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Abstract. In this paper model selection via penalized empirical loss minimization in non-
parametric classification problems is studied. Data-dependent penalties are constructed,
which are based on estimates of the complexity of a small subclass of each model class, con-
taining only those functions with small empirical loss. The penalties are novel since those
considered in the literature are typically based on the entire model class. Oracle inequalities
using these penalties are established, and the advantage of the new penalties over those
based on the complexity of the whole model class is demonstrated.

1. Introduction.

In this paper we propose a new complexity-penalized model selection method based on

data-dependent penalties. We consider a simple binary classification problem, though most

ideas may be extended to a more general framework. Given a random observation X ∈ Rd,
one has to predict Y ∈ {0, 1}. A classifier or classification rule is a function f : Rd → {0, 1},
with loss

L(f) def= P{f(X) 6= Y }.

A sample Dn = (X1, Y1), . . . , (Xn, Yn) of n independent, identically distributed (i.i.d.) pairs

are available. Each pair (Xi, Yi) has the same distribution as (X,Y ) and Dn is independent

of (X,Y ). The statistician’s task is to select a classification rule fn based on the data Dn
such that the probability of error

L(fn) = P{fn(X) 6= Y | Dn}

is small. The Bayes classifier

f∗(x) def= I {P[Y = 1|X = x] ≥ P[Y = 0|X = x]}

(where I denotes the indicator function) is the optimal rule as

L∗
def= inf

f :Rd→{0,1}
L(f) = L(f∗),
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but both f∗ and L∗ are unknown to the statistician. In this note we study classifiers f :

R
d → {0, 1} which minimize the empirical loss

L̂(f) =
1
n

n∑
i=1

I{f(Xi) 6= Yi}

over a class of rules F . For any f̂ ∈ F minimizing the empirical probability of error, we have

EL(f̂)− L∗ = EL̂(f̂)− L∗ + E(L− L̂)(f̂)

= E inf
f∈F

L̂(f)− L∗ + E(L− L̂)(f̂)

≤ inf
f∈F

EL̂(f)− L∗ + E(L− L̂)(f̂)

= inf
f∈F

L(f)− L∗ + E(L− L̂)(f̂).

Clearly, the approximation error

inf
f∈F

L(f)− L∗

is decreasing as F becomes richer. However, the more complex F , the more difficult the

statistical problem becomes: the estimation error

E(L− L̂)(f̂)

increases with the complexity of F . In many approaches to the problem described above, one

fixes in advance a sequence of model classes F1,F2, . . ., whose union is F . The problem of

penalized model selection is to find a possibly data-dependent penalty Ĉk, assigned to each

class Fk, such that minimizing the penalized empirical loss

L̂(f) + Ĉk, f ∈ Fk, k = 1, 2, . . .

leads to a prediction rule f̂ with smallest possible loss. Denote by f̂k a function in Fk having

minimal empirical loss and by L∗k = inff∈Fk L(f) the minimal loss in class Fk.

The main idea is that since f̂k minimizes L̂(f), we find, by the argument described above,

that

EL(f̂k)− L∗ ≤ L∗k − L∗ + E(L− L̂)(f̂k).

Our goal is to find the class Fk such that L(f̂k) is as small as possible. To this end, a good

balance has to be found between the approximation and estimation errors. The approximation

error is unknown to us, but the estimation error may be estimated. The key to complexity-

regularized model selection is that a tight bound for the estimation error is a good penalty

Ĉk. More precisely, we show in Lemma 2.1 below that if for some constant κ > 0

P

{
Ĉk ≤ (L− L̂)(f̂k)

}
≤ κ

n2k2
,
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then the oracle inequality

EL(f̂)− L∗ ≤ inf
k

(
L∗k − L∗ + EĈk

)
+ 2κn−2

holds, and also, a similar bound,

L(f̂)− L∗ ≤ inf
k

(
L∗k − L∗ + 2Ĉk

)
,

holds with probability greater than 1 − 4κn−2. This simple result shows that the penalty

should be, with large probability, an upper bound on the estimation error, and to guarantee

good performance, the bound should be as tight as possible.

