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We thank the discussants for the interesting comments which shed light on many

different aspects of boosting and related methods for classification and regression.

In this rejoinder we summarize what we have learnt about boosting since the writing

of the paper, in great part thanks to these discussion pieces.

The new and elegant proof of the consistency theorem of Koltchinskii is not only

amusing but also shows the way how many seemingly different classifiers, including

regularized boosting and support vector machines, can be analyzed in a single

framework. The main message of Bartlett, Jordan, and McAuliffe is similar in that

they consider so-called large-margin classification methods which minimize a certain

empirical loss function of the margin different from the empirical probability of

error and characterize the loss functions which lead to consistent classification. The

generality of these conditions is surprising and again, develops a unified treatment

that encompasses not only various versions of boosting methods but also support

vector machines and related kernel-based methods.

We agree with Freund and Schapire that consistency is just a minimal require-

ment and does not explain the good practical behavior of boosting. Once consis-
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tency is established, attention should be turned to a finer analysis. Koltchinskii

points out the importance of establishing rates of convergence. However, it is not

completely obvious what the reasonable assumptions are for the distribution in

high-dimensional classification problems. We share the view of Friedman, Hastie,

Rosset, Tibshirani, and Zhu that sparsity should play a key role. We believe that

the analysis of consistency provides valuable insight into the behavior of boosting.

Indeed, building partly on the techniques of the discussed papers by Zhang and us,

and on the recent paper of Bartlett, Jordan, and McAuliffe (cited in their discus-

sion), in a recent joint work with Gilles Blanchard [1] we have been able to derive

rate-of-convergence results for regularized boosting methods similar to the ones

studied in our paper. As it turns out, some regularized boosting methods produce

classifiers whose probability of error converges to the Bayes error at a rate indepen-

dent of the dimension (faster than O(n−1/4) and sometimes as fast as O(n−1/2))

for large classes of distributions. This is an interesting feature not shared by clas-

sical nonparametric methods such as the k-nearest neighbor classifier, as it is also

pointed out by Freund and Schapire. The distributions under which such a rate of

convergence holds are those for which the function f∗ minimizing the cost function

A(f) = Eφ(−f(X)Y ) can be approximated arbitrarily (say, in the L∞ sense) by

linear combinations of base functions with coefficients bounded in L1. The char-

acterization of these distributions is far from being trivial in general, but in some

cases it is well understood. As an example, we cite the following special case from

[1]:

Corollary 1. Let X ∈ Rd with d ≥ 2. There exists a regularized boosting

classifier f̂n based on the logit cost function and decision stumps such that if there

exist functions f1, . . . , fd : R→ R and a positive constant B such that the sum of the
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total variations of the fi is bounded by Bd and such that log η(x)
1−η(x) =

∑d
i=1 fi(x

(i))

then for every n, with probability at least 1 − 1/n2, the probability of error L(f̂n)

satisfies

L(f̂n)− L∗ ≤ C
√
d log dn−

1
2(2−α)

(
Vd+2
Vd+1

)

where C is a universal constant, Vd ≤ 2 log2(2d) and the value of α ∈ [0, 1] depends

on the distribution.

This result quantifies the observation of Friedman, Hastie, and Tibshirani [2] who

pointed out a close relationship between boosting and additive logistic regression.

The example described by Bühlmann and Yu fits exactly in the framework of this

corollary and explains the good behavior of LogitBoost in their simulations.

Interestingly, the same result is not true when the exponential cost function is

used. In that case, even though the rate of convergence in terms of the sample size

remains the same, the dimension-dependent constant in front grows exponentially

rapidly with d. It is a remarkable fact that the dimensionality only appears in the

multiplicative constant of the rate of convergence. We believe that, even though

now we are closer to the understanding of boosting and related methods, there is

still a lot to discover and interesting unexplored questions abound.

Freund and Schapire point out that in very high dimensional problems boosting

may not be computationally feasible if the base class is one of the usual classes (e.g.,

decision trees with d+ 1 extremal nodes) which guarantee universal consistency. In

such cases one may have to resort to smaller base classes such as decision stumps.

