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Abstract

We study the problem of estimating the mean of a random vector X given a
sample of N independent, identically distributed points. We introduce a new
estimator that achieves a purely sub-Gaussian performance under the only
condition that the second moment of X exists. The estimator is based on a
novel concept of a multivariate median.
2010 Mathematics Subject Classification: 62J02, 62G08, 60G25.

1 Introduction

In this paper we study the problem of estimating the mean of a random vector X
taking values in Rd . Denoting the mean by µ = EX, we assume throughout the
paper that the covariance matrix Σ = E(X − µ)(X − µ)T exists. Suppose that N in-
dependent, identically distributed samples X1, . . . ,XN drawn from the distribution
of X are available, and one wishes to estimate the mean vector µ. An estimator is
simply a function of the data that we denote by µ̂N = µ̂N (X1, . . . ,XN ).

There are many possible ways of measuring the quality of an estimator. The
classical statistical literature tended to focus on risk measures such as the mean
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squared error E‖µ̂N − µ‖2. (Here, and in the rest of the paper, ‖ · ‖ denotes the
Euclidean norm in Rd , Sd−1 = {v ∈ Rd : ‖v‖ = 1} denotes the Euclidean sphere in
Rd and 〈·, ·〉 is the usual inner product in Rd .) In this case the sample mean µN =
(1/N )

∑N
i=1Xi has a mean squared error equal to Tr(Σ)/N (where Tr(Σ) denotes the

trace of the covariance matrix) and, even though this estimator is not necessarily
optimal even for standard normal vectors—by “Stein’s paradox”, see [10]—, the
order of magnitude of the error cannot be improved in general.

The situation is quite different when one is interested in minimizing the
value r that satisfies

P
{∥∥∥µ̂N −µ∥∥∥ > r} ≤ δ

for some given δ > 0. While one may always take r =
√

Tr(Σ)/(Nδ) for the sample
mean, much better dependence on δ may be achieved if the distribution is suffi-
ciently light tailed. For example, if X has a multivariate normal distribution with
mean µ and covariance matrix Σ, then the sample mean µN is also multivariate
normal with mean µ and covariance matrix (1/N )Σ and therefore, for δ ∈ (0,1),
with probability at least 1− δ,

∥∥∥µN −µ∥∥∥ ≤
√

Tr(Σ)
N

+

√
2λmax log(1/δ)

N
, (1.1)

where λmax denotes the largest eigenvalue of Σ (see Hanson and Wright [7]). Sim-
ilar bounds may be proven for the performance of the sample mean if X has a
sub-Gaussian distribution in the sense that for all unit vectors v ∈ Sd−1,

Eexp(λ〈v,X −EX〉) ≤ exp(cλ2 〈v,Σv〉)

for some constant c.

However, when the distribution is not necessarily sub-Gaussian and is pos-
sibly heavy-tailed, one cannot expect such a sub-Gaussian behavior of the sample
mean. Thus, when is it not reasonable to assume a sub-Gaussian distribution and
heavy tails may be a concern, the sample mean is a risky choice. Indeed, alternative
estimators have been constructed to achieve better performance.

The one-dimensional case (i.e., d = 1) is quite well understood, see Catoni
[4] and Devroye, Lerasle, Lugosi, and Oliveira [6] for recent accounts. The so-
called median-of-means estimator is a simple and powerful univariate estimator
with essentially optimal performance. This estimate was introduced indepen-
dently in various papers, see Nemirovsky and Yudin [17], Jerrum, Valiant, and
Vazirani [11], Alon, Matias, and Szegedy [1]. The median-of-means estimator par-
titions the data into k < N blocks of size m ≈N/k each, computes the sample mean
within each block, and outputs their median. One may easily show (see, e.g., Hsu
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[8]) that, for any δ ∈ (0,1) if k = d8log(1/δ)e, then the resulting estimator µ̂(δ)
N satis-

fies that, with probability at least 1− δ,∣∣∣∣µ̂(δ)
N −µ

∣∣∣∣ ≤ 8σ

√
log(2/δ)
N

(1.2)

where σ2 denotes the variance of X. In other words, in the one-dimensional case,
the median-of-means estimator achieves a sub-Gaussian performance under the
only condition that the variance of X exists.

The median-of-means estimator has been extended to the multivariate case
by replacing the median by its natural multivariate extension, the so-called “ge-
ometric (or spatial) median” (i.e., the point that minimizes the sum of the Eu-
clidean distances to the sample means within each block) see Lerasle and Oliveira
[14], Hsu and Sabato [9], Minsker [16]. In particular, Minsker proves that for each
δ ∈ (0,1) this generalization of the median-of-means estimator µ̃(δ)

N is such that,
with probability at least 1− δ,∥∥∥∥µ̃(δ)

N −µ
∥∥∥∥ ≤ C√

Tr(Σ) log(1/δ)
N

, (1.3)

where C is a universal constant. This bound holds under the only assumption that
the covariance matrix exists. However, it does not quite achieve a sub-Gaussian
performance bound that resembles (1.1).