Originally, distribution-free bounds, based on uniform-deviation inequalities, were pro-

posed as penalties. For example, the structural risk minimization method of Vapnik and

Chervonenkis [27] uses penalties of the form

Ĉk = κ

√
log Sk(2n) + log k

n
,

where κ is a constant and Sk(2n) is the 2n-maximal shatter coefficient of the class

Ak = { {x : f(x) = 1}, f ∈ Fk} ,

that is,

Sk(2n) = max
x1,...,x2n

|{ {x1, · · · , x2n} ∩A, A ∈ Ak}|(1.1)

= max
x1,...,x2n

|{ (f(x1), · · · , f(x2n)), f ∈ Fk}| ,

see for example, Vapnik [26], Devroye, Györfi, and Lugosi [9]. The fact that this type

of penalty works follows from the Vapnik-Chervonenkis inequality. Such distribution-free

bounds are attractive because of their simplicity, but precisely because of their distribution-

free nature, they are necessarily loose in many cases.

Recently various attempts have been made to define the penalties in a data-dependent

way to achieve this goal, see, for example, Bartlett, Boucheron, and Lugosi [2], Koltchinskii

[11], Koltchinskii and Panchenko [13], Lozano [15], Lugosi and Nobel [17], Massart [19], and

Shawe-Taylor, Bartlett, Williamson, and Anthony [22].

For example, in [11] and [2], random complexity penalties based on Rademacher averages

were proposed and investigated. Rademacher averages are defined as

R̂Fk = E

[
sup
f∈Fk

1
n

n∑
i=1

σiI{f(Xi) 6= Yi}
∣∣∣∣Dn

]
,
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where σ1, . . . , σn are i.i.d. symmetric {−1, 1}-valued random variables, independent of Dn.

The reason why this penalty was introduced is based on the fact that

E sup
f∈Fk

(L− L̂)(f) � ER̂Fk

(see, e.g., Van der Vaart and Wellner [25]), and since R̂Fk can be shown to be sharply

concentrated around its mean. In fact, concentration inequalities have been a key tool in

the analysis of data-based penalties (see Massart [19]) and this paper relies heavily on some

recent concentration results.

The model selection method based on Rademacher complexities satisfies an oracle inequal-

ity of the rough form

(1.2) EL(f̂)− L∗ ≤ inf
k

[
L∗k − L∗ + κ1ER̂Fk + κ2

√
log k
n

]
(see [2] and [11]) for values of the constants κ1, κ2 > 0. The advantage of this bound over

the one obtained by the distribution-free penalties mentioned above may perhaps be better

understood if we further bound

ER̂Fk ≤
√
E log 2Sk(Xn

1 )
2n

where

Sk(Xn
1 ) = |{{X1, . . . , Xn} ∩A : A = {x : f(x) = 1}, f ∈ Fk}|(1.3)

= |{(f(X1), . . . , f(Xn)), f ∈ Fk}| ,

is the random shatter coefficient of the class F̂k, which obviously never exceeds the worst-case

shatter coefficient Sk(n) and may be significantly smaller for certain distributions.

However, this improved penalty is still not completely satisfactory. To see this, recall that

by a classical result of Vapnik and Chervonenkis, for any index k,

(1.4) EL(f̂k)− L∗k ≤ c

(√
L∗k · E log Sk(Xn

1 )
n

+
E log Sk(Xn

1 )
n

)
which is much smaller than the corresponding expected Rademacher average if L∗k is small.

(For explicit constants we refer to Theorem 1.14 in Lugosi [16].) Since in typical classification

problems the minimal error L∗k in class Fk is often very small for some k, it is important to

find penalties which allow to derive oracle inequalities with the appropriate dependence on

L∗k. In particular, a desirable goal would be to develop classifiers f̂ for which an oracle

inequality resembling

EL(f̂)− L∗ ≤ inf
k

{
L∗k − L∗ + κ1

√
L∗k · E log Sk(Xn

1 )
n

+ κ2
E log Sk(Xn

1 )
n

}
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holds for all distributions. The main results of this note (Theorems 4.1 and 4.2) show that

estimates of the desired property are indeed possible to construct in a conceptually simple

way.

By the key Lemma 2.1, it suffices to find a data-dependent upper estimate of (L− L̂)(f̂k)

which has the order of magnitude of the above upper bound. The difficulty is that L∗k and

E log Sk(Xn
1 ) both depend on the underlying distribution.

The improvement is achieved by decreasing the penalties so that the supremum in the

definition of the Rademacher average is not taken over the whole class Fk but rather over a

small subclass F̂k containing only functions which “look good” on the data. More precisely,

define the random subclass F̂k ⊂ Fk by

F̂k =
{
f ∈ Fk : L̂(f) ≤ κ1L̂(f̂k) + κ2n

−1 log Sk(Xn
1 ) + κ3n

−1 log(nk)
}

for some non-negative constants κ1, κ2 and κ3.

