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Abstract

We investigate the noise sensitivity of the top eigenvector of a Wigner ma-
trix in the following sense. Let v be the top eigenvector of an N ×N Wigner
matrix. Suppose that k randomly chosen entries of the matrix are resampled,
resulting in another realization of the Wigner matrix with top eigenvector v[k].
We prove that, with high probability, when k � N5/3−o(1), then v and v[k] are
almost collinear and when k�N5/3, then v[k] is almost orthogonal to v.

1 Introduction

In this paper we study the noise sensitivity of top eigenvectors of Wigner matrices.
For a positive integer N , let X = (Xi,j) be a symmetric N ×N matrix such that, for
i ≤ j, the Xi,j are independent real random variables, such that for some constant
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δ > 0 and for all i ≤ j, EXi,j = 0 and Eexp(|Xi,j |δ) ≤ 1/δ. To guarantee that X is
a symmetric matrix, we set Xi,j = Xj,i . Finally, we assume that the off-diagonal
entries have the unit variance: for all i , j, EX2

ij = 1 and for all i, EX2
ii = σ2

0 , for
some σ0 ≥ 0. Throughout this text, we call such matrix X a Wigner matrix. In this
paper we are concerned with large matrices and the main results are asymptotic,
concerning N →∞. The distribution of the entries Xi,j may change with N though
we suppress this dependence in the notation. However, the values of σ0 and δ are
assumed to be the same for all N .

Let λ = supw∈SN−1 〈w,Xw〉 be the top eigenvalue of X and let v denote the
corresponding eigenvector. In this paper we study the noise sensitivity of v. In
particular, we are interested in the behavior of the top eigenvector v[k] of the sym-
metric matrix X[k] obtained by resampling k random entries of X. The main find-
ing of the paper is that, with high probability, when k ≤ N 5/3−o(1), then v and v[k]

are almost collinear and when k�N 5/3, then v[k] is almost orthogonal to v.

Related work and proof technique

Noise sensitivity is an important notion in probability that has been extensively
studied since the pioneering work of Benjamini, Kalai, and Schramm [2]. Noise
sensitivity has mostly been studied in the context of Boolean functions and it has
been shown to have deep connections with threshold phenomena, measure con-
centration, and isoperimetric inequalities, see Talagrand [22], Friedgut and Kalai
[11], Kahn, Kalai, and Linial [16], Bourgain, Kahn, Kalai, Katznelson, and Linial
[4] for some of the key early work and Garban [12], Garban and Steif [14], Kalai
and Safra [17], O’Donnell [20] for surveys. The key techniques for studying noise
sensitivity typically use elements of harmonic analysis, in particular, hypercon-
tractivity ([22], [16]) but also the “randomized algorithm” approach of Schramm
and Steif [21] and other techniques, see Garban, Pete, and Schramm [13].

Our approach is inspired by Chatterjee’s work [7] who shows that, for func-
tions of independent standard Gaussian random variables, the notion of noise sen-
sitivity (or “chaos” as Chatterjee calls it) is deeply related to the notion of “super-
concentration”.

In fact, a result in a similar spirit to ours for the Gaussian Unitary Ensemble
was proved by Chatterjee [7, Section 3.6]. However, instead of resampling ran-
dom entries of the matrix, the perturbations considered in [7] are different. In
Chatterjee’s model, every entry of the matrix X is perturbed by replacing X by
Y = e−tX+

√
1− e−2tX ′ where X ′ is an independent copy of X and t > 0. It is proved

in [7] that the top eigenvectors of X and Y are approximately orthogonal (in the
sense that the expectation of their inner product goes to zero as N →∞) as soon as
t�N−1/3.
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Chatterjee uses this example to illustrate how “superconcentration” implies
“chaos”. His techniques crucially depend on the Gaussian assumption as in that
case explicit formulas may be exploited. Our techniques are similar in the sense
that our starting point is also “superconcentration” (i.e., the fact that the variance
of the largest eigenvalue of a Wigner matrix is small). However, outside of the
Gaussian realm, the notions of superconcentration and chaos are murkier. Start-
ing from a general formula for the variance of a function of independent random
variables, due to Chatterjee [5], we establish a monotonicity lemma that allows us
to make the connection between the variance of the top eigenvalue and the inner
product of interest. Then we use the fact that the top eigenvector has a small vari-
ance (i.e., in a sense, it is “superconcentrated”). The monotonicity lemma may be
of independent interest and it may have further uses when one tries to prove that
“superconcentration implies chaos” for functions of independent–not necessarily
Gaussian–random variables.

Result

To formally describe the setup, let X be a symmetric N × N Wigner matrix as
defined above. For a positive integer k ≤

(N
2
)

+N = N (N + 1)/2, let the random
matrix X[k] be defined as follows. Let Sk = {(i1, j1), . . . , (ik , jk)} be a set of k pairs
chosen uniformly at random (without replacement) from the set of all ordered
pairs (i, j) of indices with 1 ≤ i ≤ j ≤N . The entries of X[k] below the diagonal are

X
[k]
i,j =

{
X ′i,j if (i, j) ∈ Sk
Xi,j otherwise,

where (X ′i,j)1≤i≤j≤N are independent random variables, independent of X and X ′i,j
has the same distribution as Xi,j , for all i ≤ j. In words, X[k] is obtained from
X by resampling k random entries of the matrix below the diagonal and also the
corresponding terms above and including the diagonal. Clearly, X[k] has the same
distribution as X. Denote unit eigenvectors corresponding to the largest eigenval-
ues of X and X[k] by v and v[k], respectively.

Our main results are the following.

Theorem 1. Assume that X is a Wigner matrix as above. If k/N 5/3→∞, then

E
∣∣∣∣〈v,v[k]

〉∣∣∣∣ = o(1) .

Conversely, our second result asserts that when k ≤N 5/3−o(1) then v and v[k]

are almost aligned.
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Theorem 2. Assume that X is a Wigner matrix as above. There exists a constant c > 0
such that, with εN = (logN )−c loglogN ,

E max
1≤k≤εNN5/3

min
s∈{−1,1}

‖v − sv[k]‖2 = o(1) .

The proof of Theorem 2 actually establishes that maxkmins
√
N‖v − sv[k]‖∞

goes to 0 in probability.

The following heuristic argument may provide an intuition of why the thresh-
old is at k = N 5/3+o(1). Since the seminal work of Erdős, Schlein, and Yau [10], it is
well known that unit eigenvectors of random matrices are delocalized in the sense
that ‖v‖∞ = N−1/2+o(1) with high probability. From this, we might infer from the
derivative of a simple eigenvalue as the function of the matrix entries that

λ[1] −λ ' (1 +1(i1 , j1))vi1Xi1,j1vj1 '
Xi1,j1
N 1+o(1)

,

where vi is the i-th component of v. Assuming that vi is nearly independent of any
matrix entry Xij , since Xij is centered with unit variance, we would get from the
central limit theorem that

λ[k] −λ =
k−1∑
t=0

(λ[t+1] −λ[t]) '
√
k

N 1+o(1)
.

On the other hand, the known behavior of random matrices at the edge of the
spectrum implies that the second largest eigenvalue of X is at distance of order
N−1/6 from λ. The above heuristic should thus break down when

√
k/N 1+o(1) is of

order N−1/6. It gives the threshold at k =N 5/3+o(1).

Remark. We expect that the arguments of Theorem 1 for the noise sensitivity of
the top eigenvalue may be modified to prove analogous results for the eigenvector
corresponding to the j-th largest eigenvalue, 1 ≤ j ≤ N . However, the threshold
is expected to occur at values different from N 5/3. In particular, a simple heuris-
tic argument suggests that for the j-th eigenvector the threshold occurs around
N 5/3+o(1) min(j,N − j + 1)−2/3. However, to keep the presentation transparent, in
this paper we focus on the top eigenvalue.

Interestingly, the proof that the top eigenvalue is very sensitive to resam-
pling more than Θ(N 5/3) entries involves proving that it is insensitive to resam-
pling just a single entry. As a consequence the proofs of Theorems 1 and 2 share
common techniques.

The rest of the paper is dedicated to proving Theorems 1 and 2. In Sec-
tion 2 we introduce a general tool for proving noise sensitivity that generalizes
Chatterjee’s ideas based of “superconcentration” to functions of independent, not
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necessarily standard normal random variables. In Section 3 we summarize some
of the tools from random matrix theory that are crucial for our arguments. In
Sections 4 and 5 we give the proofs of Theorems 1 and 2.

2 Variance and noise sensitivity

The first building block in the proof of Theorem 1 is a formula for the variance of
an arbitrary function of independent random variables, due to Chatterjee [5]. For
any positive integer i, denote [i] = {1, . . . , i}.

