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Abstract

We construct an uncoupled randomized strategy of repeated play
such that, if every player plays according to it, mixed action profiles
converge almost surely to a Nash equilibrium of the stage game. The
strategy requires very little in terms of information about the game, as
players’ actions are based only on their own past payoffs. Moreover, in
a variant of the procedure, players need not know that there are other
players in the game and that payoffs are determined through other
players’ actions. The procedure works for finite generic games and
is based on appropriate modifications of a simple stochastic learning
rule introduced by Foster and Young [12].
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1 Introduction

We construct a stochastic learning rule such that, if all players play according

to it, then mixed action profiles will converge, almost surely, to a Nash equi-

librium of a generic game. An important feature is that it requires very little

in terms of what players need to know about the underlying game. More-

over, in a variant of the basic rule, convergence obtains even if players do

not know whether they are playing against other players or whether there are

other players. What they do need to know are their own past realized payoffs

which they need to observe over sufficiently long periods of time. The paper

thus contributes to the theory of learning, by showing existence of globally

converging learning rules, possibly providing intuition for why some large

interactive systems might be at or close to Nash equilibrium behavior.

The procedure is a variant of the regret testing learning rule introduced by

Foster and Young [12]. Essentially, time is divided into sufficiently long peri-

ods such that, at the beginning of each period, each player chooses a mixed

action at random and plays according to the corresponding distribution for

the duration of the period. If the player could not have performed much

better by playing some other fixed action throughout the (just elapsed) pe-

riod, then it repeats the previously played mixed action for the next period;

otherwise the player randomly selects a new mixed action and plays it during

the next period. The procedure thus implements a kind of exhaustive search

with agents separately testing their own actions through summary statistics

of past payoffs. (In this sense, it is related to reinforcement or aspiration

models such as Erev and Roth [8] and Börgers and Sarin [4], see also Fuden-

berg and Levine [15].) The basic variation we study adds experimentation to

Foster and Young’s procedure so that, with small probability, players sample

a new mixed action even if they could not have done much better with any

fixed action over the previous period. (This is similar to some of the learning

models with mutations or persistent randomness such as Kandori, Mailath

and Rob [30] and Young [37], see also Fudenberg and Levine [15].) Among
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other things, this guarantees that the process of mixed action profiles taken

at the beginning of each period is an irreducible Markov chain.

More specifically, the setup is the following. We consider repeated play

of a finite N -player normal form game. At each time instant t = 1, 2, . . . ,

player i ∈ N chooses a mixed action σi
t ∈ Σi depending on the history and

selects an action si
t randomly according to the distribution of σi

t, i ∈ N . In

the basic setup, we assume that after taking an action at time t, player i

observes the actions s−i
t played by the rest of the players. (This assumption

of standard monitoring is significantly weakened in Section 6.) However, we

focus our attention on uncoupled procedures in the sense that each player i

knows its own payoff function γi but ignores the payoff functions of the rest

of the players, see Hart and Mas-Colell [23, 24]. We also allow for randomized

procedures in the sense that, at each time instant t, player i has access to a

random variable χi,t whose value it can use in determining σi
t where the χi,t

are independent and (say) uniformly distributed over the interval [0, 1].

Our main objective here is to see whether uncoupled randomized pro-

cedures can lead to Nash equilibrium. Or, more precisely, does there exist

a randomized uncoupled strategy1 such that, regardless of what the under-

lying game is, if all players follow such a strategy, mixed action profiles

σt = (σ1
t , . . . , σ

N
t ) converge, almost surely, to a Nash equilibrium of the stage

game? We answer this in the affirmative for generic games, thus providing

a strong possibility or existence result. Previous work on uncoupled proce-

dures either did not obtain global convergence for all (or almost all) N -player

games, or obtained convergence to weaker notions of equilibrium and with

weaker notions of convergence; see for example the discussions in Foster and

Young [12] and Hart and Mas-Colell [23]. Moreover, as with Foster and

Young’s regret testing, our variant also extends to the case where players ob-

serve their own past realized payoffs but not the actions of the other players.

1Throughout the paper we use the term (mixed) action to denote the distribution σi
t

used to play the stage game at any time instant t and use the term strategy for the repeated
game strategy. In the terminology of Hart [18], our procedure belongs to the class of
adaptive heuristics and is to be located between evolutionary dynamics and sophisticated
learning dynamics in terms of the sophistication of the players; see also Fudenberg and
Levine [15] on this.
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We refer to this case as the unknown game model.

Perhaps the first such universal convergence result was shown by Foster

and Vohra [9], who proved the existence of adaptive procedures such that

the joint empirical frequencies of play, P̂s,t = 1
t

∑t
τ=1 Isτ=s, s ∈ S, converge

to the set of correlated equilibria of the game, see also Foster and Vohra [10],

Fudenberg and Levine [14, 16], Hart and Mas-Colell [19, 20, 22], Stoltz and

Lugosi [35], and Cahn [5]. The original result of Foster and Vohra shows

that if players base their actions on a calibrated forecast of the other players’

actions then convergence to correlated equilibria takes place in the above

mentioned sense. Kakade and Foster [28] take these ideas further and show

that if all players play according to a best response to a certain common

“almost deterministic” well-calibrated forecaster (the existence of which they

also prove) then the joint empirical frequencies of play converge not only to

the set of correlated equilibria but, in fact, to the convex hull of the set

of Nash equilibria. Foster and Young [11, 12] introduce two procedures in

which, asymptotically, the joint mixed strategy profiles are within distance

ε of the set of Nash equilibria in a fraction of at least 1− ε of time, though

almost sure convergence is not achieved.

On the negative side, Hart and Mas-Colell [23] show that it is impossible

to achieve convergence to Nash equilibrium for all games if one is restricted

to deterministic uncoupled strategies. More recently, in [24] they extend the

impossibility result to stationary uncoupled randomized strategies that have

bounded recall. By “bounded recall” they mean that there is a finite integer

T such that each player bases its play only on the last T rounds of play. At

the same time, by relaxing the bounded recall assumption, for every ε > 0,

they show a randomized stationary uncoupled procedure for which mixed

actions converge almost surely to an ε-Nash equilibrium. Their procedure

relies heavily on the assumption that other players’s actions are observable.

In contrast, our procedure, while extending to the unknown game case, is not

stationary (and neither satisfies bounded recall). Overall, their results reveal

that there is a fine line between what is possible in terms of convergence to

Nash equilibrium by uncoupled strategies and what is not. Our paper further
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contributes to the filling of this gap.

More specifically, in Theorem 1 we prove almost sure convergence of mixed

action profiles to a Nash equilibrium for generic games, which include almost

all games in the sense of the Lebesgue measure over the set of all finite

N -player normal form games. Theorem 2 establishes the existence of an

uncoupled randomized strategy that achieves almost sure convergence to an ε-

Nash equilibrium without any restriction on the game. Finally, in Theorem 3

we drop the standard monitoring assumption and show convergence in the

senses above in the unknown game model. Hart and Mas-Colell [21] show

almost sure convergence of the empirical frequencies of play to the set of

correlated equilibria in this case, and Foster and Young [12] show convergence

in probability of the mixed action profiles to the set of ε-Nash equilibria of

two player games. It is their ideas that we extend here.

The rest of the paper is organized as follows. Section 2 introduces the

experimental regret testing procedure. Section 3 shows some basic proper-

ties, including that empirical frequencies converge to the convex hull of the

set of ε–Nash equilibria. The main convergence results are in Sections 4–6.

Section 6 deals with the case in which players observe their own realized

payoffs but not other players’ actions. Section 7 contains the proofs.

2 Preliminary definitions

We consider N -player normal form games, where N also denotes the set of

players {1, .., N}. Si denotes player i’s space of pure actions with cardinality

Ki = #Si, and S = ×i∈NSi denotes the space of pure action profiles with

cardinality K =
∑

i∈N Ki; Σi denotes the set of probability measures (or

mixed actions) on Si, Σ = ×i∈NΣi denotes the space of mixed action profiles.

Set also S−i = ×j 6=iSj and Σ−i = ×j 6=iΣj, and for J ⊂ N , SJ = ×i∈JSi and

ΣJ = ×i∈JΣi.