Risk estimates based on localized Rademacher averages have been considered in several

recent works. The most closely related procedure is proposed by Koltchinskii and Panchenko

[12], who, assuming inff∈F L(f) = 0, compute the Rademacher averages of subclasses of F
with empirical loss less than r for different values of r obtained by a recursive procedure, and

obtain bounds for the loss of the empirical risk minimizer in terms of the localized Rademacher

averages obtained after a certain number of iterations. Our approach of bounding the loss

is conceptually simpler: it suffices to compute the Rademacher complexities at only one

scale which depends on the smallest empirical loss in the class and a term of a smaller order

determined by the shatter coefficients of the whole class. Thus, we use ”global” information to

determine the scale of localization. Bartlett, Bousquet, and Mendelson [3] also derive closely

related generalization bounds, based on localized Rademacher averages. In their approach

the performance bounds also depend on Rademacher averages computed at different scales of

localization, which are combined by the technique of peeling. For further recent related work

we also refer to Bousquet [7], Bousquet, Koltchinskii, and Panchenko [8], and Tsybakov [24].

The rest of the paper is organized as follows. Section 2 presents some basic inequalities

on model selection, which generalizes some of the results in Bartlett, Boucheron, and Lugosi

[2]. Section 3 proposes a simple but suboptimal penalty which already has some of the main

features of the penalties presented in Section 4. It shows, in a transparent way, some of

the underlying ideas of the main results. Section 4 introduces a new penalty based on the

Rademacher average R̂F̂k and it is shown that the new estimate yields an improvement of

the desired form.
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2. Preliminaries

In this section we present two basic auxiliary lemmata on model selection. The first lemma

is general in the sense that it does not depend on the particular choice of the penalty Ĉk.

This result was mentioned in the introduction and generalizes a result obtained by Bartlett,

Boucheron, and Lugosi [2].

Lemma 2.1. Suppose that the random variables Ĉ1, Ĉ2, . . . are such that

P

{
Ĉk ≤ (L− L̂)(f̂k)

}
≤ κ

n2k2

for some κ > 0 and for all k. Then we have

EL(f̂)− L∗ ≤ inf
k

[
L∗k − L∗ + EĈk

]
+

2κ
n2
.

It is clear that we can always take Ĉk ≤ 1.

Proof. Observe that

E sup
k

{
(L− L̂)(f̂k)− Ĉk

}
≤ P

{
sup
k

[
(L− L̂)(f̂k)− Ĉk

]
≥ 0
}

(since sup
k

[
(L− L̂)(f̂k)− Ĉk

]
≤ 1)

≤
∞∑
k=1

P

{
(L− L̂)(f̂k)− Ĉk ≥ 0

}
(by the union bound)

≤
∞∑
k=1

κ

n2k2

(by assumption)

≤ 2κ
n2
.
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Therefore, we may conclude that

EL(f̂)− L∗ = E

[
L̂(f̂)− L∗ + Ĉ

k̂

]
+ E

[
(L− L̂)(f̂)− Ĉ

k̂

]
(where k̂ is the selected model index, that is, f̂ = f̂

k̂
)

≤ E inf
k

[
L̂(f̂k)− L∗ + Ĉk

]
+ E

[
(L− L̂)(f̂)− Ĉ

k̂

]
(by definition of f̂)

≤ E inf
k

[
inf
f∈Fk

L̂(f)− L∗ + Ĉk

]
+ E sup

k

[
(L− L̂)(f̂k)− Ĉk

]
(by definition of f̂k)

≤ inf
k

[
inf
f∈Fk

L(f)− L∗ + EĈk

]
+ E sup

k

[
(L− L̂)(f̂k)− Ĉk

]
(interchange E and inf)

≤ inf
k

[
L∗k − L∗ + EĈk

]
+

2κ
n2

(by the preceding display)

and the proof is complete. 2

The preceding result is not entirely satisfactory on the following ground. Although it

presents a sharp bound, it is a bound for the average risk behavior of f̂ . However, the penalty

is computed on the data at hand, and therefore the proposed criterion should have optimal

performance for (almost) all possible sequences of the data. The following result presents a

nonasymptotic oracle inequality which holds with large probability and an asymptotic almost

sure version.

Lemma 2.2. Assume that for all k, n ≥ 1,

P

{
Ĉk ≤ (L− L̂)(f̂k)

}
≤ κ

n2k2
and P

{
Ĉk ≤ (L̂− L)(f∗k )

}
≤ κ

n2k2
.

