀i ≥ k : Di ≥ τ} > 0 . (4.4)

Define the stopping time T ′ = min {n ≥ k; Dn ≤ τ}. Since for all t ≥ τ , g(t) + t ≥
g(τ)+τ , on the event {Rk ≥Dk ≥ τ}, there exists a coupling of the Bernoulli random
variables B and B′ such that

∀n ∈ [k,T ′] : Bn ≥ B′n ,
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and thus a coupling of the random variables Rn and Dn such that

∀n ∈ [k,T ′] : Rn ≥Dn .

From this coupling and (4.4) we have

P
{
∀n ≥ k : Rn >

1
2

}
> 0 ,

which, thanks to Lemma 4, proves that in the regime p < 1/2− 1/(2αk),

limsup
n→∞

Rmaj(n,p) <
1
2
,

proving the first statement of Theorem 1.

4.2 The high-rate-of-mutation regime
(

1
2 −

1
2αk
≤ p ≤ 1

2

)
In the range p > 1/2− 1/(2αk) the proportion of red balls converges to 1/2. It does
not mean that majority voting can not be better than random guessing. Indeed,
the proportion can converge to 1/2 from above. This is this possibility that will
now be investigated.

4.2.1 Extreme rate

First, we examine the “extreme” case when the rate of mutation is near 1/2, more
precisely when p > 1/2−1/(4αk). Define the linear function h by h(t) := g ′(1/2)(t − 1/2).
Then

g(t)

 ≥ h(t), if t ∈ [0,1/2],
≤ h(t), if t ∈ [1/2,1] .

In Figure 3 we plot h and g.
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Figure 3: A linear lower bound for |g |, k = 3 and p = 0.18.

Let us define an auxiliary process R∗n by the stochastic recursion R∗k = 1 and for
n ≥ k

R∗n+1 = R∗n +
Bn (h(R∗n) +R∗n)−R∗n

n+ 1
,

where Bn (h(R∗n) +R∗n) is a Bernoulli random variable with parameter h(R∗n) + R∗n,
conditionally independent of R∗n. In particular,

E [Bn (h(R∗n) +R∗n)−R∗n|R∗n = t] = h(t) .

Since the value of g (for (Rn)) and h (for (R∗n)) represents a drift in the processes Rn
and R∗n we expect that the process (R∗n) is further away from 1/2. Indeed, we may
introduce a coupling as follows. Define the stopping time T ∗ as the first time R∗

reaches 1/2:

T ∗ := min
{
n ≥ k : R∗n ≤

1
2

}
.

Since for the times n ∈ [k,T ∗], h(R∗n) ≥ g(Rn), we may use a similar coupling argu-
ment as in Section 4.1. Thus, there is a coupling of R∗ and R such that

∀n ∈ [k,T ∗]; Rn ≤ R∗n .

From this coupling, for T defined in Lemma 4 we have

P {T = +∞} ≤ P {T ∗ = +∞} . (4.5)

18



Observe that in the case of k = 1, g is linear and the two processes Rn and R∗n
coincide. The linear case was analyzed in Addario-Berry et al. [1] and we may
use their results to understand the behavior of R∗n. Indeed, the process defined in
Addario-Berry et al. [1] is the same as R∗ if one sets the flip probability of Addario-
Berry et al. [1] equal to −g ′(1/2)/2 and starts at time k. They prove that if p ≥ 1/4,
then, for the process starting at time 1, majority voting has an error probability of
1/2 + o(1/2). Lemma 4 implies that this process reaches 1/2 in finite time almost
surely. So even conditioned on its value being 1 at time k it will reach 1/2 in
finite time almost surely. This proves that even for R∗n starting at time k its error
probability is 1/2 + o(1). According to Lemma 4 this implies that for this range of
p, P {T ∗ = +∞} = 0. Hence, using Lemma 4 and (4.5), shows that if g ′(1/2) ≤ −1

2 ,
then

limsup
n→∞

Rmaj(n,p) =
1
2
.

Lemma 5 shows that limn→∞R
maj(n,p) = 1/2. Because g ′(1/2) = (1 − 2p)αk − 1, we

just proved that if p ≥ 1/2− 1/4αk, then

lim
n→∞

Rmaj(n,p) =
1
2
,

completing the proof of the third statement of Theorem 1.

4.2.2 Intermediate rate

It remains to study the “intermediate” case p ∈ [1/2 − 1/(2αk),1/2 − 1/(4αk)). To
this end, we may couple Rn to a process for which majority voting outperforms
random guessing. Let us fix p ∈ [1/2 − 1/(2αk),1/2 − 1/(4αk)), which implies that
g ′(1/2)/2 > −1/4. Then choose q = −g ′(1/2)/2 + ε with ε > 0 small enough so that
q < 1/4 and g(0) > h(0). We define the linear function h(t) := −2q(t − 1/2), and
as illustrated in Figure 4, we denote by a and b the intersection points between
h and g (apart from 1/2). More precisely a and b are defined as the the roots of
g − h distinct from 0. Since g − h is strictly convex on (0,1/2) and (g − h)(0) > 0,
(g−h)′(1/2) < 0, a and b are well defined and sit respectively in (0,1/2) and (1/2,1).