Given N and each Ki finite, we identify a game with a point in Euclidean

space γ ∈ RκN , where κ =
∏N

i=1 Ki. We also denote by γi ∈ Rκ the payoff

array of player i and, by slight abuse of notation, also the payoff function

of player i at game γ. Without loss of generality, we may assume that all
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payoffs take values in [0, 1] so that the space of games reduces to [0, 1]κN .

Let Bi(γ) ⊂ Σ denote the graph of i’s best reply correspondence at γ and

Bi
ε(γ) ⊂ Σ the graph of i’s ε–best reply correspondence; N (γ) = ∩i∈NBi(γ)

denotes the set of Nash equilibria and Nε(γ) = ∩i∈NBi
ε(γ) the set of ε–Nash

equilibria of γ. Let N c
ε (γ) = Σ \ Nε(γ) denote its complement in Σ; we will

often suppress the argument γ. µ denotes uniform probability measure over

either Σ or [0, 1]κN , according to the context.

The following learning dynamics is based on the regret testing dynamics

of Foster and Young [12] and coincides with it when λ = 0.

Definition 1 Experimental regret testing with parameters (T, ρ, λ),

where T ∈ N, ρ ∈ R++, and λ ∈ (0, 1), is defined by the following algorithm.

1. Initialization: Set t = 0. Each player chooses σi
0 ∈ Σi uniformly at

random.

2. Loop:

(a) Each player plays according to σi
t ∈ Σi for T ≥ 1 periods, where in

each of the T periods an action si
τ ∈ Si is chosen according to the distribution

σi
t.

(b) Each player computes its vector of average regrets over the T periods

ri
t,k =

1

T

t+T∑
τ=t+1

(
γi(k, s−i

τ )− γi(sτ )
)

, k = 1, . . . , Ki (1)

where sτ = (s1
τ , . . . , s

N
τ ) is the N-tuple of pure strategies played by the N

players at round τ and s−i
τ is the (N −1)-tuple obtained from sτ by excluding

si
τ .

(c) Each player chooses σi
t+T ∈ Σi as follows: if ri

t,k ≥ ρ for some

k = 1, . . . , Ki, then randomly select σi
t+T ∈ Σi according to the uniform

distribution over Σi. If ri
t,k < ρ for all k = 1, . . . , Ki, then, with probabil-

ity 1 − λ, set σi
t+T = σi

t and, with probability λ, randomly select σi
t+T ∈ Σi

according to the uniform distribution over Σi.

(d) Set t = t + T and repeat the loop.

In words, experimental regret testing with parameters (T, ρ, λ) is defined

by an updating algorithm, where every T periods each player computes its
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vector of recent average regrets. If one of the components exceeds ρ, then

a new action is drawn from the uniform distribution on the player’s action

simplex, and this action is played for the next T periods. If, on the other

hand, none of the components exceeds ρ, then, with probability 1 − λ, it

continues to play according to the previous action for further T periods, and,

with probability λ, a new action is drawn from the uniform distribution on

the action simplex and is played for the next T periods.

Note that while the procedure of experimental regret testing is clearly

uncoupled in the sense that the actions of each player only depend on the

players’ own past payoffs and not on the payoffs of the other players (see

Hart and Mas-Colell [23, 24]), it also requires some amount of coordination,

since it is assumed that all players use the same parameters (T, ρ, λ) and that

the intervals of length T over which they keep their mixed actions fixed are

synchronized.

The difference of this dynamics from the regret testing dynamics of Foster

and Young is that in our case, with a small positive probability λ, players

select a new action even if their current action does not lead to regrets above

the threshold ρ. This ensures that there is some amount of experimentation

by all the players throughout the learning process.

3 Properties of experimental regret testing

We state some key properties of experimental regret testing that will be used

throughout the paper. The proofs are all in Section 7.

One of the key properties of experimental regret testing needed to prove

such convergence is that the process of mixed action profiles σ0, σT , σ2T , . . . is

a geometrically mixing Markov chain, as summarized in the following lemma.

Denote by µ the uniform probability measure over the set Σ of mixed action

profiles.

Lemma 1 The stochastic process {σt}, t = 0, T, 2T, . . . , defined by experi-

mental regret learning with 0 < λ < 1, is a recurrent and irreducible (L1)

Markov chain satisfying Doeblin’s condition. In particular, for any measur-
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able set A ⊂ Σ,

P (σ → A) ≥ λNµ(A)

for every σ ∈ Σ where P (σ → A) = P{σ(m+1)T ∈ A|σmT = σ} denotes

the transition probabilities of the Markov chain. (Here m is an arbitrary

nonnegative integer.)

An immediate corollary is the following (see, e.g., Meyn and Tweedie [32,

Theorem 16.2.4]).

Corollary 1 For m = 0, 1, 2, . . . let Pm denote the distribution of σmT , that

is, Pm(A) = P{σmT ∈ A}. Then there exists a unique probability distribution

π over Σ (the stationary distribution of the Markov process) such that

sup
A
|Pm(A)− π(A)| ≤ (1− λN)m

where the supremum is taken over all measurable sets A ⊂ Σ.

The main idea behind Foster and Young’s heuristics is that, after a not

very long search period, by pure chance, the mixed action profile σmT will

be an ε-Nash equilibrium, and then, since all players have a small expected

regret, the process gets stuck with this value for a much longer time than the

search period. The main technical result needed to justify such a statement

is summarized in Lemma 3 which will imply that the length of the search

period is negligible compared to the length of time the process spends in an

ε-Nash equilibrium. A similar result was used by Foster and Young [12] for

the case of two players.

Throughout the paper we work with generic games in the following sense.

Given a game γ ∈ [0, 1]κN , we say a game γ′ ∈ [0, 1]κ
′N is a pure subgame of

γ if S ′ ⊂ S, κ′ =
∏

i∈N K ′
i, where K ′

i = #S ′i ≥ 1, and where the payoffs are

the ones induced by γ, that is, γ′ = γ|S′ . For an arbitrary set J ⊂ N and

arbitrary mixed action profile σJ ∈ ΣJ , let γσJ , denote the subgame where

players in J play the fixed mixed action σJ . We call an N -player normal

form game γ ∈ [0, 1]κN generic if every pure subgame has only regular Nash

equilibria and for every pure subgame γ′ of γ, we have for almost every
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mixed action profile σJ ∈ ΣJ , J ⊂ N , that the subgame γ′σJ of γ′ also only

has regular Nash equilibria. The notion of regular Nash equilibrium we use

is as in Ritzberger [33] or van Damme [36]; essentially we require that the

system of equations defining a given equilibrium be invertible.

Lemma 2 Almost every game γ ∈ [0, 1]κN is generic.

Let N c
ε (γ) = Σ \ Nε(γ) denote the complement of the set of ε-Nash

equilibria. The next lemma is essential for the convergence results.

Lemma 3 Let γ ∈ [0, 1]κN be a generic N-player normal form game. Then

there exist positive constants c1, c2 such that, for all sufficiently small ρ > 0,

the N–step transition probabilities of experimental regret testing satisfy

P (N)(N c
ρ → Nρ) ≥ c1ρ

c2 .

(where we use the notation P (N)(A → B) = P{σ(m+N)T ∈ B|σmT ∈ A} for

the N-step transition probabilities).

One more technical result is needed before we state the main properties

of experimental regret testing.

The next basic proposition shows that after sufficiently many rounds of

play the distribution of the joint mixed actions σ concentrates in the neigh-

borhood of the set of Nash equilibria. It extends the main result of Foster

and Young [12] to generic games of an arbitrary number of players.

Proposition 1 Let γ ∈ [0, 1]κN be a generic N-player normal form game.

There exists a positive number ε0 such that for all ε < ε0 the following holds:

there exist positive constants c1, . . . , c4 such that if the experimental regret

testing procedure is used with parameters

ρ ∈ (ε, ε + εc1) , λ ≤ c2ε
c3 , and T ≥ − 1

2(ρ− ε)2
log (c4ε

c3) ,

then for all M ≥ log(ε/2)/ log(1− λN),

PM(N c
ε ) = P{σMT /∈ Nε} ≤ ε .
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An implication of this theorem concerns the long-term joint empirical

frequencies of play. If all players play according to the experimental regret

testing procedure, then the joint empirical frequencies of play converge al-

most surely to a mixed action profile P that is in the convex hull of ε-Nash

equilibria taken in ∆(S).