Then for all n ≥ 1 we have

P

[
L(f̂)− L∗ ≤ inf

k

(
L∗k − L∗ + 2Ĉk

)]
≤ 4κ
n2

and the asymptotic almost sure bound

P

[
lim inf
n→∞

{
L(f̂)− L∗ ≤ inf

k

(
L∗k − L∗ + 2Ĉk

) }]
= 1.
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Proof. Let k̂ be the selected model index. Notice that

L(f̂) = L̂(f̂) + Ĉ
k̂

+ (L− L̂)(f̂)− Ĉ
k̂

≤ inf
k

[
L̂(f̂k) + Ĉk

]
+ sup

k

[
(L− L̂)(f̂k)− Ĉk

]
≤ inf

k

[
L̂(f∗k ) + Ĉk

]
+ sup

k

[
(L− L̂)(f̂k)− Ĉk

]
≤ inf

k

[
L∗k + 2Ĉk

]
+ sup

k

[
(L̂− L)(f∗k )− Ĉk

]
+ sup

k

[
(L− L̂)(f̂k)− Ĉk

]
.

By assumption, the last two terms on the right-hand side satisfy

P

[
sup
k

[
(L̂− L)(f∗k )− Ĉk

]
+ sup

k

[
(L− L̂)(f̂k)− Ĉk

]
≥ 0
]
≤
∞∑
k=1

2κ
n2k2

<
4κ
n2

,

proving the first inequality. The almost sure statement is a direct consequence of the Borel-

Cantelli lemma. 2

3. A simple version

The purpose of this short section is to offer a simplified, yet suggestive illustration of the

ideas. As discussed in the introduction, an ideal penalty would be a tight upper bound for

the expression on the right-hand side of (1.4). Motivated by this bound, we propose the

simple penalty

Ĉk = 2

√
2L̂(f̂k) + 8

log Sk(2n) + 2 log(nk)
n

·
√

log Sk(2n)
n

+ 2
log(nk)

n
,

where Sk(2n) is the (worst-case) 2n-shatter coefficient defined in (1.1). Thus, the minimal

loss L∗k in class Fk is estimated by its natural empirical counterpart L̂(f̂k) = inff∈Fk L̂(f) and

the expected logarithmic shatter coefficient E log Sk(Xn
1 ) is estimated by the distribution-free

upper bound log Sk(2n). (This term may be bounded further by Vk log(2n+ 1), where Vk is

the VC-dimension of the set Ak). The auxiliary terms n−1 log(nk) are necessary to derive

the desired oracle inequalities. The next theorem shows that the proposed penalty indeed

works.

Theorem 3.1. Consider the penalized empirical loss minimizer f̂ with the data-based penalty

Ĉk defined above. Then for every n and for all distributions of (X,Y ),

EL(f̂)− L∗ ≤ inf
k

(
L∗k − L∗ + EĈk

)
+

16
n2
.
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In particular,

EL(f̂)− L∗

≤ inf
k

[
L∗k − L∗ + 4

√
L∗k +

2
n
{log Sk(2n) + 2 log(nk)} ·

√
log Sk(2n)

n
+ 2

log(nk)
n

]
+

16
n2

.

The proof uses Lemma 2.1 and the following uniform deviation bound due to Vapnik

and Chervonenkis [27]. (The slighly improved form used here is proved by Anthony, and

Shawe-Taylor [1].)

Proposition 3.2. Let Sk(X2n
1 ) be the random shatter coefficient of Ak based on i.i.d. obser-

vations X1, · · · , X2n defined in (1.3). For all ε > 0 and n ≥ 1,

P

{
sup
f∈F

L(f)− 2L̂(f) ≥ 2ε

}
≤ 4ESk(X2n

1 ) exp(−nε/4)(3.1)

and

P

{
sup
f∈F

L̂(f)− 2L(f) ≥ 2ε

}
≤ 4ESk(X2n

1 ) exp(−nε/4).(3.2)

Proof. Observe that for all ε > 0 and n ≥ 1,{
sup
f∈F

L(f)− 2L̂(f) ≥ 2ε

}
⊆

{
sup
f∈F

L(f)− L̂(f)√
L(f)

≥
√
ε

}
and similarly, {

sup
f∈F

L̂(f)− 2L(f) ≥ 2ε

}
⊆

sup
f∈F

L̂(f)− L(f)√
L̂(f)

≥
√
ε

 .

The proposition follows by Anthony, and Shawe-Taylor [1]. 2

Proof of Theorem 3.1. We start with the proof of the first inequality of Theorem 3.1. In view

of Lemma 2.1, it suffices to show that

P{L(f̂k)− L̂(f̂k) ≥ Ĉk} ≤ 8/(nk)2.