Lemma 1. [5] Let X1, . . . ,Xn be independent random variables taking values in some
set X and let f : X n → R be a measurable function. Denote X = (X1, . . . ,Xn). Let
X ′ = (X ′1, . . . ,X

′
n) be an independent copy of X. Under the notation

X(i) = (X1, . . . ,Xi−1,X
′
i ,Xi+1, . . . ,Xn) and X[i] = (X ′1, . . . ,X

′
i ,Xi+1, . . . ,Xn)

and, in particular, X[0] = X and X[n] = X ′, we have

Var(f (X)) =
1
2

n∑
i=1

E
[(
f (X)− f (X(i))

)(
f (X[i−1])− f (X[i])

)]
.

In general, for A ⊆ [n] let XA denote the random vector, obtained from X by
replacing the components indexed by A by corresponding components of X ′.

In the variance formula above, the order of the variables does not matter
and the formula remains valid after permuting the indices 1, . . . ,n arbitrarily. In
particular, one may take the variables in random order. Thus, if σ = (σ (1), . . . ,σ (n))
is a random permutation sampled uniformly from the symmetric group Sn and
σ ([i]) denotes {σ (1), . . . ,σ (i)}, then

Var(f (X)) =
1
2

n∑
i=1

E
[(
f (X)− f (Xσ (i))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
. (2.1)

Note that on the right-hand side of (2.1) the expectation is taken with respect to
both X,X ′, and the random permutation σ .

One would intuitively expect that the terms on the right-hand side of (2.1)
decrease with i, as the differences f (X) − f (Xσ (i)) and f (Xσ ([i−1])) − f (Xσ ([i])) be-
come less correlated as more randomly chosen components get resampled. This is
indeed the case and this fact is one of our main tools in proving noise sensitivity.
We believe that the following lemma can be useful in diverse situations. The proof
is given in Section 4.1 below.
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Lemma 2. Consider the setup of Lemma 1 and the notation above. In addition, assume
that X1, . . . ,Xn are identically distributed. For i ∈ [n], denote

Bi = E
[(
f (X)− f (Xσ (i))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
,

where the expectation is taken with respect to components of vectors and random per-
mutations. Then Bi ≥ Bi+1 for all i = 1, . . . ,n − 1 and Bn ≥ 0. In particular, for any
k ∈ [n],

Bk ≤
2Var(f (X))

k
.

We also introduce a modification of Lemma 2 that will be more convenient
for our purposes. To do so, we introduce the following notation. Let j have uniform
distribution on [n]. Let X(j)◦σ ([i−1]) denote the vector obtained from Xσ ([i−1]) by
replacing its j-th component by an independent copy of the random variable Xj ,
denoted by X ′′j . Observe that j may belong to σ ([i − 1]) and in this case X ′′j is

independent of X ′j appearing in Xσ ([i−1]). With this notation in mind we may prove
the following version of Lemma 2.

Lemma 3. Using the notation of Lemma 2, assuming that j is chosen uniformly at
random from the set [n] and independently of other random variables involved, we have
for any k ∈ [n],

B′k ≤
2Var(f (X))

k

( n+ 1
n+ k − 1

)
,

where for any i ∈ [n],

B′i = E
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (X(j)◦σ ([i−1]))

)]
.

3 Random matrix results

In the proof of Theorem 1 we apply Lemma 3 with f being the top eigenvalue of
a Wigner matrix. The usefulness of this bound crucially hinges on the fact that
the variance of the top eigenvalue is small, that is, in a sense, the top eigenvalue is
“superconcentrated”. This fact is quantified in this section.

Our first lemma on the variance of λ is obtained as a combination of a result
of Ledoux and Rider [19] on Gaussian ensembles and the universality of fluctua-
tions for Wigner matrices as stated in Erdős, Yau and Yin [9].

Lemma 4. Assume that X is a Wigner matrix as in Theorem 1. Let λ denote the largest
eigenvalue of X. Then,

Var(λ) ≤ (c+ o(1))N−1/3 ,

where c > 0 is an absolute constant.
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We also need the following delocalization result of the top eigenvector of a
Wigner matrix which can be found in Tao and Vu [23, Proposition 1.12].

Lemma 5. [23]. Assume that X is a Wigner matrix as in Theorem 1. For any real
c0 > 0, there exists a constant C > 0, such that, with probability at least 1−CN−c0 , any
eigenvector w of X with ‖w‖2 = 1 satisfies

‖w‖∞ ≤
(logN )C
√
N

.

Our final lemma is a perturbation inequality in `∞-norm of the top eigen-
vector of a Wigner matrix when a single entry is re-sampled. The proof uses pre-
cise estimates on the eigenvalue spacings in Wigner matrices proved in Tao and Vu
[23] and Erdős, Yau, and Yin [9].

Lemma 6. Let X be a Wigner matrix as in Theorem 1 and X ′ an independent copy of
X. For any (i, j) with 1 ≤ i, j ≤ N . Denote by Y (ij) the symmetric matrix obtained from
X by replacing the entry Xij by X ′ij and Xji by X ′ji . For any 0 < α < 1/10, there exists
κ > 0 such that, for all N large enough, with probability at least 1−N−κ,

max
1≤i,j≤N

inf
s∈{−1,1}

‖sv −u(ij)‖∞ ≤N−
1
2−α ,

where v and u(ij) are any unit eigenvectors corresponding to the largest eigenvalues of
X and Y (ij).

4 Proof of Theorem 1

Now we are ready for the proof of the main results of the paper.

We start by fixing some notation. Let λ denote the largest eigenvalue of the
Wigner matrix X of Theorem 1 and let v ∈ SN−1 be a corresponding normalized
eigenvector. Let k ∈

[(N
2
)

+N
]

to be specified later and let X[k] be the random sym-
metric matrix obtained by resampling k random entries below the diagonal and in-
cluding the diagonal, as defined in the introduction. We denote by Sk ⊂

[(N
2
)

+N
]

the set of random positions of the k resampled entries. Let λ[k] denote the top
eigenvalue of X[k] and v[k] a corresponding normalized eigenvector.

For 1 ≤ i ≤ j ≤N , we denote by Y (ij) the symmetric matrix obtained from X
by replacing the entry Xij by X ′′ij where X ′′ is an independent copy of X. We obtain

Y
[k]
(ij) from X[k] by the same operation. We denote by (µ(ij),u(ij)), and (µ[k]

(ij),u
[k]
(ij)) the

top eigenvalue/eigenvector pairs of Y(ij) and Y [k]
(ij), respectively. Let (s, t) be a pair
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of indices with 1 ≤ t ≤ s ≤N chosen uniformly at random from
[(N

2
)

+N
]
. For ease

of notation, we set Y = Y(st), µ = µ(st) and u = u(st). We define similarly Y [k] = Y [k]
(st),

µ[k] = µ[k]
(st) and u[k] = u[k]

(st).

By applying Lemma 3 to the function of n =
(N

2
)

+N independent random
variables f

(
(Xi,j)1≤i≤j≤N

)
= λ, we obtain that, for any k ∈

[(N
2
)

+N
]
,

2Var(λ)
k

·
(N

2
)

+N + 1(N
2
)

+N + k − 1
≥ E

[
(λ−µ)

(
λ[k] −µ[k]

)]
. (4.1)

Now we are ready to prove Theorem 1. Using the notation of the previous
section we have

E
[
(λ−µ)

(
λ[k] −µ[k]

)]
= E

[
(〈v,Xv〉 − 〈u,Y u〉)

(〈
v[k],X[k]v[k]

〉
−
〈
u[k],Y [k]u[k]

〉)]
.

Observe that Z = X −Y = X[k] −Y [k] and the elements of X −Y are all zeros except
at most two that correspond to resampled values. Moreover, using the fact that v
maximizes 〈v,Xv〉 and u maximizes 〈u,Y u〉 we have

〈u, (X −Y )u〉 ≤ 〈v,Xv〉 − 〈u,Y u〉 ≤ 〈v, (X −Y )v〉

If the element Xt,s of X was resampled to get Y , we have, for any vector x,

〈x, (X −Y )x〉 = Zt,sxtxs

and Zt,s = (Xt,s −X ′t,s)(1 +1(t , s)). Therefore, it is straightforward to see that

(〈v,Xv〉 − 〈u,Y u〉)
(〈
v[k],X[k]v[k]

〉
−
〈
u[k],Y [k]u[k]

〉)
≥ Z2

t,smin{vtvsv
[k]
t v

[k]
s ,utusv

[k]
t v

[k]
s ,vtvsu

[k]
t u

[k]
s ,utusu

[k]
t u

[k]
s } .