Recall that, for each i ∈ N , τ = 1, 2, . . ., si
τ ∈ Si is the pure action

played by the ith player, and where si
τ is drawn randomly according to the

mixed action σi
mT whenever τ ∈ {mT + 1, . . . , (m + 1)T}. Consider the joint

empirical distribution of plays P̂t defined by

P̂s,t =
1

t

t∑
τ=1

Isτ=s , s ∈ S .

Denote the convex hull taken in ∆(S) by co(·). We can state the following.

Corollary 2 Let γ ∈ [0, 1]κN be a generic N-player normal form game. For

every ε > 0 there exists a choice of the parameters (T, ρ, λ) such that there

is a P ∈ co(Nε) ⊂ ∆(S) such that the joint empirical frequencies of play of

experimental regret testing satisfy

lim
t→∞

P̂t → P almost surely.

Remark. (initialization). In the definition of experimental regret testing

we assumed that each player chooses its initial mixed action σi
0 uniformly at

random. The reason for the choice of the uniform distribution is merely

simplicity, and it is easy to see that Proposition 1 remains true under the

weaker assumption that the distribution of σ0 is absolutely continuous with

respect to the uniform measure on Σ. This observation will be relevant in

Section 4.

Remark. (uncoupledness). Corollary 2 guarantees, for any fixed ε, the

existence of parameters (T, ρ, λ) such that the empirical frequencies of play

converge to Nε. Moreover, it is clear from the proof that these parameters

depend not only on ε but also on properties of the overall game, and therefore,

the procedure using these parameters is not uncoupled. In a fully uncoupled
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procedure, the players should be able to determine the parameters based

solely on the value of ε. In the following sections we introduce fully uncoupled

versions of this strategy. Proposition 1 should be treated as a main technical

tool for further analysis.

Remark. (rates of convergence). The bounds established in Propo-

sition 1 also allow us to estimate the length of play MT , as a function of

ε, to achieve that the mixed action profile is an ε-Nash equilibrium with a

probability at least 1−ε. The bounds reveal that experimental regret testing

with appropriately chosen parameters achieves this after O
(
(1/ε)C

)
rounds

of play where the constant C depends, in a complicated way, on the prop-

erties of the game. However, a closer look at the proof reveals that C is

at least proportional with K =
∑N

i=1 Ki (the sum of the number of actions

of all players) and therefore the speed of convergence is at least exponen-

tially slow as a function of the number of players and the number of actions

of each player. This slow rate of convergence is in sharp contrast with the

rates of convergence achievable to approximate correlated equilibria. In fact,

it follows from results of Cesa-Bianchi and Lugosi [6] that there exists an

uncoupled way of play such that, after O(ε−2 log(K/ε)) rounds of play the

joint empirical frequencies of play form, with probability at least 1 − ε, an

ε-correlated equilibrium.

4 Convergence in generic games

The purpose of this section is to derive a regret-based method that guarantees

that the mixed action profiles σt, t = 1, 2, . . . converge almost surely to the set

N of Nash equilibria of a generic game. Thus, we not only claim convergence

of the empirical frequencies of plays but also of the actual mixed action

profiles σt. Also, we show convergence to N and not only to the convex

hull co(Nε) of ε-Nash equilibria for a fixed ε. Actually, our proposed method

guarantees convergence of {σt} to just one Nash equilibrium, though in case

of multiple Nash equilibria the limiting equilibrium may depend on the actual

(random) realization of the sequence of plays.
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The basic idea is to “anneal” experimental regret testing such that first

it is used with some parameters (T1, ρ1, λ1) for a number M1 of periods of

length T1, then change the parameters to (T2, ρ2, λ2) (by increasing T and

decreasing ρ and λ properly), use experimental regret testing for a number

M2 � M1 of periods (of length T2), etc. However, this is not sufficient

to guarantee almost sure convergence as at each change of parameters the

process is reinitialized and therefore there is an infinite set of indices t such

that σt is far away from any Nash equilibrium. The solution we propose is a

careful modification of experimental regret testing that guarantees that for

any ε, σt /∈ Nε only occurs a finite number of times, almost surely. This

is achieved by “localizing” the search after each change of parameters such

that each player limits its choice to a small neighborhood of the mixed action

played right before the change of parameters (unless a player experiences a

large regret in which case the search is extended again to the whole simplex).

Another challenge we must face is that the values of the parameters of

the procedure (i.e., T`, ρ`, λ`, and M`, ` = 1, 2, . . .) cannot depend on the

parameters of the game, since by requiring uncoupledness we must assume

that the players only know their payoff function but not those of the other

players.

Next we define the annealed localized experimental regret testing process.

To this end, let ε1 > ε2 > · · · be a decreasing sequence of positive numbers

such that
∑∞

`=1 ε` < ∞. For the sake of concreteness, for each ` = 1, 2, . . .,

take ε` = 2−`, and define

ρ` = ε` + ε`
` , λ` = ε`

` , and T` =

⌈
− 1

2ε2`
`

log
(
ε`
`

)⌉
.

Introduce also

M` = 2

⌈
log 2

ε`

log 1
1−λ`

⌉
,

and denote by σi
[`] the mixed action played by player i at the end of the

(` − 1)-st regime, by Di
∞(σi, ε) the L∞–ball of radius ε around σi ⊂ Σi and

by D∞(σ, ε) = maxi∈N Di
∞(σi, ε) the L∞–ball of radius ε around σ ⊂ Σ. For

simplicity, let also ri
t = maxk=1,...,Ki

ri
t,k.
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Definition 2 Annealed localized experimental regret testing.

1. Initialization: Each player chooses σi
0 ∈ Σi uniformly at random.

2. Loop: There are different regimes indexed by ` = 1, 2, . . .. In the `-th

regime, each player plays according to the loop of experimental regret testing

with parameters (T`, ρ`, λ`) during M` periods of length T` with step (c) of

experimental regret testing replaced by the following,

(c) Each player chooses σi
t+T`

∈ Σi as follows:

(c1) if ri
t ≥ ε

2/3
` , then select σi

t+T`
randomly according to the uniform distri-

bution over Σi;

(c2) if ρ` ≤ ri
t < ε

2/3
` , then select σi

t+T`
randomly according to the uniform

distribution over Σi if, for some t′ < t of the current (`-th) regime, σi
t′+T`

has been selected randomly and uniformly from Σi, and otherwise select σi
t+T`

randomly according to the uniform distribution over Di
∞(σi

[`],
√

ε`);

(c3) if ri
t < ρ`, then with probability 1−λ` set σi

t+T`
= σi

t and with probability

λ` select σi
t+T`

∈ Di
∞(σi

[`],
√

ε`) randomly according to the uniform distribu-

tion.

The main result of this section is the following theorem which establishes

almost sure convergence of the procedure described above to Nash equilibria.

Theorem 1 Let γ ∈ [0, 1]κN be a generic N-player normal form game and

let {ε`}∞`=1 be defined by ε` = 2−`. If each player plays according to annealed

localized experimental regret testing, then the sequence of mixed action profiles

converges almost surely, and

lim
t→∞

σt ∈ N almost surely.

In case of multiple Nash equilibria the value of the limit may depend on the

randomization used in the procedure.

Remark. (annealing and localization). As mentioned above, anneal-

ing and localization are both necessary to get almost sure convergence to

(exact) Nash equilibrium. Localization allows players who are experienc-

ing small regrets over long periods of time to narrow their search (including
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experimentation) to decreasing neighborhoods of the low-regret actions. It

is important to make sure these neighborhoods eventually always contain a

Nash equilibrium of the game. The distinction of case (c2) ensures that local-

ization does not have players searching too frequently within neighborhoods

not containing a Nash equilibrium.

Remark. (uncoupledness revisited). Note that the procedure is fully

uncoupled as the only parameter is the sequence {ε`}∞`=1, which is indepen-

dent of the properties of the game. This is to be contrasted with the corre-

sponding remark after Corollary 2.