Consequently, by (3.1),

P

{
2L̂(f̂k) + 8

log Sk(2n)
n

+ 16
log(nk)

n
≤ L(f̂k)

}
= P

{
L(f̂k)− 2L̂(f̂k) ≥ 8

log Sk(2n)
n

+ 16
log(nk)

n

}
≤ 4Sk(2n) exp

{
−n

8

(
8

log Sk(2n)
n

+ 16
log(nk)

n

)}
=

4
n2k2

,
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so that

P{Ĉk ≥ C̃k} ≥ 1− 4/(nk)2,

where

C̃k = 2
√
L(f̂k) ·

√
log Sk(2n)

n
+ 2

log(nk)
n

.

Another application of inequality (3.1) yields

P{L(f̂k)− L̂(f̂k) ≥ Ĉk}

≤ P{L(f̂k)− L̂(f̂k) ≥ C̃k}+
4

(nk)2

≤ 4Sk(2n) exp
{
−n

4
· 4
(

log Sk(2n)
n

+ 2
log(nk)

n

)}
+

4
(nk)2

=
8

(nk)2
.

Conclude via Lemma 2.1 that

EL(f̂) ≤ min
k

(
Lk + EĈk

)
+

16
n2
.

For the second inequality, deduce that for all δ > 0,

E

√
L̂(f̂k) + δ ≤

√
EL̂(f̂k) + δ ≤

√
E inf
f∈Fk

L̂(f) + δ ≤
√
L∗k + δ.

by Jensen’s inequality and the definition of f̂k. 2

The bound of Theorem 3.1 has the right dependence on L∗k as suggested by inequality (1.4)

mentioned in the introduction. In particular, if L∗k happens to equal to zero for some class Fk,
then the upper bound has an improved rate of convergence. The disadvantage of the simple

penalty defined above is that instead of the expected shatter coefficients, a distribution-free

(and therefore suboptimal) upper bound appears for each class Fk.
Recently, Boucheron, Lugosi and Massart [4] proved that log Sk(Xn

1 ) concentrates sharply

around its mean. For example, we have the following inequalities:

Proposition 3.3. For all ε > 0, n ≥ 1,

P [E log Sk(Xn
1 ) > 2 log Sk(Xn

1 ) + 2ε] ≤ e−ε ,

P [log Sk(Xn
1 ) > 2E log Sk(Xn

1 ) + 2ε] ≤ e−ε.

Moreover, for each n ≥ 1,

E log Sk(Xn
1 ) ≤ logESk(Xn

1 ) ≤ 1
ln 2

E log Sk(Xn
1 ) ≤ 2E log Sk(Xn

1 ) .
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This proposition implies that the expected random log shatter coefficients E log Sk(Xn
1 ) of

Fk may be replaced by a constant times log Sk(Xn
1 ) and vice versa. Hence we may replace the

distribution-free bounds log Sk(2n) by empirical estimates log Sk(Xn
1 ), at the price of slightly

worse constants. The main oracle inequalities in Section 4 are accompanied by asymptotic

almost-sure versions of bounds for the expected value. Such bounds are easy to obtain as

well, simply by invoking Lemma 2.2 instead of Lemma 2.1. The details are omitted here.

4. Rademacher penalties

The main results of the paper are presented in this section. Assign, to each model class

Fk,

ûk = 16
4 log Sk(Xn

1 ) + 9 log(nk)
n

,(4.1)

with Sk(Xn
1 ) defined in (1.3), and the class

F̂k =
{
f ∈ Fk : L̂(f) ≤ 16L̂(f̂k) + 15ûk

}
.(4.2)

Observe that the class F̂k contains only those classifiers whose empirical loss is not much

larger than that of the empirical minimizer. Note that the constant 16 has no special role, it

has been chosen by convenience. Any constant larger than one would lead to similar results,

at the price of modifying other constants. The term ûk depends on the shatter coefficient of

the whole class Fk but it is typically small compared to L̂(f̂k).

The penalty is calculated in terms of the Rademacher average of this smaller class. More

precisely, define the complexity estimate by

Ĉk =
(

8R̂F̂k + 20n−1 log(nk) + 2
√
n−1 log(nk) ·

√
8L̂(f̂k) + 7ûk

)
∧ 1.(4.3)

Again, not too much attention should be paid to the values of the constants involved. We

favored simple readable proofs over optimal constants. Note that, through Sk(Xn
1 ), the

penalty also depends on the random shatter coefficient of the whole class Fk. However, the

term involving the shatter coefficient of the entire class Fk,

n−1
√

log(nk) · log Sk(Xn
1 ),

is typically much smaller (by a factor n−1/2) than the Rademacher average of the whole class

Fk. (For instance, see inequality (4.8) and Proposition 4.6 below.)