Fix 0 < α < 1/10 and let C be as in Lemma 5 for c0 = 10. We define E = E1 ∪ E2 to
be the union of following two events:

• E1: maxi,j ‖v −u(ij)‖∞ ≤ 1

N
1
2 +α

and maxi,j ‖v[k] −u[k]
(ij)‖∞ ≤

1

N
1
2 +α

.

• E2: ‖y‖∞ ≤
(logN )C√

N
for all y ∈ {v,u(ij),v

[k],u
[k]
(ij) : 1 ≤ i, j ≤N }.

By Lemmas 5, 6, and the union bound, we have, for allN large enough, P(Ec2) ≤N−6

and for some κ > 0, P(Ec) ≤N−κ (provided that we choose properly the ±-phase for
the eigenvectors u and u[k]). Observe that when E holds for

x,y ∈ {vtvsv
[k]
t v

[k]
s ,utusv

[k]
t v

[k]
s ,vtvsu

[k]
t u

[k]
s ,utusu

[k]
t u

[k]
s } , (4.2)
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we have, for all N large enough,

|x − y| ≤
4(logN )3C

N 2+α .

We show this, for brevity, only for vtvsv
[k]
t v

[k]
s and utusu

[k]
t u

[k]
s . Denoting δt = vt−ut

and δ[k]
t = v[k]

t −u
[k]
t , we write

utusu
[k]
t u

[k]
s = (vt − δt)(vs − δs)(v

[k]
t − δ

[k]
t )(v[k]

s − δ
[k]
s ) ,

then open the brackets and use that, on E,

max{|δt |, |δs|, |δ
[k]
t |, |δ

[k]
s |} ≤N−

1
2−α and max{|vt |, |vs|, |v

[k]
t |, |v

[k]
s |} ≤ (logN )C/

√
N .

Let Es,t denote the conditional expectation given (X,X ′,Sk) (that is we integrate
only on the random pair (s, t)). Note that the event E is measurable with respect to
(X,X ′,Sk). If E holds, we thus have

Es,tZ2
t,smin

{
vtvsv

[k]
t v

[k]
s ,utusv

[k]
t v

[k]
s ,vtvsu

[k]
t u

[k]
s ,utusu

[k]
t u

[k]
s

}
≥ Es,t

(
Z2
t,svtvsv

[k]
t v

[k]
s

)
−

4(logN )3C

N 2+α Es,tZ2
t,s.

If E = E1 ∪ E2 does not holds, we have using that all the vectors are of unit
norm (and therefore max{|vt |, |vs|, |v

[k]
t |, |v

[k]
s |} ≤ 1),

Es,tZ2
t,smin

{
vtvsv

[k]
t v

[k]
s ,utusv

[k]
t v

[k]
s ,vtvsu

[k]
t u

[k]
s ,utusu

[k]
t u

[k]
s

}
≥ −

(logN )4C

N 2 1(Ec)Es,tZ2
t,s −1(Ec2)Es,tZ2

t,s .

Note that EZ4
t,s ≤ c2

1 for some constant c1 depending on δ. Altogether, recalling

(4.1), by the Cauchy-Schwarz inequality and using (N2 )+N+1

(N2 )+N+k−1
≤ 1,

EZ2
t,svtvsv

[k]
t v

[k]
s ≤

2Var(λ)
k

+ 4c1
(logN )3

N 2+α + c1
(logN )4C

N 2

√
P(Ec) + c1

√
P(Ec2) .

Observe that v depends only on X as well as v[k] depends only on X[k] and both do
not depend on the random choice of (s, t). Therefore,

Es,tZ2
t,svtvsv

[k]
t v

[k]
s =

1(N
2
)

+N

∑
1≤i≤j≤N

Z2
i,jvivjv

[k]
i v

[k]
j . (4.3)
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Now, using (4.3), we get

E

 ∑
1≤i,j≤N

Z̃2
i,jvivjv

[k]
i v

[k]
j

 ≤ 2N 2 Var(λ)
k

+ εN , (4.4)

where Z̃i,j = Zi,j /2 if i , j, Z̃i,i = Zi,i and

εN = 4c1
(logN )3

Nα + c1(logN )4C
√
P(Ec) + c1N

2
√
P(Ec2).

Note that for i , j, EZ̃2
i,j = 2 and EZ̃2

i,i = σ2
0 . We would like to replace in (4.4), the

variables Z̃2
i,j by 2. We have

E

 N∑
i=1

viviv
[k]
i v

[k]
i

 ≤ (logN )4C

N
+NP(Ec2).

Setting Wi,j = EZ̃2
i,j − Z̃

2
i,j , we deduce that

2E

 ∑
1≤i,j≤N

vivjv
[k]
i v

[k]
j

 ≤ 2N 2 Var(λ)
k

+E

 ∑
1≤i,j≤N

Wi,jvivjv
[k]
i v

[k]
j

+ ε′N , (4.5)

where

ε′N = εN + |2− σ2
0 |

(logN )4C

N
+N |2− σ2

0 |P(Ec2).

From Lemmas 5 and 6, when k/N 5/3 → ∞, ε′N goes to 0 with N . We would also
like get rid of the second term on the right-hand side of (4.5): the variables Wi,j

are centered but they are not independent of v and v[k]. We may circumvent this
difficulty by a new application of Lemma 6. Let X ′′ be an independent copy of X,
independent of X ′. For 1 ≤ i, j ≤N , let w(ij) and w[k]

(ij) be the top eigenvectors of the

symmetric matrices obtained from X and X[k] by replacing the entry (i, j) by X ′′i,j .

By construction, w[k]
(ij) is independent of Wi,j . Let C be as in Lemma 5 for c0 = 10.

We define E ′ = E ′1 ∪E
′
2 as the union of following two events:

• E ′1: maxi,j ‖v −w(ij)‖∞ ≤ 1

N
1
2 +α

and maxi,j ‖v[k] −w[k]
(ij)‖∞ ≤

1

N
1
2 +α

.

• E ′2: ‖y‖∞ ≤
(logN )C√

N
for all y ∈ {v,w(ij),v

[k],w
[k]
(ij) : 1 ≤ i, j ≤N }.

10



By Lemmas 5, 6, and the union bound, we have, for all N large enough, P(E ′2
c) ≤

N−6 and P(E ′c) ≤N−κ (provided that we choose properly the ±-phase for the eigen-
vectors w and w[k]). The argument below (4.2) implies that, if E ′ holds, for all
1 ≤ i, j ≤N ,

|vivjv
[k]
i v

[k]
j − (w(ij))i(w(ij))j(w

[k]
(ij))i(w

[k]
(ij))j | ≤

4(logN )3C

N 2+α .

Therefore, since EWi,j(w(ij))i(w(ij))j(w
[k]
(ij))i(w

[k]
(ij))j = 0, we get

E

 ∑
1≤i,j≤N

Wi,jvivjv
[k]
i v

[k]
j

 ≤ c2
4(logN )3C

Nα + c2(logN )4C
√
P(E ′c) + c2N

2
√
P(E ′2

c) .

where c2
2 = maxi,j E|Wi,j |2 ≤ 4c2

1. So finally from (4.5), we get

2E

 ∑
1≤i,j≤N

vivjv
[k]
i v

[k]
j

 ≤ 2N 2 Var(λ)
k

+ ε′′N , (4.6)

where ε′′N → 0 with N .

Now, combining Jensen’s inequality and (4.6),

(
E
∣∣∣∣〈v,v[k]

〉∣∣∣∣)2
≤ E

 N∑
i=1

viv
[k]
i


2

≤ E

 ∑
1≤i,j≤N

vivjv
[k]
i v

[k]
j

 ≤N 2 Var(λ)
k

+
ε′′N
2
.

From Lemma 4, the claim follows.

4.1 Proof of Lemma 2 and Lemma 3

We start with the following technical lemma.

Lemma 7. Let f : X n → R be a measurable function and let σ ∈ Sn be any fixed per-
mutation. Fix i ∈ [n− 1] and j ∈ [n] such that j < σ ([i]). Let X1, . . . ,Xn be independent
random variables taking values in X . Then

Ai = E
[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
≥ E

[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1])∪j)− f (Xσ ([i])∪j)

)]
≥ 0 .

11



Proof. Without loss of generality, we may consider one particular permutation
σ , defined as follows: set σ (k) = k for k < {1, i}, σ (i) = 1, σ (1) = i, and we may also
assume that j = i + 1. The proof is identical for any other σ and j. In our case,

Ai = E
[(
f (X)− f (X(1))

)(
f (X[i]\{1})− f (X[i])

)]
.

Moreover, we have

E
[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1])∪j)− f (Xσ ([i])∪j)

)]
= Ai+1.