Remark. (plausible strategies). The specific parameters given in the

definition of the procedure of annealed experimental regret testing make it

unlikely that one finds agents under “natural” circumstances that follow such

a strategy. While we recognize that the specific details of the procedure may

be quite unnatural, we emphasize that the main message of this paper is

that there exists an uncoupled strategy that leads to Nash equilibrium for

“most” games even in the model of unknown games, and Theorem 1 should be

regarded as an existence result, not more. Nevertheless, the main ingredients

of the procedure, such as random search, experimentation, and localization

are quite natural, and appear in many learning systems. As an interesting

topic for future research, it remains to see whether there exist more attractive

uncoupled procedures that lead to Nash equilibrium. In particular, it would

be important to find strategies that do not require synchronization between

the players.

5 Non-generic games

All results presented up to this point require the game to be generic in the

sense specified above. However, since almost all games are generic (with

respect to the Lebesque measure over the set [0, 1]κN of all games), it is easy

to construct a randomized uncoupled procedure such that convergence to an

ε-Nash equilibrium is achieved for all games.
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Theorem 2 Let γ ∈ [0, 1]κN be an arbitrary N-player normal form game

and let ε > 0. There exists an uncoupled randomized learning procedure such

that the mixed action profiles converge almost surely to a profile σ ∈ Σ that

is an ε–Nash equilibrium of γ.

Proof. The idea is that before starting to play, each player slightly perturbes

the values of its payoff function and then plays as if its payoff were the

perturbed values. For example, define, for each player i ∈ N and pure action

profile s ∈ S,

γ̃i(s) = γi(s) + Ui,s,

where the Ui,s are i.i.d. random variables uniformly distributed in the interval

[−ε, ε]. Clearly, the perturbed game γ̃ is generic almost surely. Therefore, if

all players play according to annealed localized experimental regret testing

described in Section 4 but based on the payoffs of γ̃, then by Theorem 1 the

mixed action profiles σt converge, with probability one, to a Nash equilibrium

of γ̃. However, since for all i ∈ N , s ∈ S, we have |γ̃i(s)− γi(s)| < ε, every

Nash equilibrium of γ̃ is an ε-Nash equilibrium of γ. �

Remark. (nash convergence for all games). Even though we only

prove convergence to ε-Nash equilibria in the case of non-generic games, it

seems plausible that, by a refinement of the same idea as in Theorem 2, it is

also possible to achieve almost sure convergence to exact Nash equilibria. The

idea is that, in annealed localized experimental regret testing, each time the

parameters (T`, ρ`, λ`) are updated, the payoffs of the game γ are perturbed

by a new noise U(i,s),` whose magnitude decreases with ` in an appropriately

calibrated way. However, such a calibration is far from being trivial, as it

requires a fine control of the constants from Lemma 5 and we leave its study

for future research.

6 Unknown games

Next we show that all the results shown up to this point extend easily to the

significantly more general case where the actions of each player can depend

14



only on own past realized payoffs, without seeing the actions taken by the

rest of the players. This model is sometimes referred to as “unknown game”

as the players need not be aware of any characteristics of the game, like,

for example, the number of overall players or the number of actions other

players can choose from. The setup is closely related to the multi-armed

bandit problem where, at each time instance, a player chooses an action

and receives a reward but cannot check what reward it would have obtained

had it chosen some other action (see, e.g., Auer, Cesa-Bianchi, Freund, and

Schapire [1]).

Formally, an action for player i is now a sequence of functions that, at

time t, assigns a mixed action σi
t to the payoff function γi, the history of

payoffs (γi(s1), γ
i(s2), . . . , γ

i(st−1)), and the randomizing variable χi,t. Just

as before, at time t, player i chooses action si
t randomly according to the

mixed action σi
t.

Foster and Young [12] show that their regret testing procedure adapts to

the unknown game model. Their idea also extends to our modifications. In

order to adjust the procedures of experimental regret testing and annealed

localized experimental regret testing, note that the only place in which the

players look at the past is when they calculate the regrets ri
t,k in (1). However,

each player may also estimate its regret in a simple way: at each time instant,

player i flips a biased coin and if the outcome is head (whose probability is

very small), then instead of choosing an action according to the mixed action

σi
t, it chooses one uniformly. At these time instants, the player collects

sufficient information to estimate the regret with respect to each fixed action

k ∈ Ki.

To formalize this, consider a period between times (m− 1)T + 1 and mT

and denote t = (m− 1)T . During this period, player i draws ni samples for

each k = 1, . . . , Ki actions. Define the random variables Ui,τ ∈ {0, 1, . . . , Ki},
where, for τ between (m − 1)T + 1 and mT , for each k = 1, . . . , Ki, there

are exactly ni values of τ such that Ui,τ = k, and all such configurations are

equally probable; for the remaining τ , Ui,τ = 0. (In other words, for each

k = 1, . . . , Ki, ni values of τ are chosen randomly, without replacement, such
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that these values are disjoint for different k’s.) Then, at time τ , player i

draws an action si
τ as follows: conditionally on the past up to time τ − 1,

si
τ

{
is distributed as σi

τ if Ui,τ = 0
equals k if Ui,τ = k .

The regret ri
t,k may be estimated by

r̂i
t,k =

1

ni

t+T∑
τ=t+1

IUi,τ=kγ
i(k, s−i

τ )− 1

T −Kini

t+T∑
τ=t+1

γi(sτ )IUi,τ=0 , (2)

k = 1, . . . , Ki. Observe that r̂i
t,k only depends on the past payoffs experienced

by player i and therefore these estimates are feasible in the unknown game

model.

After checking that Proposition 1 goes through in the unknown game

model, it is easy to see by inspecting the proofs that the rest of the arguments

go through without modification, and therefore the results of Theorems 1 and

2 as well as of Corollary 2 are true in this more general case. In particular,

we can state

Theorem 3 Let γ ∈ [0, 1]κN be a generic (arbitrary) N-player normal form

game (and let ε¿0). Then there exists an uncoupled randomized learning

procedure satisfying the unknown game model, such that the mixed action

profiles converge almost surely to a profile σ ∈ Σ that is a Nash equilibrium

(ε–Nash equilibrium) of the game γ.

Remark. (bayesian games). The unknown game model can be adapted

to encompass the case of Bayesian games, i.e., where payoffs depend on action

profiles chosen as well as players’ types. The latter are assumed to be drawn

by nature from a finite set and according to a fixed distribution. We only

need to require that (i) agents observe their own types and can condition

their actions on those types, and (ii) the game is repeated such that at every

period nature newly selects the types according to the given distribution.

For every block of T periods, agents play fixed conditional actions, which are

resampled if regrets over the previous T periods exceed the regret threshold
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and are kept unchanged otherwise (up to the experimentation probability

λ). Given that the performance of the conditional actions is (unbiasedly)

estimated during play, the present approach does not assume players to have

any priors concerning nature’s move, but rather to obtain them through

repeated play. Players here are quite naive with respect to other players’

actions and types, yet play converges to Bayesian Nash equilibria, in the

different senses of Theorems 1 and 2 and of Corollary 2. This is to be

contrasted with the belief-based learning approaches, such as, for example,

Jordan [26, 27], Dekel, Fudenberg, and Levine [7], or also Kalai and Lehrer

[29], Fudenberg and Levine [13], and Nachbar [31].

7 Proofs

Proof of Lemma 1. To see that the process is a Markov chain, note that at

each m = 0, 1, 2, . . . , σmT depends only on σ(m−1)T and the regrets ri
(m−1)T,k

(k = 1, . . . , Ki, i ∈ N). It is clearly L1 since σmT,k ∈ [0, 1] for all k,m,

it is irreducible since at each 0, T, 2T, . . . , the probability of reaching some

σ′mT ∈ A for any open set A ⊂ Σ from any σ(m−1)T ∈ Σ is strictly positive

when λ > 0, and it is recurrent since E[
∑∞

m=0 1{σmT∈A}|σ0 ∈ A] = ∞ for

all σ0 ∈ A. The Doeblin condition follows simply from the presence of the

“exploration parameter” λ in the definition of experimental regret testing. In

particular, with probability λN every player chooses a mixed action randomly

and, conditioned on this event, the distribution of σmT is uniform. �

Proof of Lemma 2. Harsanyi [17] shows that almost every game has a

finite (and odd) number of Nash equilibria all of which are regular. Fix the

number of players and actions and let [0, 1]κN be the corresponding space of

normal form games. Clearly, for any S ′ ⊂ S we have that, for almost every

γ ∈ [0, 1]κN , the associated pure subgame γ′ of γ has finitely many equilibria,

all regular. Since S is finite, there are finitely many S ′ ⊂ S and hence finitely

many pure subgames γ′ of γ. Intersecting over all of these leaves almost all

games in [0, 1]κN with the property that all pure subgames have finitely many

equilibria, all regular.
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Next, we show that for almost every game γ ∈ [0, 1]κN , given J ⊂ N ,

we have that for almost every profile σJ ∈ ΣJ , the subgame γσJ has all

equilibria regular. (Notice that if all equilibria are regular then there can

only be finitely many of them.) Moreover, since we can view γ as the pure

subgame of another game, this will prove the general case as well. Fix J ⊂ N

and consider the map ϕJ : [0, 1]κN → ΣJ defined by

ϕJ(γ) = {σJ ∈ ΣJ : γσJ has nonregular Nash equilibria}.