We have the following performance bound for the expected loss of the minimizer f̂ of the

penalized empirical loss L̂(f̂k) + Ĉk.
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Theorem 4.1. For every n,

EL(f̂)− L∗ ≤ inf
k

(
L∗k − L∗ + EĈk

)
+

22
n2
.

In addition, with probability greater than 1− 44/n2,

L(f̂)− L∗ ≤ inf
k

(L∗k − L∗ + 2Ĉk)

and also

P

[
lim inf
n→∞

{
L(f̂)− L∗ ≤ inf

k
(L∗k − L∗ + 2Ĉk)

}]
= 1 .

The next theorem is here to point out that the bound above is indeed a significant im-

provement over bounds of the type (1.2), and that the dependence on the minimal loss L∗k
and the random shatter coefficient has the form suggested by (1.4). For this purpose, we

introduce

uk = 16
8E log Sk(Xn

1 ) + 17 log(nk)
n

(4.4)

and the class

Fk = {f ∈ Fk : L(f) ≤ 64L∗k + 63uk} .

We also set

εk = 2n−1 log(nk) .

Theorem 4.2. The following oracle inequality holds

EL(f̂)− L∗ ≤ min
k≥1

[
L∗k − L∗ + 8ER̂Fk + 15εk + 16

√
L∗k + uk ·

√
2εk

]
+ 22n−2.

In particular, there exists universal constants κ1 and κ2 such that

EL(f̂)− L∗

≤ inf
k

{
L∗k − L∗ + κ1

√
L∗k · (E log Sk(Xn

1 ) ∨ log(nk))
n

+ κ2
E log Sk(Xn

1 ) ∨ log(nk)
n

}
.

This oracle inequality has the desired form outlined in the introduction and improves upon

the results of [2] and [13]. For example, in the special case when L∗k = 0 for k ≥ k0, we obtain,

for some numerical constants c1 and c2,

EL(f̂) ≤ min
k≥k0

c1
E log Sk(Xn

1 ) ∨ log(nk)
n

+
c2

n2
.

which is of a different order of magnitude from the penalties considered by [2] and [13].

Theorem 4.2 is only stated for the expected loss but an inequality which holds with ”large”

probability may be obtained just as in Theorem 4.1.
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Proofs of Theorems 4.1 and 4.2. First, recall the definitions of ûk and uk in (4.1) and

(4.4), respectively, and in addition, define

uk = 8
2 logESk(Xn

1 ) + 2 log(nk)
n

and the event

Bk
def= {uk ≤ ûk ≤ uk} .

Observe Proposition 3.3 above yields that, with probability at least 1− 1/(nk)2,

uk =
16
n
{logESk(Xn

1 ) + log(nk)}

≤ 16
n
{2E log Sk(Xn

1 ) + log(nk)}

≤ 16
n
{2[2 log Sk(Xn

1 ) + 4 log(nk)] + log(nk)}

= ûk

≤ 16
n
{4[2E log Sk(Xn

1 ) + 4 log(nk)] + 9 log(nk)}

=
16
n
{8E log Sk(Xn

1 ) + 17 log(nk)} = uk

and therefore

PBc
k ≤ (nk)−2.(4.5)

Finally, we introduce the event

Ak =

{
sup
f∈Fk

L(f)− 2L̂(f) ≤ uk

}
∩

{
sup
f∈Fk

L̂(f)− 2L(f) ≤ uk

}
and the class

F∗k = {f ∈ Fk : L(f) ≤ 4L∗k + 3uk} .

The following intermediate result will be useful in the proofs of both theorems.

Lemma 4.3. We have

P{Ak ∩Bk} ≥ 1− 9
(nk)2

,(4.6)

and on the set Ak ∩Bk, the following holds:

(i) f̂k ∈ F∗k .

(ii) F∗k ⊆ F̂k, and in particular, R̂F∗k ≤ R̂F̂k .

(iii) L∗k ≤ 2L̂(f̂k) + uk.