We introduce a simplifying notation. Denote B = (X2, . . . ,Xi), B′ = (X ′2, . . . ,X
′
i ) and

C = (Xi+2, . . . ,Xn). Therefore, we may rewrite

Ai = E
[
(f (X1,B,Xi+1,C)− f (X ′1,B,Xi+1,C)) (f (X1,B

′,Xi+1,C)− f (X ′1,B
′,Xi+1,C))

]
and

Ai+1 = E
[
(f (X1,B,Xi+1,C)− f (X ′1,B,Xi+1,C))

(
f (X1,B

′,X ′i+1,C)− f (X ′1,B
′,X ′i+1,C)

)]
.

Denote h(X1,X
′
1,Xi+1,C) = E[

(
f (X1,B,Xi+1,C)− f (X ′1,B,Xi+1,C)

) ∣∣∣X1,X
′
1,Xi+1,C]. Us-

ing the independence of B,B′ and their independence of the remaining random
variables, we have

Ai = Eh(X1,X
′
1,Xi+1,C)2 .

At the same time, using the same notation for h we have, by the Cauchy-Shwarz
inequality and the fact that Xi+1 and X ′i+1 have the same distribution,

Ai+1 = Eh(X1,X
′
1,Xi+1,C)h(X1,X

′
1,X

′
i+1,C)

= E[E[h(X1,X
′
1,Xi+1,C)h(X1,X

′
1,X

′
i+1,C)|X1,X

′
1,C]]

≤ Eh(X1,X
′
1,Xi+1,C)2

= Ai .

Now to prove that Ai ≥ 0, it is sufficient to show that An ≥ 0. Denoting g(X1) =
E[f (X)| X1], we have

An = E
[(
f (X)− f (X(1))

)(
f (X[n]\{1})− f (X[n])

)]
= E(f (X)f (X[n]\{1})− f (X)f (X[n])− f (X(1))f (X[n]\{1}) + f (X(1))f (X[n]))

= 2Ef (X)f (X[n]\{1})− 2(Ef (X))2

= 2E[E[f (X)f (X[n]\{1})|X1]]− 2(Ef (X))2

= 2E[g(X1)2]− 2(Ef (X))2

≥ 0 ,

where we used Jensen’s inequality and that Eg(X1) = Ef (X).

12



We proceed with the proof of Lemma 2.

Proof. In this proof by writing i + 1 we mean i + 1(mod n). For each permutation
σ ∈ Sn and fixed i ∈ [n] we construct a corresponding permutation σ ′ by defining
σ ′(i) = σ (i + 1), σ ′(i + 1) = σ (i) and σ ′(k) = σ (k) for k , {i, i + 1}.

It is straightforward to see that for any fixed i there is a one-to-one corre-
spondence between σ ∈ Sn and σ ′. By observing that σ ′([i]) = σ ([i − 1])∪ σ (i + 1)
and σ ′([i + 1]) = σ ([i + 1]) we have, conditionally on σ ,

E
[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
= E

[(
f (X)− f (X(σ ′(i+1)))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
≥ E

[(
f (X)− f (X(σ ′(i+1)))

)(
f (Xσ

′([i]))− f (Xσ
′([i+1]))

)]
,

where in the last step we used Lemma 7. Using the one to one correspondence
between all σ and σ ′, we have

Bi = EσE
[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
=

1
n!

∑
σ

E
[(
f (X)− f (X(σ (i)))

)(
f (Xσ ([i−1]))− f (Xσ ([i]))

)]
≥ 1
n!

∑
σ ′

E
[(
f (X)− f (X(σ ′(i+1)))

)(
f (Xσ

′([i]))− f (Xσ
′([i+1]))

)]
= EσE

[(
f (X)− f (X(σ (i+1)))

)(
f (Xσ ([i]))− f (Xσ ([i+1]))

)]
= Bi+1.

The proof that Bn ≥ 0 follows from Lemma 7 as well.

Finally, we prove Lemma 3.

Proof. To prove this Lemma we show a precise recursive formula for B′i . We have,

B′i = E
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (X(j)◦σ ([i−1]))

)]
= Eσ

(
E
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (X(j)◦σ ([i−1]))

) ∣∣∣j ∈ σ (i − 1)
]
P(j ∈ σ (i − 1))

)
+Eσ

(
E
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (X(j)◦σ ([i−1]))

) ∣∣∣j < σ (i − 1)
]
P(j < σ (i − 1))

)
.

We have P(j ∈ σ (i − 1)) = i−1
n and the second summand is equal to Bi

n−i+1
n . We

proceed with the first summand. For i ≥ 1, we have

EσE
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (X(j)◦σ ([i−1]))

) ∣∣∣j ∈ σ (i − 1)
]

= EσE
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1])\{j})− f (X(j)◦σ ([i−1]))

) ∣∣∣j ∈ σ (i − 1)
]

+EσE
[(
f (X)− f (X(j))

)(
f (Xσ ([i−1]))− f (Xσ ([i−1])\{j})

) ∣∣∣j ∈ σ (i − 1)
]

= Bi−1 −B′i .

13



This implies

B′i =
i − 1
n

(Bi−1 −B′i) +
n− i + 1

n
Bi ,

which, using Lemma 2, leads to

B′i =
n

n+ i − 1

( i − 1
n
Bi−1 +

n− i + 1
n

Bi

)
≤

2Var(f (X))
i

( n+ 1
n+ i − 1

)
.

The claim follows.

4.2 Proof of Lemma 4

We start with a special case. Let us say that a Wigner matrix as in Theorem 1 is
standard if for all i, EX2

ii = 2. In this case, the variance of the entries of X is equal
to the variance of the entries of a random matrix Y sampled from the Gaussian
Orthogonal Ensemble (GOE). If µ is the largest eigenvalue of Y , it follows from
[19, Corollary 3] that for some absolute constant c > 0,

Var(µ) ≤ cN−1/3.

On the other hand, it follows from [9, Theorem 2.4] (see also [18, Theorem
1.6] for a statement which can be used directly) that,

N 1/3
∣∣∣Var(µ)−Var(λ)

∣∣∣ = o(1).

We obtain the first claim of the lemma for standard Wigner matrices. To conclude
the proof of the lemma for Wigner matrices, it suffices to prove that for any Wigner
matrix X, for some κ ≥ 1/3, we have for all N large enough,

E|λ−λ0|2 ≤N−κ. (4.7)

where λ0 is the largest eigenvalue of a matrix X0 obtained from X by setting to
0 all diagonal entries. We will prove it for any κ < 1/2 (an improvement of the
forthcoming Lemma 11 would give (4.7) for any κ < 1). The proof requires some
care since the operator norm of X −X0 may be much larger than 1 and the rank of
X −X0 could be N .

There is an easy inequality which is half of (4.7). Let v0 be a unit eigenvector
of X0 with eigenvalue λ0. We have

λ ≥ 〈v0,Xv0〉 = 〈v0,X0v0〉+ 〈v0, (X −X0)v0〉 = λ0 +
N∑
i=1

(v0)2
i Xii ,

14



where (v0)i is the i-th coordinate of v0. We observe that v0 is independent of (Xii).
With (x)2

+ = max(x,0)2, we deduce that

E(λ0 −λ)2
+ ≤ E

N∑
i=1

(v0)4
i EX

2
ii ≤ E‖v0‖2∞σ2

0 .

We write, E‖v0‖2∞ ≤ (logN )2C/N+P(‖v0‖∞ ≥ (logN )C/
√
N ). From Lemma 5 applied

to c0 = 2, we deduce that for some constant C > 0,

E(λ0 −λ)2
+ ≤

(logN )C

N
.

It implies the easy half of (4.7) for any κ < 1.

The proof of the converse inequality is more involved. Fore ease of notation,
we introduce the number for N ≥ 3,

L = LN = (logN )loglogN . (4.8)

We say that a sequence of events (AN ) holds with overwhelming probability if for
any C > 0, there exists a constant c > 0 such that P(AN ) ≥ 1− cN−C . We repeatedly
use the fact that a polynomial union of events of overwhelming probability is an
event of overwhelming probability. We start with a small deviation lemma which
can be found, for example, in [8, Appendix B].

Lemma 8. Assume that (Zi) 1 ≤ i ≤ N are independent centered complex variables
such that for some δ > 0, for all i, Eexp |Zi |δ ≤ 1/δ. Then, for any (xi) ∈ CN with
overwhelming probability, ∣∣∣∣∣∣∣

N∑
i=1

xiZi

∣∣∣∣∣∣∣ ≤ L‖x‖2 .
For z = E + iη with η > 0 and E ∈ R, we introduce the resolvent matrices

R(z) = (X − zI)−1 and R0(z) = (X0 − zI)−1 ,

where I denotes the identity matrix. The following lemma asserts that the resol-
vent can be used to estimate the largest eigenvalue of X and X0.