19



Figure 4: Comparison of h and g, for k = 3 and p = 0.34 (rescaled for clarity).

We define R∗n similarly as in the previous section but now with h(t) = −2q(t − 1/2),
that is R∗k = 1 and

R∗n+1 = R∗n +
Bn (h(R∗n) +R∗n)−R∗n

n+ 1
,

where the Bn are conditionally independent Bernoulli random variables. In par-
ticular,

E [Bn (h(R∗n) +R∗n)−R∗n|R∗n = t] = −2q
(
t − 1

2

)
.

Just as in the previous section, we may use the analysis of Addario-Berry et al. [1]
for the case k = 1 with mutation probability of q. Addario-Berry et al. [1] state
that for the process starting at time 1 and for q < 1/4 majority voting is better than
random guessing. A simple coupling from the process starting at time 1 and R∗n
proves that this statement holds for R∗n. Thus, from Lemma 4 it follows that

P
{
∀n ≥ k : R∗n >

1
2

}
> 0 .

Now, from Lemma 3 we deduce that both processes Rn and R∗n converge almost
surely to 1/2 and exceed b only finitely many times. Thus, there exists an almost
surely finite random time T ′ such that and ∀n ≥ T ′; Rn ≤ b and R∗n ≤ b. We use
similar coupling arguments as in Section 4.1. So, on the event that R∗ does not
reach 1/2 we can couple Rn and R∗n from T ′ onwards such that Rn ≥ R∗n. This
proves that
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P
{
∀n ≥ T ′ : Rn >

1
2
| T ′

}
> 0 .

Using that T ′ is finite almost surely and Lemma 4 we conclude that majority voting
is better than random guessing in this regime. More precisely, if 1/2− 1/2αk ≤ p <
1/2− 1/4αk, then

limsup
n→∞

Rmaj(n,p) <
1
2
.

This completes the proof of Theorem 1.

5 A general lower bound

In this final section we derive a lower bound for the probability of error that holds
for all mutation probabilities. In particular we show the following.

Proposition 1. Let k be a positive odd integer and let k/2 < ` < k. Assume that initially
there are ` red vertices, that is Rk = `/k. Letting

hk := P
{

Beta
(
k + 1

2
,
k + 1

2

)
≥ 1− 1

k

}
,

the probability of error of the majority rule satisfies

inf
0≤p≤1
n≥2`

P
{
b
maj
n , b

maj
k

}
≥ 1

2
h2`−k
k .

Proof. The proposition follows by simply considering the event that the first
2`−k new vertices are all blue. In that case, at time 2` the number of red and blue
vertices are equal. We may write, for any n ≥ 2`,

P
{
b
maj
n , b

maj
k

}
≥ P

{
b
maj
n , b

maj
k | ck+1 = · · · = c2` = B

}
×P {ck+1 = · · · = c2` = B} .

From the symmetry of our model, P
{
b
maj
n , b

maj
k | ck+1 = · · · = c2` = B

}
= 1/2. Thus

P
{
b
maj
n , b

maj
k

}
≥ P {ck+1 = · · ·c2` = B}

2
.

To estimate the probability on the right-hand side, we use (2.4), which implies

P {ci = B} =
∫ 1

f (Ri )
(x(1− x))

k−1
2

Γ (k + 1)

Γ 2
(
k+1

2

)dx .
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If Rk = `/k and ck+1 = · · · = ci−1 = B, where k < i ≤ 2k, then Ri−1 = `/i. Since
0 ≤ p ≤ 1/2,

f (Ri−1) = (1− 2p)
`
i

+ p ≤max
(

1
2
,
`
i

)
≤ k − 1

k
= 1− 1

k
.

Therefore,

min
k<i≤2`

P {ci = B | ck+1 = · · · = ci−1 = B} ≥ hk ,

as claimed.

6 Concluding remarks

In this paper we study the majority rule for guessing the initial bit values at the
roots of a random recursive k-dag in a broadcasting model. The main result of the
paper characterizes the values of the mutation probability for which the major-
ity rule performs strictly better than random guessing. Even in this exact model,
many interesting questions remain open. For example, we do not have sharp
bounds for the probability of error. It would also be interesting to study other,
more sophisticated, classification rules that take the structure of the observed k-
dag into account. In particular, the optimal probability of error (as a function of
k and the mutation probability p) is far from being well understood. For an initial
study of localizing the root vertices, we refer the interested reader to Briend et al.
[5].
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