Proof. To begin with, notice that

ESk(X2n
1 ) ≤ ESk(Xn

1 )Sk(X2n
n+1) = E

2
Sk(Xn

1 )
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by the definition of the shatter coefficient and by the independence of the Xi. Thus, by

Proposition 3.2,

PAck ≤ 8ESk(X2n
1 ) exp

(
−nuk

8

)
≤ 8
n2k2

.

This bound and (4.5) imply assertion (4.6). To prove claim (i), observe that on Ak,

L(f̂k) ≤ 2L̂(f̂k) + uk

(by definition of Ak)

≤ 2L̂(f∗k ) + uk

(by definition of f̂k)

≤ 2 (2L∗k + uk) + uk

(by definition of Ak)

= 4L∗k + 3uk.

For claim (ii), notice that for any f ∈ F∗k ,

L̂(f) ≤ 2L(f) + uk

(by definition of Ak)

≤ 2 [4L∗k + 3uk] + uk

(by definition of F∗k )

= 8L∗k + 7uk

≤ 8L(f̂k) + 7uk

(by definition of L∗k)

≤ 16L̂(f̂k) + 15uk

(by definition of Ak)

≤ 16L̂(f̂k) + 15ûk

(by definition of Bk) .

Claim (ii) now follows. Claim (iii) is immediate from the definition of Ak since both f̂k and

f∗k belong to Fk. 2

Next we link the Rademacher average R̂F∗k to E supf∈F∗k |L(f) − L̂(f)|. By a classical

symmetrization device (cf. Giné and Zinn [10] or Van der Vaart and Wellner [25])

E sup
f∈F∗k

∣∣∣L̂(f)− L(f)
∣∣∣ ≤ 2ER̂F∗k .(4.7)
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Also, R̂F∗k is known to concentrate sharply around its mean. For example, we have, by results

of Boucheron, Lugosi, and Massart [4], [5], the following bounds.

Proposition 4.4. For all ε > 0, n ≥ 1,

P

[
R̂Fk ≥ 2ER̂Fk + ε

]
≤ e−6nε/5 and P

[
R̂Fk ≤

1
2
ER̂Fk − ε

]
≤ e−nε .

Proof. Define Z def= nR̂Fk , then it follows from Boucheron, Lugosi, and Massart [4] that

logE exp(λ(Z − EZ)) ≤ EZ(eλ − 1− λ),

which implies further that for 0 ≤ λ < 3

logE exp(λ(Z − EZ)) ≤ λEZ

2(1− λ/3)
.

After an application of Markov’s inequality we find

P

[
Z ≥ EZ +

√
2EZx+ x/3

]
≤ e−x.

We obtain the desired upper-tail bound by inserting Z = nR̂Fk in the preceding display

and invoking the inequality 2
√
xy ≤ x + y. The bound for the lower tail follows from the

inequality

P

[
Z ≤ EZ −

√
2xEZ

]
≤ e−x

(see [4]) and since x+ 1
2y ≥

√
2xy. 2

Finally, we make key use of the following concentration inequality for the supremum of an

empirical process, recently established by Talagrand [23], see also Ledoux [14], Massart [19],

Rio [21]. The best known constants reported here have been obtained by Bousquet [6].

Proposition 4.5. Set ΣF∗k = supf∈F∗k L(f)(1− L(f)). For all ε > 0, n ≥ 1

P

[
sup
f∈F∗k

∣∣∣L̂(f)− L(f)
∣∣∣ ≥ 2E sup

f∈F∗k

∣∣∣L̂(f)− L(f)
∣∣∣+ ΣF∗k

√
2ε+

4ε
3

]
≤ e−nε.

We are now ready to prove Theorems 4.1 and 4.2.
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Proof of Theorem 4.1. Deduce, using (i), (ii) and (iii) of Lemma 4.3, the following string

of inequalities:

P

[{
L(f̂k) ≥ L̂(f̂k) + Ĉk

}
∩Ak ∩Bk

]
= P

[{
L(f̂k) ≥ L̂(f̂k) + 8R̂F̂k + 10εk +

√
8L̂(f̂k) + 7ûk

√
2εk

}
∩Ak ∩Bk

]
≤ P

[{
∃f ∈ F∗k : L(f) ≥ L̂(f) + 8R̂F̂k + 10εk +

√
8L̂(f̂k) + 7ûk

√
2εk

}
∩Ak ∩Bk

]
(by property (i) )

≤ P

[{
∃f ∈ F∗k : L(f) ≥ L̂(f) + 8R̂F∗k + 10εk +

√
8L̂(f̂k) + 7uk

√
2εk

}
∩Ak ∩Bk

]
(by property (ii) and definition of Bk)

≤ P

[{
∃f ∈ F∗k : L(f) ≥ L̂(f) + 8R̂F∗k + 10εk +

√
4L∗k + 3uk

√
2εk
}
∩Ak ∩Bk

]
(by property (iii) )

≤ P

{
sup
f∈F∗k

|L(f)− L̂(f)| ≥ 8R̂F∗k + 10εk + ΣF∗k
√

2εk

}
where the last inequality follows from

Σ2
F∗k

= sup
f∈F∗k

Var(I{f(X) 6= Y }) ≤ sup
f∈F∗k

L(f) ≤ 4L∗k + 3uk.