Since checking whether an equilibrium is nonregular reduces to evaluating

the Jacobian of an algebraic function, it is easy to see that this map is

semi-algebraic (see Bochnak, Coste, and Roy [3, Prop. 2.2.4]). Therefore, its

discontinuities lie on a closed lower-dimensional subset of [0, 1]κN such that

there are finitely many connected components on which it is continuous (see

Schanuel, Simon, and Zame [34] or Blume and Zame [2]). Moreover, if ϕJ is

semi-algebraic and takes a set of values E with µ(E) > 0 at some point γ̄ in

the interior of a component on which it is continuous, then there must exist

an open set E0 ⊂ E such that E0 ⊂ ϕJ(γ) for any γ in an open neighborhood

of γ̄. In other words, for fixed σJ ∈ E0, the game γσJ has nonregular Nash

equilibria for any γ ∈ G0, where G0 ⊂ [0, 1]κN is an open neighborhood

of γ̄. But since we can view each game γσJ as a game in [0, 1]κJcNJc , and

since, in particular, all games in an open neighborhood of γ̄ ∈ [0, 1]κN span a

corresponding open neighborhood of games in [0, 1]κJcNJc around γ̄σJ , (notice

that σJ ∈ E0 is fixed), we would have that all games in such a neighborhood

of γ̄σJ are degenerate, which is impossible. Hence, it must be the case that

if ϕJ takes a set of values with positive measure, it must be at a game where

ϕJ is discontinuous. But this can only happen on a lower dimensional set

of measure zero and hence, for almost every game γ ∈ [0, 1]κN , and for any

J ⊂ N , we have that for almost every profile σJ ∈ ΣJ , the subgame γσJ has

all Nash equilibria regular. �

Lemmas 4 and 5. The proof of Lemma 3 is based on two lemmas. Lemma 4

is the key in extending Foster and Young’s results to the case of more than

two players. It is concerned with the probabilities of moving from a situation
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where exactly J < N agents have expected regret less than or equal to ρ

(and are playing a profile that is not part of an ρ-Nash equilibrium of γ) to

a situation where J −1 or less agents have expected regret less than or equal

to ρ. Specifically, it shows that with positive probability, bounded away from

zero, the (N − J) agents with expected regret greater than ρ will select a

action such that (at least) one of the agents in J will also have expected

regret greater than ρ in the next period. This is expressed using the sets

CJ
ε (σJ) defined below.

Lemma 5 shows some basic properties of the volume and geometric struc-

ture of ε–Nash equilibria in generic games. Recall that for J ⊂ N , ΣJ =

×i∈JΣi. Without loss we assume Ki ≥ 2, i ∈ N .

Lemma 4 Let γ ∈ [0, 1]κN be a generic N-player normal form game with

Ki ≥ 2, i ∈ N , let J ⊂ N with J c = N\J 6= ∅, and let

CJ
ε (σJ) = {σJc ∈ ΣJc : (σJ , σJc

) ∈ ∩i∈JBi
ε}

be the set of profiles in ΣJc to which σJ ∈ ΣJ is a joint ε–best reply by the

players in J , ε ≥ 0. Then there exists δ(J) > 0 and a positive number ε0 > 0

such that for all ε < ε0,

sup
σJ

µΣJc (C
J
ε (σJ)) ≤ 1− δ(J) < 1,

where the supremum is taken over all σJ ∈ ΣJ that are not part of an ε–Nash

equilibrium profile of γ.

Proof. For an arbitrary set J ⊂ N and arbitrary mixed action profile

σJ ∈ ΣJ , let γσJ ∈ [0, 1]κJ (N−J), where κJ = Πi/∈JKi, denote the subgame

where players in J play the fixed action σJ . (Basically this reduces to a game

between the players in J c.)

First we show the statement for ε = 0. To simplify notation, we drop

the subscript ε whenever ε = 0. Fix J ⊂ N with J c 6= ∅ and consider the

correspondence η(σJc
) that maps σJc

to the set of Nash equilibria of the

subgame γσJc . This correspondence is semi-algebraic since it is the compo-

sition of two semi-algebraic maps, namely, the map mapping action profiles
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σJc ∈ ΣJc to subgames γσJc ∈ [0, 1]κJcJ (this map is convex combinations

of pure action payoffs) with the Nash correspondence N (γσJc ) mapping sub-

games γσJc to Nash equilibria of γσJc . Therefore its discontinuities lie on

a closed lower-dimensional subset of ΣJc such that there are finitely many

connected components on which it is continuous (see Schanuel, Simon and

Zame [34] or Blume and Zame [2]). Moreover, by our genericity assumption

it takes finitely many values for almost every profile σJc ∈ ΣJc . This means

that there exists a component D ⊂ ΣJc and δ0 > 0 such that η is continuous

on D, takes finitely many values on a dense subset of D, and µΣJc (D) > δ0.

To prove the lemma, suppose the claim is false. Suppose there exists a

sequence of action profiles {σJ,n} ⊂ ΣJ such that

(i) for every n, σJ,n is not part of Nash profile of γ,

(ii) limn→∞ µΣJc (CJ(σJ,n)) = 1.

Because ΣJ is compact, there exists a convergent subsequence {σJ,nk} ⊂ ΣJ

such that (i) and (ii) hold for the corresponding elements. Let σJ ∈ ΣJ be

the limit of this subsequence, then µΣJc (CJ(σJ)) = 1. This means that for

almost every σJc ∈ ΣJc , σJ ∈ η(σJc). Because η is semi-algbraic and upper

hemi-continuous, (it is the composition of an upper hemi-continuous corre-

spondence with a continuous map), if it takes the value σJ almost everywhere

on ΣJc , it must take it everywhere on ΣJc , i.e., σJ ∈ η(σJc) for all σJc ∈ ΣJc ,

in particular σJ is part of a Nash profile of γ.

Hence, we may assume without loss that besides (i) and (ii), the sequence

{σJ,n} also satisfies

(iii) limn→∞ σJ,n = σJ ,

(iv) for every n, µΣJc (CJ(σJ,n)) < µΣJc (CJ(σJ,n+1)) < 1.

This implies that there exists a sequence of subsets {En} = CJ(σJ,n) ⊂ ΣJc

with µΣJc (En) ↑ 1 such that, for every n, the correspondence η takes the

value σJ,n on En, i.e., σJ,n ∈ η(σJc
) for all σJc ∈ En. But then there must

exist a set E of positive measure such that η takes values arbitrarily close

to σJ on E (by property (iii) above). But this is impossible since on a set

of measure one η is continuous and takes finitely many values of which σJ is

one of them.
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Let now ε > 0. Suppose that the statement is false, i.e., suppose that

for any ε > 0, supσJ µΣJc (CJ
ε (σJ)) = 1, where the supremum is taken over

all σJ ∈ ΣJ that are not part of an ε–Nash equilibrium profile of γ. This

implies that there is a set E ⊂ ΣJc of strictly positive measure (≥ δ(J) from

the case above with ε = 0) such that for any σJc ∈ E, σJ ∈ ηε(σ
Jc

) for any

ε > 0, and at the same time σJ 6∈ η(σJc
). Again, this contradicts the fact

that ηε is semi-algebraic, upper hemi-continuous, and compact-valued. �

Lemma 5 Let γ ∈ [0, 1]κN be a generic N-player normal form game. Then

there exist positive constants c1, . . . , c8 such that for all sufficiently small

ε > 0,

(a) D∞(N , c1ε) ⊂ Nε ⊂ D∞(N , c2ε),

(b) c3ε
c4 ≤ µ(Nε) ≤ c5ε

c4,

(c) if σ ∈ Nε, then D∞(σ, c6ε) ∩N 6= ∅,
(d) if ρ > ε and ρ/ε−1 is sufficiently small, then µ(Nρ\Nε) ≤ c7(ρ−ε)c8.