Lemma 9. Let X be a Wigner matrix as in Theorem 1 and let λ1 ≥ . . . ≥ λN be its
eigenvalues. For any 1 ≤ k ≤N , there exists an integer 1 ≤ i ≤N such that for all E and
η > 0

1
2

max(η, |λk −E|)−2 ≤Nη−1=R(E + iη)ii .

15



Moreover, let 1 ≤ k ≤ L. There exists c0 > 0 such that with overwhelming probability,
we have |λk − 2

√
N | < Lc0N−1/6 and for all integers 1 ≤ i ≤ N , and all E such that

|E − 2
√
N | < Lc0N−1/6,

Nη−1=R(E + iη)ii ≤ Lc0 min
1≤j≤N

(λj −E)−2 .

Proof. From the spectral theorem, we have

=Rii =
N∑
p=1

η(vp)2
i

(λp −E)2 + η2 ,

where (v1, . . . , vN ) is an orthonormal basis of eigenvectors of X and (vp)i is the i-th
coordinate of vp. In particular,

Nη−1=Rii ≥
N (v1)2

i

(λk −E)2 + η2 ≥
N (v1)2

i

2max(η, |λk −E|)2 .

From the pigeonhole principle, for some i, (v1)2
i ≥ 1/N and the first statement of

the lemma follows.

Fix an integer 1 ≤ k ≤ L. From [9, Theorem 2.2] and Lemma 5, for some
constants c0,C0 > 0, we have, with overwhelming probability, that the following
event E holds: |λk − 2

√
N | ≤ Lc0N−1/6, for all integers 1 ≤ p ≤N ,

λp ≤ 2
√
N − 2C0p

2/3N−1/6 +Lcp−1/3N−1/6 ,

and ‖vp‖2∞ ≤ L/N . We set q = bCL3c0c for some C. Let E be such that |E − 2
√
N | ≤

Lc0N−1/6. On the event E, if C is large enough, we have, for all p > q, E − λp ≥
C0p

2/3N−1/6 and

N∑
p=q+1

N (vp)2
i

(λp −E)2 + η2 ≤
N∑

p=q+1

L

(λp −E)2 ≤
1

C2
0

N∑
p=q+1

LN 1/3

p4/3
≤ c1LN

1/3q−1/3.

On the other hand, on the same event E, we have

q∑
p=1

N (vp)2
i

(λp −E)2 + η2 ≤
q∑
p=1

N (vp)2
i

min1≤j≤N (λj −E)2 ≤
Lq

min1≤j≤N (λj −E)2 .

It remains to adjust the value of the constant c0 to conclude the proof.

The next step in the proof of (4.7) is a comparison between the resolvent of
X and X0 for z close to 2

√
N . The following result is a corollary of [9, Theorem 2.1

(ii)].
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Lemma 10. Let X be a Wigner matrix as in Theorem 1. There exists c > 0 such that,
with overwhelming probability, the following event holds: for all z = E + iη such that
|2
√
N −E| ≤

√
N and N−1/2Lc ≤ η ≤N 1/2, all i , j, we have

|R(z)ij | ≤ ∆ and |R(z)ii | ≤ cN−1/2,

where ∆ = Lc(|E − 2
√
N |+ η)1/4N−7/8η−1/2 +LcN−2η−1.

Proof. Let Y = X/
√
N and for z ∈ C, =(z) > 0, G(z) = (Y − zI)−1. We have

R(z) = N−1/2G(zN−1/2). Theorem 2.1 (ii) in [9] asserts that with overwhelming
probability for all w = a+ ib such that |a| ≤ 5 and N−1Lc ≤ b ≤ 1, all i , j, we have

|G(w)ij | ≤ δ and |G(w)ii −m(w)| ≤ δ ,

where δ = Lc
√
=(m(w))/(Nb)+Lc(Nb)−1 andm(w) is the Cauchy-Stieltjes transform

of the semi-circular law (for its precise definition see [9]). Then [9, Lemma 3.4]
implies that, for some C > 0, for all w = a + ib, |a| ≤ 5 and 0 ≤ b ≤ 1, we have
|m(w)| ≤ C and |=(m(w))| ≤ C

√
|a− 2|+ b. We apply the above result for a = E/

√
N

and b = η/
√
N . We obtain the claimed statement for R(z) =N−1/2G(zN−1/2).

We use Lemma 10 to estimate the difference between R(z) and R0(z).

Lemma 11. Let X be a Wigner matrix as in Theorem 1, let X0 be obtained from X
by setting to 0 all diagonal entries, and let c0 be as in Lemma 9. With overwhelming
probability, the following event holds: for all z = E + iη such that |2

√
N −E| ≤ Lc0N−1/6

and η =N−1/4, all i,

|R0(z)ii −R(z)ii | ≤
1

4Nη
.

Proof. The resolvent identity states that if A−zI and B−zI are invertible matrices
then

(A− zI)−1 = (B− zI)−1 + (B− zI)−1(B−A)(A− zI)−1 . (4.9)

Applying twice this identity, it implies that

R = R0 +R0(X0 −X)R0 +R0(X0 −X)R0(X0 −X)R

(where we omit to write the parameter z for ease of notation). For any integer
1 ≤ i ≤N , we thus have

Rii − (R0)ii = −
∑
j

(R0)ijXjj(R0)ji +
∑
j,k

(R0)ijXjj(R0)jkXkkRki = −I(z) + J(z) .

Note that Xjj is independent of R0. By Lemma 8 and Lemma 10 we find that, with
overwhelming probability,

|I(z)| ≤ L∆2
√
N + cLN−1 .
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For a given z = E+ iη such that |E−2
√
N | ≤ Lc0N−1/6 and η =N−1/4, it is straightfor-

ward to check that, for some c > 0, ∆ = LcN−19/24 and |I(z)| ≤ LcN−13/12 = o(1/(Nη)).

Similarly, we have

|J(z)| ≤
∑
k

|Xkk ||Rki ||Gk | with Gk =
∑
j

(R0)ijXjj(R0)jk .

For a given z, by Lemma 8 and Lemma 10, we have with overwhelming probability,
for all k, |Gk | ≤ LcN−13/12 and |J(z)| ≤ L(∆N + cN−1/2)LcN−13/12 = o(1/(Nη)).

For a given z, let Ez be the event that max1≤i≤N |R(z)ii−R0(z)ii | ≤ (8Nη)−1 and
E ′z the event that max1≤i≤N |R(z)ii −R0(z)ii | ≤ (4Nη)−1. We have proved so far that
for a given z = E+iη such that |E−2

√
N | ≤ Lc0N−1/6 and η =N−1/4, with overwhelm-

ing probability, Ez holds. By a net argument, it implies that with overwhelming
probability, the events E ′z hold jointly for all z = E+iη with |E−2

√
N | ≤ Lc0N−1/6 and

η = N−1/4. Indeed, from the resolvent identity (4.9), we have |Rij(E + iη)−Rij(E′ +
iη)| ≤ η−2|E−E′ |. It follows that if |E−E′ | ≤ η2(8Nη)−1 ≤N−1 then |R(z)ii −R0(z)ii | ≤
(8Nη)−1. LetN be a finite subset of the interval K = {E : |E−2

√
N | ≤ Lc0N−1/6} such

that for all E ∈ K , minE′∈N |E − E′ | ≤ N−1. We may assume that N has at most N
elements. From what precedes we have the inclusion, with η =N−1/4,⋂

z=E+iη:E∈N

Ez ⊆
⋂

z=E+iη:E∈K
E ′z .

From the union bound, the right-hand side holds with overwhelming probability.
It concludes the proof of the lemma.

Now we have all ingredients necessary to conclude the proof of (4.7). Let
η =N−1/4. We prove that for some c > 0, with overwhelming probability,

λ ≤ λ0 +Lcη .

By Lemma 9, with overwhelming probability, |λ−2
√
N | ≤ Lc0N−1/6 and for some j,

Nη−1=R(λ+ iη)jj ≥
1
2
η−2.

and if λ > λ0,
Nη−1=R0(λ+ iη)jj ≤ Lc0(λ−λ0)−2 .

By Lemma 11, we deduce that with overwhelming probability, if λ > λ0,

1
4
η−2 ≤ Lc0(λ−λ0)−2 .

Hence, λ ≤ λ0 + 2Lc0/2η, concluding the proof of (4.7).
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4.3 Proof of Lemma 6

Let λ = λ1 ≥ · · · ≥ λN be the eigenvalues of X. For any (i, j), let λ(ij) be the largest
eigenvalue of Y (ij). We start by proving that λ and λ(ij) are close compared to their
fluctuations. We have

λ ≥ 〈u(ij),Xu(ij)〉 = λ(ij) + 〈u(ij), (X −Y (ij))u(ij)〉 ≥ λ(ij) − 2(|Xij |+ |X ′ij |)‖u
(ij)‖2∞ .