Invoke inequality (4.7), inequality (4.6) and Propositions 4.4 and 4.5 above to conclude that

P

{
L(f̂k) ≥ L̂(f̂k) + Ĉk

}
≤ P

{
sup
f∈F∗k

|L(f)− L̂(f)| ≥ 8R̂F∗k + 10εk + ΣF∗k
√

2εk

}
+

9
n2k2

(since P(Ak ∩Bk)c ≤ 9/(n2k2) by (4.6) in Lemma 4.3)

≤ P

{
sup
f∈F∗k

|L(f)− L̂(f)| ≥ 4ER̂F∗k + 2εk + ΣF∗k
√

2εk

}
+

10
n2k2

(by Proposition 4.4)

≤ P

{
sup
f∈F∗k

|L(f)− L̂(f)| ≥ 2E sup
f∈F∗k

|L̂(f)− L(f)|+ 4εk
3

+ ΣF∗k
√

2εk

}
+

10
n2k2

(by (4.7) )

≤ 11
n2k2

(by Proposition 4.5).

This proves the first assertion. The almost sure statement follows by invoking Lemma 2.2

and the preceding argument (which also shows that

P

{
Ĉk ≤ (L− L̂)(f∗k )

}
≤ 11
n2k2
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although the last assertion could be shown in a much easier way as it only involves a single

function f∗k ). Theorem 4.1 follows from Lemma 2.1 and Lemma 2.2. 2

In the proof of Theorem 4.2 we need the symmetrization device

ER̂Fk ≤ 2E sup
f∈Fk

∣∣∣L̂(f)− L(f)
∣∣∣+

supf∈Fk L(f)
√
n

.(4.8)

(see, e.g., Mendelson [20, p.18]), and also the following result due to Massart [18]. (The

version stated here is taken from Lugosi [16].)

Proposition 4.6. Set Σk = supf∈Fk
√
L(f)(1− L(f)). Then for all n ≥ 1,

E sup
f∈Fk

∣∣∣L̂(f)− L(f)
∣∣∣ ≤ 8E log 2Sk(X2n

1 )
n

+ 4

√
2Σ2

k E log 2Sk(X2n
1 )

n
.

Proof. The statement follows almost immediately from Theorem 1.10 in Lugosi [16] by noting

that the worst-case shatter coefficients may be replaced with impunity by the random shatter

coefficients. 2

Proof of Theorem 4.2. Observe that on the event Ak ∩ Bk, F̂k ⊆ Fk, where Fk is as

defined in Theorem 4.2. Indeed, for any f ∈ F̂k,

L(f) ≤ 2L̂(f) + uk

(by definition of Ak)

≤ 2
[
16L̂(f̂k) + 15ûk

]
+ uk

(by definition of F̂k)

≤ 32L̂(f̂k) + 31uk

(by definition of Bk)

≤ 32L̂(f∗k ) + 31uk

(by definition of f̂k)

≤ 32[2L∗k + uk] + 31uk

(by definition of Ak)

= 64L∗k + 63uk.

Also, we notice that on the event Ak,

L̂(f̂k) ≤ L̂(f∗k ) ≤ 2L∗k + uk.
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These observations imply that

ĈkIAk∩Bk ≤ 8R̂Fk + 10εk + 2
√

64L∗k + 63uk
√

2εk

≤ 8R̂Fk + 10εk + 16
√
L∗k + uk

√
2εk.

Consequently, it follows from Lemma 4.3 above that

EĈk ≤ EĈkIAk + P(Ak ∩Bk)c

≤ 8ER̂Fk + 10εk + 16
√
L∗k + uk

√
2εk + 9(nk)−2

≤ 8ER̂Fk + 15εk + 16
√
L∗k + uk

√
2εk.

This bound and Theorem 4.1 yield the first inequality of Theorem 4.2. The second inequality

follows from the symmetrization (4.8) and Proposition 4.6 above. 2
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