Proof. (a) Fix γ ∈ [0, 1]κN generic and let

ϕi(σ) = max
si
k∈Si

γi(si
k, σ

−i)− γi(σ),

where γi(σ) =
∑

ν∈S γi
ν

∏
j∈N σj

νj
denotes player i’s payoff function. No-

tice that ϕi is semi-algbraic and Lipschitz continuous, where the Lipschitz

constant depends only on parameters of the game. Recall D∞(N , ε) =

∪σ∈ND∞(σ, ε) and Nε = {σ ∈ Σ : ϕi(σ) ≤ ε, i ∈ N}. By genericity of

γ, the set N consists of a finite number of regular Nash equilibria, so that

the set Nε can be written as the union of a finite number of neighborhoods,

each of which is defined by a finite number of nicely behaved hypersurfaces.

More precisely, there exists a positive number ε0 such that for any ε < ε0, we

can write

Nε = ∪σ∈NU(σ; ε),

where the sets U(σ; ε), σ ∈ N , satisfy

(i) U(σ; ε) = {σ ∈ Σ : γi(si
k, σ

−i)− γi(σ) ≤ ε, for all si
k ∈ supp(σ)},
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(ii) the sets U(σ; ε) are pairwise disjoint and, are defined by a finite num-

ber of hypersurfaces (of dimension K − 2; recall dimΣ = K − 1); moreover,

except for the hypersurfaces defining Σ, which are fixed, all the others are pa-

rameterized by ε such that the Hausdorff distance d(Σ \U(σ, ε), σ) is strictly

increasing in ε for ε small.

Because the equations γi(si
k, σ

−i)− γi(σ) = ε, si
k ∈ supp(σ), that bound

the sets U(σ; ε), vary smoothly with ε, it follows that d(Σ \ U(σ, ε), σ) is

increasing and Lipschitz continuous in ε. Moreover, the genericity assumption

implies that the gradient of the functions hsi
k
(σ) = γi(si

k, σ
−i) − γi(σ), si

k ∈
supp(σ), is not the zero vector at σ. Writing the distance (locally) between

σ and the σ’s satisfying hsi
k
(σ) = ε as ε

‖∇h
si
k
(σ)‖2 , where ‖ · ‖2 denotes the L2

norm, we obtain that the slope of the Hausdorff distance d(Σ\U(σ, ε), σ) with

respect to ε is positive and bounded away from zero. Thus there exist positive

constants C1 < C2 such that D∞(σ, C1ε) ⊂ U(σ, ε) ⊂ D∞(σ, C2ε). Taking

c1, c2 to be respectively the minimum and maximum over all such constants

for the different Nash equilibria yields D∞(N , c1ε) ⊂ Nε ⊂ D∞(N , c2ε).

(b) This follows immediately given the statement and proof of (a). Since

σ is a point in Σ, we have εK−1 ≤ µ(D∞(σ, ε)) ≤ (2ε)K−1 depending on

whether σ is in the interior or on the boundary of Σ. In particular, we have,

(c1ε)
K−1 ≤ µ(D∞(N , c1ε)) ≤ µ(Nε) ≤ µ(D∞(N , c2ε)) ≤ (2c2ε)

K−1,

and we can take c3 = cK−1
1 , c4 = K − 1, and c5 = (2c2)

K−1.

(c) From (a) we have for any ε > 0 small, D∞(N , c1ε) ⊂ Nε ⊂ D∞(N , c2ε).

Hence, if σ ∈ Nε then σ ∈ D∞(N , c2ε). Taking c6 = 2c2 we have D∞(σ, c6ε)∩
N 6= ∅.

(d) From (a) we have for any ρ, ε > 0 small, D∞(N , c1ε) ⊂ Nε and

Nρ ⊂ D∞(N , c2ρ), and hence, for ρ > ε,

Nρ \ Nε ⊂ D∞(N , c2ρ) \D∞(N , c1ε),
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where c2 ≥ c1. For the volume we have,

µ(Nρ \ Nε) ≤ µ (D∞(N , c2ρ) \D∞(N , c1ε))

= µ(D∞(N , c2ρ))− µ(D∞(N , c1ε))

= (c2(2ρ)K−1 − c1(2ε)
K−1)(#N )

≤ c12
K−1(#N )(ρK−1 − εK−1)

≤ c5(ρ− ε),

where c5 = c12
K−1(#N ) < ∞. The last inequality follows for ρ/ε− 1 small.

�

Proof of Lemma 3. Lemma 4 implies that, if there are exactly J < N

players who have regret less than ρ and are playing a profile σJ ∈ ΣJ that is

not part of a ρ-Nash equilibrium profile, then there is a positive probability,

bounded away from zero (uniformly for all possible subsets J ⊂ N ; take

minJ⊂N
δ(J)

2
), that the action profiles randomly chosen by the players in J c

will be such that all players in J c and at least one player in J will have

expected regret greater than ρ at the new action profile. For the remaining

J−1 players, there are two possibilities: (a) their action profile is part of a ρ-

Nash equilibrium, (b) their action profile is not part of a ρ-Nash equilibrium.

Since we are looking for a lower bound for P (N)(N c
ρ → Nρ), it suffices to

follow up on case (b). In case (b), Lemma 4 always applies, and repeatedly

following up on those cases, one reaches a situation (after at most N−1 steps),

where all N players randomly sample a new action. Applying Lemma 5 at

this last step and combining this with the previous, we have that there exists

δ > 0 such that for every ρ > 0, P (N)(N c
ρ → Nρ) ≥ δN−1C1ρ

C2 , for some

positive constants C1, C2. In particular, there exist positive constants c1, c2

such that, for any ρ > 0, P (N)(N c
ρ → Nρ) ≥ c1ρ

c2 .

Proof of Proposition 1. First note that by Corollary 1,

PM(N c
ε ) ≤ π(N c

ε ) + (1− λN)M

so that it suffices to bound the measure ofN c
ε under the stationary probability
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π. Clearly,

π(Nρ) = π(N c
ρ )P (N)(N c

ρ → Nρ) + π(Nρ)P
(N)(Nρ → Nρ).

Writing π(N c
ρ ) = 1− π(Nρ) and solving for π(Nρ), we have

π(Nρ) =
P (N)(N c

ρ → Nρ)

1− P (N)(Nρ → Nρ) + P (N)(N c
ρ → Nρ)

, (3)

where

P (N)(Nρ → Nρ) =
π(Nε)P

(N)(Nε → Nρ)

π(Nρ)

+
π(Nρ \ Nε)P

(N)(Nρ \ Nε → Nρ)

π(Nρ)

≥ π(Nε)P
(N)(Nε → Nρ)

π(Nρ)
. (4)

To bound P (N)(Nε → Nρ) note that if σmT ∈ Nε then the expected regret

of all players is at most ε. Since the regret estimates ri
mT,k are sums of T

independent random variables taking values between 0 and 1 with mean at

most ε, Hoeffding’s inequality [25] implies that

P{ri
mT,k ≥ ρ} ≤ e−2T (ρ−ε)2 , k = 1, . . . , Ki, i = 1, . . . , N . (5)

Then the probability that there is at least one player i and a action k ≤ Ki

such that ri
mT,k ≥ ρ is bounded by

∑N
i=1 Kie

−2T (ρ−ε)2 = Ke−2T (ρ−ε)2 . Thus,

with probability at least (1− λ)N(1−Ke−2T (ρ−ε)2), all players keep playing

the same mixed action and therefore

P (Nε → Nε) ≥ (1− λ)N(1−Ke−2T (ρ−ε)2) .