Since X and Y (ij) have the same distribution, we deduce from Lemma 5 that, with
overwhelming probability, ‖v‖∞ ≤ L/

√
N , maxij ‖u(ij)‖∞ ≤ L/

√
N and maxij(|Xij | +

|X ′ij |) ≤ L/2, where L is defined in (4.8). On this event, we get

λ ≥ λ(ij) − L
3

N
.

Reversing the role X and Y (ij) and using the union bound, we deduce that with
overwhelming probability,

max
ij
|λ−λ(ij)| ≤ L

3

N
.

It follows from [23, Theorem 1.14] that, for any ρ > 0, there exists κ > 0 such that,
for all N large enough,

P(λ2 < λ−N−1/2−ρ) ≥ 1−N−κ .

Let (v1, . . . , vp) be an orthonormal basis of eigenvectors of X associated to the eigen-
values (λ1, . . . ,λN ) with v1 = v. We set θ = 2/5 − 3ρ/5 and q = bNθc. For some
constant c > 0 to be defined and ρ ∈ (0,1/16), we introduce the event Eρ such that

• λ2 < λ−N−1/2−ρ and λq ≤ λ− cq2/3N−1/6 ;

• max1≤p≤q ‖vp‖∞ ≤ L/
√
N and maxij ‖u(ij)‖∞ ≤ L/

√
N ;

• maxij(|Xij |+ |X ′ij |) ≤ L/2 .

From what precedes, Lemma 5 and [9, Theorem 2.2], for some c small enough, for
any ρ > 0 there exits κ > 0 such that for all N large enough, P(Eρ) ≥ 1−N−κ. Note
also, that we have checked that if Eρ holds then maxij |λ−λ(ij)| ≤ L3/N .

On the event Eρ, we now prove that v and u(ij) are close in `∞-norm. For
a fixed (i, j), we write, u(ij) = αv + βx + γy, where α2 + β2 + γ2 = 1 with β,γ non-
negative real numbers, x is a unit vector in the vector space spanned by (v2, . . . , vq),
and y is a unit vector in the vector space spanned by (vq+1, . . . , vN ). Set w = (X −
Y (ij))u(ij) + (λ−λ(ij))u(ij). We have

λu(ij) = αλv + βXx+γXy +w .

19



Taking the scalar product with y, we find

λγ = λ〈y,u(ij)〉 = γ〈y,Xy〉+ 〈y,w〉 ≤ (λ− cq2/3N−1/6)γ + 〈y,w〉 .

Hence,

γ ≤ c−1q−2/3N 1/6‖w‖2 ≤ c−1q−2/3N 1/6
(
L2
√
N

+
L4

N 3/2

)
≤ 2c−1L4N−2θ/3−1/3 .

Similarly, taking the scalar product with x, we find

β ≤N 1/2+ρ〈x,w〉 ≤N 1/2+ρ
(∣∣∣〈x, (X −Y (ij))u(ij)〉

∣∣∣+
L3

N

)
.

Since |〈a,b〉| ≤ ‖a‖∞‖b‖1 ≤ m‖a‖∞‖b‖∞ where m is the number of non-zeros entries
of b, we have

∣∣∣〈x, (X −Y (ij))u(ij)〉
∣∣∣ ≤ ‖x‖∞L2/

√
N . By construction, x =

∑q
p=2γpvp

where
∑
p |γp|2 = 1. If Eρ holds, we deduce that

‖x‖∞ ≤
q∑
p=2

|γp|‖vp‖∞ ≤
L
√
N

q∑
p=2

|γp| ≤
L
√
q

√
N
≤ LNθ/2−1/2 .

So finally,
β ≤ 2L3N−1/2+θ/2+ρ ,

We deduce that |α| =
√

1− β2 −γ2 ≥ 1−β −γ is positive for all N large enough. We
set s = α/ |α|. We find, since ‖y‖∞ ≤ ‖y‖2 ≤ 1,

‖sv −u(ij)‖∞ ≤ (1− |α|)‖v‖∞ + β‖x‖∞ +γ ≤ 2β‖x‖∞ + 2γ .

For our choice of θ = 2/5 − 3ρ/5, this last expression is O(L4N−3/5+8ρ/5). Since
ρ < 1/16, we have 3/5− 8ρ/5 > 1/2. Hence, finally, if we set β = 1/10− 8ρ/5 > 0, we
get that ‖sv −u(ij)‖∞ =O(L4N−1/2−β). This concludes the proof of the lemma.

5 Proof of Theorem 2

The proof of Theorem 2 relies on a careful perturbation argument. Recall that
Sk = {(i1, j1), . . . , (ik , jk)} is the set of k pairs chosen uniformly at random (without
replacement) from the set of all ordered pairs (i, j) of indices with 1 ≤ i ≤ j ≤
N which is used in the definition of X[k]. We denote by λ and λ[k] the largest
eigenvalues of X and X[k]. Recall the definition of L = LN in (4.8) and the notion of
overwhelming probability immediately below (4.8). The main technical lemma is
the following:
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Lemma 12. Let X be a Wigner matrix as in Theorem 2 and let λ = λ1 ≥ · · · ≥ λN be its
eigenvalues. For any c > 0 there exists a constant c2 > 0 such that for all ε > 0, for all N
large enough, with probability at least 1− ε,

max
k≤N5/3L−c2

max
p∈{1,2}

|λp −λ
[k]
p | ≤N−1/6L−c .

We postpone the proof of Lemma 12 to the next subsection. We denote by
R(z) = (X − zI)−1 and R[k](z) = (X[k] − zI)−1 the resolvent of X and X[k]. The proof of
Lemma 12 is based on this comparison lemma on the resolvents.

Lemma 13. LetX be a Wigner matrix as in Theorem 1. Let c0 > 0 be as in Lemma 9 and
let c1 > 0. There exists c2 > 0 such that, with overwhelming probability, the following
event holds: for all k ≤N 5/3L−c2 , for all z = E + iη such that |2

√
N −E| ≤ Lc0N−1/6 and

η =N−1/6L−c1 ,

max
1≤i,j≤N

Nη|R[k](z)ij −R(z)ij | ≤
1
L2 .

We postpone the proof of Lemma 12 to the next subsection. Our next lemma
connects the resolvent with eigenvectors.

Lemma 14. Let X be a Wigner matrix as in Theorem 1 and let ε > 0. There exist c1, c2
such that the following event holds for all N large enough with probability at least 1−ε:
for all k ≤N 5/3L−c2 , we have, with z = λ+ iη, η =N−1/6L−c1 ,

max
1≤i,j≤N

|Nη=R(z)ij −Nvivj | ≤
1
L2 and max

1≤i,j≤N
|Nη=R[k](z)ij −Nv

[k]
i v

[k]
j | ≤

1
L2 .

Proof. Let λ = λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of X. Let (v1, . . . , vN ) be an
eigenvector basis of X. Recall that

Nη=R(E + iη)ij =
N∑
p=1

η2 N (vp)i(vp)j
(λp −E)2 + η2 .

As in the proof of Lemma 9, from [9, Theorem 2.2] and Lemma 5, for some con-
stants c0,C > 0, we have with overwhelming probability that the following event
E holds: |λ − 2

√
N | ≤ Lc0N−1/6, for all integers 1 ≤ p ≤ N , ‖vp‖2∞ ≤ L/N and for all

q > p with q = bLc0c and E such that |E − 2
√
N | ≤ Lc0N−1/6 we have

N∑
p=q+1

N (vp)i(vp)j
(λp −E)2 + η2 ≤ CLN

1/3q−1/3 .
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On the other hand, let Eδ be the event that λ2 ≤ λ − δN−1/6. Fix ε > 0. From [3,
Theorem 2.7] and, e.g., [1, Chapter 3], there exists δ > 0 such that

P(Eδ) ≥ 1− ε .

On the event E ∩Eδ, if |λ−E| ≤ (δ/2)N−1/6, we have

q∑
p=2

N (vp)i(vp)j
(λp −E)2 + η2 ≤

4
δ2LqN

1/3 .

Finally, if |λ−E| ≤ η/L2, on the event E, we find easily, if vi is i-th coordinate of v,∣∣∣∣∣∣η2 Nvivj
(λ−E)2 + η2 −Nvivj

∣∣∣∣∣∣ ≤ 1
L3 .

For some c1 > 0, we thus find, that if η =N−1/6L−c1 then on the event E ∩Eδ, for all
E such that |λ−E| ≤ η/L2 we have

max
i,j
|Nη=R(E + iη)ij −Nvivj | ≤

1
L2 .

We apply this last estimate R and E = λ. For each k, let E [k] be the event corre-
sponding to E for X[k] instead of X. We apply the above estimate on the event
E ′k = E [k]∩Eδ ∩ {maxp=1,2 |λp −λ

[k]
p | ≤ η/L2} to R[k] and E = λ. By Lemma 12 and the

union bound ∩k≤N5/3L−c2E ′k has probability at least 1− 2ε. It concludes the proof.