The corollary above shows that boosting based on stumps has an excellent behav-

ior if the distribution happens to follow an additive logistic model. However, one

should proceed with care when using such “incomplete” base classes. It is shown

in [1] that boosting (and other large-margin methods which minimize an empir-
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ical cost functional) may have a catastrophic behavior if the function f∗ cannot

be approximated by linear combinations of base functions in the sense that the

resulting classifier may have a probability of error which is much larger not only

than the Bayes error but also than the error of the best classifier realizable by lin-

ear combinations of base classifiers. Thus, an interesting open problem is to find

“simple” base classes which are dense in the sense that all possible classifiers can

be approximated by convex combinations of base classifiers. In a recent manuscript

[4] we show the existence of such a class of vc dimension 2, independently of the

dimension of the space. While the construction given in that paper is probably of

little practical value, a better understanding of the tradeoff between computational

complexity and approximation ability is an important challenge.

Another important issue that Freund and Schapire raise is that by minimizing

an empirical cost function such as the exponential or the logit functions one im-

plicitly estimates the whole conditional probability function η(x) (more precisely, a

monotone function of it). By doing that, one does more than necessary since in bi-

nary classification the only thing that matters is whether η(x) is greater or smaller

than 1/2. The results of Bartlett, Jordan, and McAuliffe refine this point of view

by showing that under conditions on the behavior of η(x) around 1/2 (introduced

by Tsybakov) the rate of convergence of boosting methods speeds up considerably.

(The constant α in the corollary above is determined by the behavior of η(x) in the

vicinity of 1/2.) There is one convex cost function, the “hinge loss” used by support

vector machines, which has the distinguishing property that its minimizer is the

Bayes classifier g∗ itself, see Lin [3]. Thus, as opposed to boosting, support vector

classifiers do just what they are supposed to do, and do not “waste energy” in es-

timating the function η(x) in irrelevant ranges. However, this does not necessarily
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mean that support vector machines perform better as for the hinge loss it seems

to become more difficult to approximate the minimizer f∗ by linear combinations

of base classifiers. Once again, the relationship of minimizers of different empirical

cost functions is complex, very far from being well understood.

The discussion of Bühlmann and Yu tackles algorithmic issues of regularized

boosting procedures. In our experiments, we used MarginBoost.L1 as a conver-

gent algorithm giving a nearly optimal output in the λ-blowup of the convex hull of

the base class (for a fixed value λ of the smoothing parameter). Running this algo-

rithm for various values of λ revealed that this smoothing parameter was effectively

acting as a relevant complexity measure even for small sample sizes. The discus-

sion of Friedman, Hastie, Rosset, Tibshirani, and Zhu, pointing out the connection

of regularized boosting methods with L1-penalty to Tibshirani’s Lasso, provides a

strong intuition on how the practical problem of finding efficient greedy algorithms

can be dealt with.

Bühlmann and Yu also comment on the importance of distinguishing between

regularizing by an explicit constraint on the sum (or other norm) of the weights

and by early stopping. This is an important and difficult question. The very inter-

esting results of Bickel and Ritov show in a general framework that stopping by

cross validation works in a strong sense. While early stopping is alluring from a

practical point of view (it reduces to AdaBoost, plus a stopping rule), its theo-

retical analysis is more problematic. Indeed, in most cases, it turns out that there

is an optimal value for the smoothing parameter λ = λ∗ (corresponding to the

L1-norm of the weights of the optimal combination). The successive iterations in

AdaBoost can be conceived as drawing a path in the space of the weights cross-

ing the iso-surfaces defined by constant values of the L1-norm of the weights, and
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early stopping returns an output on this path which may be close to the optimal

vector of weights. Since there is no known guarantee that during the iterations the

weight vector passes through a near-optimal value for the best choice λ∗, it seems

to be difficult to derive rate-of-convergence results such as the corollary above for

AdaBoost or LogitBoost with early stopping. To better understand the rela-

tionship between explicitly regularized boosting and early stopped AdaBoost is a

challenging problem that requires a careful study of the approximation properties

of the iterative construction of the boosting estimator based on highly redundant

dictionaries of base classifiers. We entirely agree with Friedman, Hastie, Rosset, Tib-

shirani, and Zhu, who point out the importance of sparsity. We believe that these

perspectives motivate interesting research at the interface of statistics, optimization

and approximation theories.
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