Consequently, since ρ > ε, we have P (Nε → Nρ) ≥ P (Nε → Nε) and hence

P (N)(Nε → Nρ) ≥ (1− λ)N2

(1−Ke−2T (ρ−ε)2)N ≥ 1−N2λ−NKe−2T (ρ−ε)2

(where we assumed λ ≤ 1 and Ke−2T (ρ−ε)2 ≤ 1). Thus, using (4) and the

obtained estimate, we have

P (N)(Nρ → Nρ) ≥ (1−N2λ−NKe−2T (ρ−ε)2)
π(Nε)

π(Nρ)
.
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Next we need to show that, for proper choice of the parameters, P (N)(N c
ρ →

Nρ) is sufficiently large. For generic games of N players, this follows from

Lemma 3 which asserts that

P (N)(N c
ρ → Nρ) ≥ C1ρ

C2

for some positive constants C1 and C2 that depend on the game. Hence, from

(3) we obtain

π(Nρ) ≥ C1ρ
C2

1− (1−N2λ−NKe−2T (ρ−ε)2) π(Nε)
π(Nρ)

+ C1ρC2

It remains to estimate the measure π(Nε)/π(Nρ). To this end, observe that

if ρ − ε is sufficiently small then the ratio π(Nρ \ Nε)/π(Nε) is bounded by

the ratio of the corresponding Lebesgue measures µ(Nρ \ Nε)/µ(Nε). (Just

note that the “density” of π decreases by moving away from a Nash equilib-

rium. More precisely, π may not be absolutely continuous with respect to

the Lebesgue measure, but one can show that if σ1 ∈ Nρ \ Nε and σ2 ∈ Nε

then for a sufficiently small 0 < ξ � ε the L∞ ball D∞(σ1, ξ) of radius ξ

centered at σ1 has a π-measure less than or equal to that of the same ball

centered at σ2.) The ratio of the volumes of Nρ \ Nε and Nε may therefore

be bounded by invoking parts (c) and (d) of Lemma 5. We obtain

π(Nρ \ Nε)

π(Nε)
≤ C3(ρ− ε)C4

C5εC6

so that
π(Nε)

π(Nρ)
= 1− π(Nρ \ Nε)

π(Nρ)
≥ 1− C3(ρ− ε)C4

C5ρC6
.

In summary,

π(Nε)

≥ π(Nρ)

(
1− C3(ρ− ε)C4

C5ρC6

)
≥

(
1− C3(ρ− ε)C4

C5ρC6

)
C1ρ

C2

1− (1−N2λ−NKe−2T (ρ−ε)2)(1− C3(ρ−ε)C4

C5ρC6
) + C1ρC2
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for some positive constants C1, . . . , C6. Substituting the choices of the pa-

rameters ρ, λ, T with sufficiently large constants c1, . . . , c6 we have

π(N c
ε ) ≤ ε/2 .

If M is so large that (1− λN)M ≤ ε/2, we have PM(N c
ε ) ≤ ε as desired. �

Proof of Corollary 2. Let si(s) ∈ Si denote player i’s action in the

action profile s ∈ S, and let σi(si(s)) denote the probability player i’s mixed

action σi assigns to the action profile s. We can then write the probability

of action profile s occurring under mixed action profile σ as

Ps(σ) = ΠN
i=1σ

i(si(s)) , s ∈ S, σ ∈ Σ .

Next, observe that by martingale convergence, for every s ∈ S,

P̂s,t −
1

t

t∑
τ=1

Ps(στ ) → 0 almost surely.

Therefore, it suffices to prove convergence of 1
t

∑t
τ=1 P (στ ). Since στ is un-

changed during periods of length T , we obviously have

lim
t→∞

1

t

t∑
τ=1

P (στ ) = lim
M→∞

1

M

M∑
m=1

P (σmT ) .

By Lemma 1 the process {σmT}∞m=0 is a recurrent and irreducible Markov

chain, so the ergodic theorem for Markov chains (see, e.g., [32]) implies that

there exists a σ ∈ Σ such that

lim
M→∞

1

M

M∑
m=1

σmT = σ almost surely,

which implies that there exists a P ∈ ∆(S) such that

lim
M→∞

1

M

M∑
m=1

P (σmT ) = P almost surely.

It remains to show that P ∈ co(Nε). By the ergodic theorem and continuity

of P , in fact, P =
∫

Σ
P (σ)dπ, where π is the (unique) stationary distribution

of the Markov process {σmT}∞m=0 (on Σ).
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Let ε′ < ε be a positive number such that

{P ∈ ∆(S) : ∃P ′ ∈ co(Nε′) such that ‖P − P ′‖1 < ε′} ⊂ co(Nε)

where ‖ · ‖1 denotes the L1 distance between probability measures in ∆(S).

Observe that, for a generic game, such an ε′ always exists by part (a) of

Lemma 5. In fact, one may choose ε′ = ε/c3 for a sufficiently large positive

constant c3 (whose value depends on the game).

Now choose the parameters (T, ρ, λ) such that π(N c
ε′) < ε′. Proposition 1

guarantees the existence of such a choice.

Clearly,

P =

∫
Σ

P (σ)dπ =

∫
Nε′

P (σ)dπ +

∫
N c

ε′

P (σ)dπ .

Since
∫
Nε′

P (σ)dπ ∈ co(Nε′), we have that the L1 distance of P and co(Nε′)

satisfies

d1(P , co(Nε′)) ≤

∥∥∥∥∥
∫
N c

ε′

P (σ)dπ

∥∥∥∥∥
1

≤
∫
N c

ε′

dπ = π(N c
ε′) < ε′ .

By the choice of ε′ we indeed have P ∈ co(Nε). �

Proof of Theorem 1. The theorem follows from Proposition 1, Lemma 5,

and the Borel-Cantelli lemma. First note that the parameters (T`, ρ`, λ`) are

defined such that for all sufficiently large `, they satisfy the conditions of

Proposition 1 for ε = ε`. Next, define the events

A` = {σ[`] ∈ Nε`−1
} and B` = {ri

mT`
≤ ε

2/3
` , ∀m in `-th regime, ∀i ∈ N},

where σ[`] is the mixed action profile played at the end of the (`−1)-st regime.

We need to show that event A` occurs almost surely for all but finitely many

regimes ` ∈ N. To see this, we show that the probability of event A`+1 is high

given event A`, and that, given event Ac
`, the process almost surely reaches

A`0 for some finite `0 > `.

Fix the `-th regime, ` ∈ N, and consider the events

C` = {ri
[`] ≥ ε

2/3
`−1, ∀i ∈ N} and D` = {ri

[`] < ε
2/3
`−1, ∀i ∈ N},
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where ri
[`] is i’s maximal average regret, among all players, at the end of

the ` − 1-st regime. Assuming event C`, annealed localized experimental

regret testing is identical to the process where each player plays according

to experimental regret testing with parameters (T`, ρ`, λ`) during M` periods

of length T` (since, by (c1) and (c2), Σi will be the space from which agents

sample throughout M`, given C`). Therefore, Proposition 1 applies directly

and we have

P(A`+1|C`) ≥ 1− ε`.

Next, consider the process where each player plays according to experimental

regret testing with parameters (T`, ρ`, λ`) during M` periods of length T` with

the only modification that in step (c) the set Σi is replaced by Di
∞(σi

[`],
√

ε`).

Assuming event A`, this process satisfies Proposition 1, since Di
∞(σi

[`],
√

ε`) ⊂
Σi, moreover, by part (c) of Lemma 5, Di

∞(σi
[`],
√

ε`) ∩ N 6= ∅. Assuming

event D`, the above process differs from annealed experimental regret testing

exactly on the event Bc
` . The probability of this event, conditional on A` and

D`, is no greater than Ke
−2T`

“
ε
2/3
` −ε`−1

”2

, by Hoeffding’s inequality. Therefore,

we have

P(A`+1|A`, D`) ≥ P(A`+1 ∩B`|A`, D`)

= 1− P(Ac
`+1|A`, D`)− P(A`+1 ∩Bc

` |A`, D`)

≥ 1− ε` −Ke
−2T`

“
ε
2/3
` −ε`−1

”2

.