We may now conclude the proof of Theorem 2. Let c1, c2 be as in Lemma
14, k ≤ N 5/3L−c2 and η = N−1/6L−c1 . Up to increasing the value of c2, we may
also assume that the conclusion of Lemma 13 holds. By Lemma 5, Lemma 13 and
Lemma 14, for any ε > 0, for all N large enough, with probability at least 1 − ε, it
holds that for some c > 0:

√
N‖v‖∞ ≤ (logN )c,

√
N‖v[k]‖∞ ≤ (logN )c and

max
i,j
|Nvivj −Nv

[k]
i v

[k]
j | ≤

3
L2 .

Applied to i = j, we get that for some si ∈ {−1,1},

√
N |sivi − v

[k]
i | ≤

√
3
L
.

Notably, we find

(1− sisj)N |vivj | ≤ |Nvivj −Nv
[k]
i v

[k]
j |+

2
√

3
L

(logN )c ≤ 4
L

(logN )c.
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Let J = {1 ≤ i ≤ N :
√
N |vi | ≥ L−1/3}. It follows from the above inequality that for

i, j ∈ J , si = sj . Let s be this common value. We have for all i ∈ J ,

√
N |svi − v

[k]
i | ≤

√
3
L
.

Moreover, for all i < J , by definition,
√
N |svi − v

[k]
i | ≤

√
N |vi |+

√
N |v[k]

i | ≤ L
−1/3 +L−1/3 +

√
3L−1.

It concludes the proof of Theorem 2.

5.1 Proof of Lemma 13

For technical convenience, we start by truncating our random variables (Xij). Set
X̃ij = Xij1(|Xij | ≤ (logN )c) and X̃ ′ij = X ′ij1(|X ′ij | ≤ (logN )c) with c = 2/δ. The matrix

X̃ has independent entries above the diagonal. Moreover, since Eexp(|Xij |δ) ≤ 1/δ,
with overwhelming probability, X = X̃ and X ′ = X̃ ′. It is also straightforward to
check that E|Xij |21(|Xij | ≥ (logN )c) = O(exp(−(logN )2/2)). It implies that |EX̃ij | =
O(exp(−(logN )2/2) and Var(X̃ij) = 1 +O(exp(−(logN )2/2)) for i , j. We define the
matrix X̄ with for i , j,

X̄ij = (X̃ij −EX̃ij)/
√

Var(X̃ij) and X̄ii = X̃ij −EX̃ij .

The matrix X̄ is a Wigner matrix as in Theorem 2 with entries in [−L/4,L/4]. More-
over, from Gershgorin’s circle theorem [15, Theorem 6.6.1], with overwhelming
probability, the operator norm of X − X̄ satisfies ‖X − X̄‖ = O(N exp(−(logN )2/2).
Observe that from the spectral theorem, for any Hermitian matrix A, ‖(A− z)−1‖ ≤
|=(z)|−1. In particular, from the resolvent identity (4.9), we get ‖(X − z)−1 − (X̄ −
z)−1‖ = ‖(X − z)−1(X − X ′)(X̄ − z)−1‖ ≤ =(z)−2‖X − X̄‖ = O(N 3 exp(−(logN )2/2) if
=(z) ≥ N−1. The same truncation procedure applies for X[k]. In the proof of
Lemma 13, we may thus assume without loss of generality that the random vari-
ables Xij have support in [−L/4,L/4].

The proof of Lemma 13 is based on a martingale argument. Thanks to the
resolvent identity (4.9), we will write R[k]

ij (z)−Rij(z) as a sum of martingale differ-
ences up to small error terms. For 0 ≤ t ≤ k, let Ft be the σ -algebra generated by
the random variable X, Sk and (X ′is,js)1≤s≤t. For 1 ≤ i, j ≤N , we set

Tij = {t : {it, jt} ∩ {i, j} , ∅} .

Note that Tij is F0-measurable. We have

E|Tij | =
2k
N + 1

.
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Besides, from [6, Proposition 1.1], for any u > 0,

P
(
|Tij | ≥ E|Tij |+u

)
≤ exp

(
− u2

4E|Tij |+ 2u

)
.

If k ≤N 5/3L−c2 , it follows that with overwhelming probability, the following event,
say T , holds: maxij |Tij | ≤ 4k′/N where for ease of notation we have set

k′ = min(k,N (logN )2) .

Now, let c be as in Lemma 10 and, for 0 ≤ t ≤ k, we denote by Et ∈ Ft the
event that T holds and that the conclusion of Lemma 10 holds for X[t] and R[t]

(with the convention X[0] = X). If Et holds, then for all z = E + iη with |2
√
N −E| ≤

Lc0N−1/6 and η =N−1/6L−c1 , we have,

max
i,j
|R[t]
ij (z)| ≤ δ = Lc

′
N−5/6 and max

i
|R[t]
ii (z)| ≤ δ0 = cN−1/2 ,

where c′ = 1 + c + max(c0/2, c0/4 + c1/2). We define X[t]
0 as the symmetric matrix

obtained from X[t] by setting to 0 the entries (it, jt) and (jt, it). By construction
X

[t+1]
0 is Ft-measurable. We denote by R[t]

0 the resolvent of X[t]
0 . The resolvent

identity (4.9) implies that

R
[t+1]
0 = R[t] +R[t](X[t] −X[t+1]

0 )R[t] +R[t](X[t] −X[t+1]
0 )R[t](X[t] −X[t+1]

0 )R[t+1]
0

(we omit to write the parameter z for ease of notation). Now, we set for i , j,
Esij = eie∗j + eje∗i and Esij = eie∗i , where ei denotes the canonical vector of Rn with all
entries equal to 0 except the i-th entry equal to 1. We have

X[t] −X[t+1]
0 = Xit+1jt+1

Esit+1jt+1
and X[t+1] −X[t+1]

0 = X ′it+1jt+1
Esit+1jt+1

. (5.1)

We use that |Xij | ≤ L/4 and (R[t+1]
0 )ij ≤ η−1. If Et holds, we deduce that for all

z = E + iη with |2
√
N −E| ≤ Lc0N−1/6 and η =N−1/6L−c1 , we have

max
i,j
|(R[t+1]

0 )ij | ≤
√

2δ and max
i
|(R[t+1]

0 )ii | ≤
√

2δ0 . (5.2)

Similarly, the resolvent identity (4.9) with R[t+1] and R[t] implies that, if Et holds,
for all z = E + iη with |2

√
N −E| ≤ Lc0N−1/6 and η =N−1/6L−c1 , we have

max
i,j
|R[t+1]
ij | ≤

√
2δ and max

i
|R[t+1]
ii | ≤

√
2δ0 . (5.3)
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Finally, the resolvent identity with R[t+1] and R[t+1]
0 gives

R[t+1] = R
[t+1]
0 +R[t+1]

0 (X[t+1]
0 −X[t+1])R[t+1]

=
2∑
`=0

(
R

[t+1]
0 (X[t+1]

0 −X[t+1])
)`
R

[t+1]
0 +

(
R

[t+1]
0 (X[t+1]

0 −X[t+1])
)3
R[t+1] .

Note that, E[X ′it+1jt+1
|Ft] = 0. We use |Xitjt | ≤ L/4, from (5.1)-(5.2)-(5.3), we deduce

that∣∣∣∣E[R[t+1]
ij |Ft]− (R[t+1]

0 )ij − s
[t+1]
ij X ′2it+1jt+1

∣∣∣∣ ≤ at and |R[t+1]
ij − (R[t+1]

0 )ij | ≤ bt , (5.4)

where s[t]ij = ((R[t]
0 E

s
itjt

)2R
[t]
0 )ij and, if Et holds,

at = L3δ2δ2
0 +L3δ4

01(t∈Tij ) and bt = Lδ2 +Lδδ01(t∈Tij ) +Lδ2
01({it ,jt}={i,j}) .

We rewrite, one last time the resolvent identity with R[t+1]
0 and R[t]:

R[t] =
2∑
`=0

(
R

[t+1]
0 (X[t+1]

0 −X[t])
)`
R

[t+1]
0 +

(
R

[t+1]
0 (X[t+1]

0 −X[t])
)3
R[t] .