This shows that in the event C` ∪ (A` ∩ D`) with probability at least 1 −

ε` − Ke
−2T`

“
ε
2/3
` −ε`−1

”2

, event A`+1 occurs. It remains to show that for the

cases where event Ac
`+1 does occur, the process is appropriately reinitialized

almost surely after finitely many regimes, i.e., event C`0 ∪ (A`0 ∩D`0) occurs,

almost surely, after finitely many regimes, at `0 < ∞. But this follows from

the same reasoning as Proposition 1 and using Lemma 3, since in event

Ac
`+1, with high probability, at least one agent will experience a large regret

and so after few steps, the process will be either in Nε`0
or have all agents

simultaneously choosing from Σi. In either case, this eventually leads to

event C`0 ∪ (A`0 ∩ D`0) occurring, with probability one, after finitely many

regimes.
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Putting together the probabilities and applying the Borel-Cantelli Lemma

shows that event A` occurs almost surely for all but finitely many regimes.

Since ε` → 0, the process indeed converges to a Nash equilibrium with prob-

ability one. �

Proof of Theorem 3. The main step in proving the extension of Theo-

rems 1 and 2 (as well as of Corollary 2) consists in showing that the estimated

regrets (2) work in this case. For this, we need to establish an analog of in-

equality (5) for the deviations of the estimated regret. This is done in the

next lemma.

Lemma 6 Assume that in a certain period of length T , the expected regret

E[ri
mT,k|s1, . . . , smT ] of player i is at most ε. Then, for a sufficiently small ε,

with the choice of parameters of Proposition 1,

P{r̂i
mT,k ≥ ρ} ≤ cT−1/3 + exp

(
−T 1/3 (ρ− ε)2) .

Proof. We show that, with large probability, r̂i
mT,k is close to ri

mT,k. To this

end, note first that∣∣∣∣∣ 1

T −Kini

t+T∑
τ=t+1

γi(sτ )IUi,τ=0 −
1

T

t+T∑
τ=t+1

γi(sτ )

∣∣∣∣∣ ≤ 2

∑N
i=1 Kini

T
.

On the other hand, observe that, if there is no time instant τ for which

Ui,τ = 1 and Uj,τ = 1 for some j 6= i, then,

1

ni

t+T∑
τ=t+1

IUi,τ=kγ
i(k, s−i

τ )

is an unbiased estimate of 1
T

∑t+T
τ=t+1 γi(k, s−i

τ ) obtained by random sampling.

The probability that no two players sample at the same time is at most

TN2 max
i,j∈N

Kini

T

Kjnj

T

and by Hoeffding’s inequality [25] for an average of a sample taken without

replacement,

P̂

{∣∣∣∣∣ 1

ni

t+T∑
τ=t+1

IUi,τ=kγ
i(k, s−i

τ )− 1

T

t+T∑
τ=t+1

γi(k, s−i
τ )

∣∣∣∣∣ > α

}
≤ e−2niα

2
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where P̂ denotes the distribution induced by the random variables Ui,τ .

Putting everything together,

P{r̂i
mT,k ≥ ρ} ≤ TN2 max

i,j∈N

Kini

T

Kjnj

T
+exp

−2ni

(
ρ− ε− 2

∑N
i=1 Kini

T

)2


Choosing ni = O(T 1/3), the first term on the right-hand side is of order T−1/3

and
∑N

i=1 Kini/T = O(T−2/3) becomes negligible compared to ρ − ε which

proves the statement. �

Thus, in the unknown game model, the estimate of inequality (5) can be

replaced by that of Lemma 6. It is easy to see by inspecting the proofs that

the rest of the arguments go through without modification. �
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[4] T. Börgers and R. Sarin. Näıve reinforcement learning with endogenous

aspirations. International Economic Review, 41:921–950, 2000.

[5] A. Cahn. General procedures leading to correlated equilibria. Interna-

tional Journal of Game Theory, 33:21-40, 2004.

[6] N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line

prediction and game theory. Machine Learning, 51:239–261, 2003.

[7] E. Dekel, D. Fudenberg, and D. Levine. Learning to play Bayesian

games. Games and Economic Behavior, 46:282–303, 2004.

[8] I. Erev, and A.E. Roth. Predicting how people play games: reinforce-

ment learning in experimental games with unique mixed strategy equi-

libriu. American Economic Review, 88:848–881, 1998.

[9] D. Foster and R. Vohra. Calibrated learning and correlated equilibrium.

Games and Economic Behaviour, 21:40–55, 1997.

[10] D. Foster and R. Vohra. Regret in the on-line decision problem. Games

and Economic Behavior, 29:7–36, 1999.

[11] D.P. Foster and P.H. Young. Learning, hypothesis testing, and Nash

equilibrium. Games and Economic Behavior, 45:73–96, 2003.

[12] D.P. Foster and P.H. Young. Regret testing: A simple payoff-based pro-

cedure for learning Nash equilibrium. Mimeo, University of Pennsylvania

and Johns Hopkins University, 2004.

[13] D. Fudenberg and D. Levine. Steady state learning and Nash equilib-

rium. Econometrica, 61:547–574, 1993.

[14] D. Fudenberg and D. Levine. Universal consistency and cautious ficti-

tious play. Journal of Economic Dynamics and Control, 19:1065–1089,

1995.

[15] D. Fudenberg and D. Levine. The theory of learning in games. MIT

Press, Cambridge MA, 1998.

31



[16] D. Fudenberg and D. Levine. Universal conditional consistency. Games

and Economic Behavior, 29:104–130, 1999.

[17] J. C. Harsanyi. Oddness of the number of equilibrium points: a new

proof. International Journal of Game Theory, pages 235–250, 1973.

[18] S. Hart. Adaptive Heuristics. Econometrica, 73:1401–1430, 2005.

[19] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to

correlated equilibrium. Econometrica, 68:1127–1150, 2000.

[20] S. Hart and A. Mas-Colell. A general class of adaptive strategies. Journal

of Economic Theory, 98:26–54, 2001.

[21] S. Hart and A. Mas-Colell. A reinforcement procedure leading to corre-

lated equilibrium. In G. Debreu, W. Neuefeind, and W. Trockel, editors,

Economic Essays: A Festschrift for Werner Hildenbrand, pages 181–200.

Srpinger, New York, 2002.

[22] S. Hart and A. Mas-Colell. Regret-based continuous-time dynamics.

Games and Economic Behavior, 45:375–394, 2003.

[23] S. Hart and A. Mas-Colell. Uncoupled dynamics do not lead to Nash

equilibrium. American Economic Review, 93:1830–1836, 2003.

[24] S. Hart and A. Mas-Colell. Stochastic uncoupled dynamics and Nash

equilibrium. Technical report, The Hebrew University of Jerusalem,

2005.

[25] W. Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58:13–30,

1963.

[26] J.S. Jordan. Bayesian learning in normal form games. Games and Eco-

nomic Behavior, 3:60–81, 1991.

[27] J.S. Jordan. Bayesian learning in repeated games. Games and Economic

Behavior, 9:8–20, 1995.

32



[28] S.M. Kakade and D.P. Foster. Deterministic calibration and Nash equi-

librium. In Proceedings of the 17th Annual Conference on Learning

Theory. Springer, 2004.

[29] E. Kalai and E. Lehrer Rational learning leads to Nash equilibrium.

Econometrica, 61:1019–1045, 1993.

[30] M. Kandori, G. Mailath, and R. Rob. Learning, mutation and long run

equilibria in games. Econometrica, 61:27–56, 1993.

[31] J.H. Nachbar Prediction, optimization, and learning in repeated games.

Econometrica, 65:275–309, 1997.

[32] S.P. Meyn and R.L. Tweedie. Markov chains and stochastic stability.

Springer-Verlag, London, 1993.

[33] K. Ritzberger. The theory of normal form games from the differentiable

viewpoint. International Journal of Game Theory, 23:207–236, 1994.

[34] Schanuel S.H., L.K. Simon, and W.R. Zame. The algebraic geometry of

games and the tracing procedure. In R. Selten, editor, Game Equilibrium

Models, II: Methods, Morals, and Markets. Springer Verlag, Berlin, 1991.

[35] G. Stoltz and G. Lugosi. Learning correlated equilibria in games with

compact sets of strategies. Technical report, Université Paris-Sud, Orsay,
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