If Et holds, we arrive at,∣∣∣∣E[R[t+1]
ij |Ft]− (R[t])ij − r

[t+1]
ij Xit+1jt+1

+ s[t+1]
ij (X2

it+1jt+1
−X ′2it+1jt+1

)
∣∣∣∣ ≤ 2at ,

where r[t]
ij = (R[t]

0 E
s
itjt
R

[t]
0 )ij . We have thus found that

R
[k]
ij −Rij =

k−1∑
t=0

(
R

[t+1]
ij − (R[t])ij

)
=
k−1∑
t=0

(
R

[t+1]
ij −E[R[t+1]

ij |Ft]
)

+ rij + sij − s′ij +aij , (5.5)

where we have set, with Yij = X2
ij −EX

2
ij , Y

′
ij = X ′2ij −EX2

ij ,

rij =
k∑
t=1

r
[t]
ij Xitjt , sij =

k∑
t=1

s
[t]
ij Yitjt , s′ij =

k∑
t=1

s
[t]
ij Y

′
itjt
, |aij | ≤ 2

k∑
t=1

at .

We may now use concentration inequalities to estimate the terms in (5.5). We set
Zt+1 = (R[t+1]

ij −E[R[t+1]
ij |Ft])1Et . We write, for any u ≥ 0,

P


∣∣∣∣∣∣∣
k−1∑
t=0

(
R

[t+1]
ij −E[R[t+1]

ij |Ft]
)∣∣∣∣∣∣∣ ≥ u

 ≤ P


∣∣∣∣∣∣∣
k∑
t=1

Zt

∣∣∣∣∣∣∣ ≥ u
+

k−1∑
t=0

P(Ect ) .
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By Lemma 10, we have for any c > 0,
∑k−1
t=0 P(Ect ) = O(N−c). Since Et ∈ Ft, we have

by E[Zt+1|Ft] = 0. Also, from (5.2)-(5.4), |Zt | ≤ 2bt. On the event T , we have√√√
k∑
t=1

b2
t ≤ Lδ2

√
k +Lδδ0

√
4k′

N
+Lδ2

0 ≤ 2Lδ2
√
k′ .

Azuma-Hoeffding martingale inequality implies that, for u ≥ 0,

P


∣∣∣∣∣∣∣
k∑
t=1

Zt

∣∣∣∣∣∣∣ ≥ 2uLδ2
√
k′

 ≤ 2exp
(
−u

2

2

)
.

We apply the later inequality to u = logN . We deduce that, with overwhelming
probability,

k−1∑
t=0

(
R

[t+1]
ij −E[R[t+1]

ij |Ft]
)
≤ L2
√
k′δ2 . (5.6)

We may treat similarly the random variable s′ij in (5.5). We set Z ′t+1 =

s
[t+1]
ij Y ′it+1jt+1

1Et . Note that s[t+1]
ij is Ft-measurable and E[Y ′it+1jt+1

|Ft] = 0. Thus E[Z ′t+1|Ft] =

0. Moreover, since |Yij | ≤ L2/16, from (5.2), we find |Z ′t+1| ≤ b
′
t = L2(δ2δ0 +δ3

01(t∈Tij )).
If T holds, we get√√√

k−1∑
t=0

b′t
2 ≤ L2δ2δ0

√
k +L2δ3

0

√
4k′

N
≤ 2L2δ2δ0

√
k′

We write, for u ≥ 0,

P
(∣∣∣∣s′ij ∣∣∣∣ ≥ u) ≤ P


∣∣∣∣∣∣∣
k∑
t=1

Z ′t

∣∣∣∣∣∣∣ ≥ u
+

k−1∑
t=0

P(Ect ).

From Azuma-Hoeffding martingale inequality, we deduce that, with overwhelm-
ing probability,

|s′ij | ≤
√
k′δ2. (5.7)

We now estimate the random variable rij in (5.5). We will also use Azuma-
Hoeffding inequality but we need to introduce a backward filtration. We define
F ′t as the σ -algebra generated by the random variables, X ′, Sk and {(Xij) : {i, j} <
{is, js}, s ≤ t}. By constructionX[t] andX[t]

0 are F ′t -measurable random variables. Let
E ′t ∈ F ′t be the event that T holds and that the conclusion of Lemma 10 holds for
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X[t]. If E ′t holds, then for all z = E+ iη with |2
√
N −E| ≤ Lc0N−1/6 and η =N−1/6L−c1 ,

we have,
max
i,j
|R[t]
ij (z)| ≤ δ and max

i
|R[t]
ii (z)| ≤ δ0 .

Arguing as in (5.2), if E ′t holds then

max
i,j
|(R[t]

0 )ij | ≤
√

2δ and max
i
|(R[t]

0 )ii | ≤
√

2δ0 .

The variable r[t]
ij is F ′t -measurable and E(Xitjt |F

′
t ) = 0. We write, for u ≥ 0,

P
(∣∣∣rij ∣∣∣ ≥ u) ≤ P


∣∣∣∣∣∣∣
k−1∑
t=0

Z̃t

∣∣∣∣∣∣∣ ≥ u
+

k−1∑
t=0

P(E ′t
c) ,

where Z̃t+1 = r[t]
ij Xitjt1E ′t . We have E(Z̃t+1|F ′t ) = 0 and

|Z̃t | ≤ b̃t = Lδ2 +Lδδ01(t∈Tij ) +Lδ2
01{it ,jt}={i,j}) .

Arguing as above, from Azuma-Hoeffding martingale inequality, we deduce that
with overwhelming probability,

|rij | ≤ L2
√
k′δ2. (5.8)

Similarly, repeating the argument leading to (5.7) with sij and the filtration
(F ′t ) gives with overwhelming probability,

|sij | ≤
√
k′δ2. (5.9)

We note also that if T holds then

|aij | ≤ 2
k∑
t=1

at ≤ 2L3δ2δ2
0k + 2L3δ4

0
4k′

N
≤
√
k′δ2,

where the last inequality holds provided that k ≤N 5/3. So finally, from (5.5)-(5.6)-
(5.7)-(5.8)-(5.9), we have proved that for a given z = E + iη such that |E − 2

√
N | ≤

Lc0N−1/6 and η =N−1/6L−c1 , with overwhelming probability∣∣∣∣R[k]
ij (z)−Rij(z)

∣∣∣∣ ≤ 3L2
√
k′δ2 ,

where the inequality holds provided that k ≤N 5/3. Recall that |Rij(E+ iη)−Rij(E′+
iη)| ≤ η−2|E−E′ |. By a net argument (as in the proof of Lemma 11), we deduce that
with overwhelming probability for all z = E + iη such that |2

√
N − E| ≤ Lc0N−1/6,∣∣∣∣R[k]

ij (z)−Rij(z)
∣∣∣∣ ≤ 4L2

√
k′δ2. It concludes the proof of Lemma 13.
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5.2 Proof of Lemma 12

Let c0 be as in Lemma 9 and c > 0. We set c1 = c0/2 + 2c and let η = N−1/6L−c1 . Let

p ∈ {1,2}. We start with by bounding minj |λp−λ
[k]
j | and minj |λ

[k]
p −λj |. Since X and

X[k] have the same distribution, we only prove that with overwhelming probability

min
1≤j≤N

|λp −λ
[k]
j | ≤ 2Lc0/2η. (5.10)

By Lemma 9, with overwhelming probability, |λp − 2
√
N | ≤ Lc0N−1/6 and for some

integer 1 ≤ i ≤N ,

Nη−1=R(λp + iη)ii ≥
1
2
η−2 ,

and,
Nη−1=R[k](λp + iη)ii ≤ Lc0 min

1≤j≤N
(λp −λ

[k]
j )−2 .

By Lemma 13, we deduce that if k ≤N 5/3L−c2 , with overwhelming probability,

1
4
η−2 ≤ Lc0 min

1≤j≤N
(λp −λ

[k]
j )−2 .

It proves (5.10).

We may now conclude the proof of Lemma 12. Fix ε > 0. As already noticed,
from [3, Theorem 2.7], there exists δ > 0 such that, with probability at least 1 − ε,
λ2 < λ−δN−1/6. From what precedes, with probability at least 1−2ε, Eδ holds and
for all k ≤N 5/3L−c2 , we have

max
(

min
1≤j≤N

|λ[k]
p −λj |, min

1≤j≤N
|λp −λ

[k]
j |

)
≤ α ,

with α = 2Lc0/2η. On this event, we readily find |λ − λ[k]| ≤ α and for some p,

|λp−λ
[k]
2 | ≤ α. Assume that this last inequality is false for p , 2. Since 2α < δN−1/6,

if p , 2, then p ≤ 3 and we deduce that λ2 > λ
[k]
2 + α. We note that, on our event,

for some q, we have |λ2 − λ
[k]
q | ≤ α. In particular, λ[k]

q > λ
[k]
2 . So necessarily, q = 1

and, from the triangle inequality, |λ2 −λ1| ≤ 2α. This is a contradiction since 2α <
δN−1/6. It concludes the proof of Lemma 12.
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