Joly, Lugosi, and Oliveira [12] made an attempt to construct a mean estima-
tor with a sub-Gaussian behavior for a large class of distributions. They prove that
there exists a mean estimator µ̂(δ)

n such that, if the distribution satisfies that for all
v ∈ Sd−1

E
[〈

(X −µ),v
〉4

]
≤ K(〈v,Σv〉)2 ,

for some constant K , then for all N ≥ CK logd (d + log(1/δ)), with probability at
least 1− δ, ∥∥∥∥µ̂(δ)

N −µ
∥∥∥∥ ≤ C 

√
Tr(Σ)
N

+

√
λmax log(δ−1 logd)

N

 , (1.4)

where again C is a universal constant. This bound resembles the sub-Gaussian
inequality (1.1). However, there are various caveats: the additional fourth-moment
assumption, the requirement that N = Ω(d logd), and, to a lesser extent, the extra
loglogd term in the bound seem sub-optimal.

The main result of this paper is that there exists a mean estimator that
achieves purely sub-Gaussian performance under the minimal condition that the
covariance matrix exists. More precisely, we prove the existence of a mean estima-
tor µ̂(δ)

N such that, for all distributions with a finite second moment, for all N , with
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probability at least 1− δ,∥∥∥∥µ̂(δ)
N −µ

∥∥∥∥ ≤ C 
√

Tr(Σ)
N

+

√
λmax log(2/δ)

N

 ,
for an explicit universal constant C.

The proposed estimator may be interpreted as a multivariate median-of-
means estimate but with a new notion of a multivariate median which may be
interesting in its own right. The construction of the new estimator is inspired by
the technique of “median-of-means tournament”, put forward by the authors in
[15].

In the next section we present the proposed estimator and the performance
bound. In Section 3 we present the proofs. We finish the paper by remarks about
the computation of the estimator.

2 The estimator

Here we introduce the proposed mean estimator. Recall that we are given an i.i.d.
sample X1, . . . ,XN of random vectors in Rd . As in the case of the median-of-means
estimator, we start by partitioning the set {1, . . . ,N } into k blocks B1, . . . ,Bk, each

of size |Bj | ≥ m
def.= bN/kc, where k is a parameter of the estimator whose value

depends on the desired confidence level, as specified below. In order to simplify
the presentation, in the rest of the paper, without loss of generality, we assume
that N is divisible by k and therefore |Bj | =m for all j = 1, . . . , k.

Define the sample mean within each block by

Zj =
1
m

∑
i∈Bj

Xi .

For each a ∈ Rd , let

Sa =
{
x ∈ Rd : ∃J ⊂ [k] : |J | > k/2 such that min

j∈J

(
‖Zj − x‖ − ‖Zj − a‖

)
> 0

}
(2.1)

and define the mean estimator by

µ̂N ∈ argmin
a∈Rd

diam(Sca) .

Thus, µ̂N is chosen to minimize, over all a ∈ Rd , the diameter of the complement
of set Sa defined as the set of points x ∈ Rd for which ‖Zj − x‖ > ‖Zj − a‖ for the
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majority of the blocks, and if there are several minimizers, one may pick any one
of them.

Note that the minimum is always achieved. This follows from the fact that
diam(Sca) is a continuous function of a (since, for each a, Sca is the intersection
of a finite union of closed balls, and the centers and radii of the closed balls are
continuous in a).

One may interpret argmina∈Rd diam(Sca) as a new multivariate notion of the
median of Z1, . . . ,Zk. Indeed, when d = 1, it is a particular choice of the median
and the proposed estimator coincides with the median-of-means estimator.

The main result of this paper is the following performance bound:

Theorem 1. Let δ ∈ (0,1) and consider the mean estimator µ̂N with parameter k =
d360log(2/δ)e. If X1, . . . ,XN are i.i.d. random vectors in Rd with mean µ ∈ Rd and
covariance matrix Σ, then for all N , with probability at least 1− δ,

∥∥∥µ̂N −µ∥∥∥ ≤ 2max

400

√
Tr(Σ)
N

,240

√
λmax log(2/δ)

N

 .
Thus, the proposed estimator achieves a purely sub-Gaussian performance

under minimal conditions. Just like in the case of the median-of-means estimator
for the univariate case, the estimator depends on the desired level of confidence δ.
As it is shown in [6], such a dependence cannot be avoided without imposing ad-
ditional conditions on the distribution. However, following the route laid down in
[6], one may construct sub-Gaussian estimators that work for a wide range of con-
fidence levels simultaneously under more assumptions on the distribution. Since
this issue is beyond the scope of this paper and will not be pursued further here.

Just like Minsker’s bound (1.3)—but unlike the bound (1.4)—, the perfor-
mance bound of Theorem 1 is “infinite-dimensional” in the sense that the bound
does not depend on the dimension d explicitly. Indeed, the same estimator may be
defined for Hilbert-space valued random vectors and Theorem 1 remains valid as
long as Tr(Σ) = E‖X −µ‖2 is finite.

Theorem 1 is an outcome of the following observation which is of interest
in its own right on the geometry of a typical collection {X1, ...,XN }.

Theorem 2. Using the same notation as above and setting

r = max

400

√
Tr(Σ)
N

,240

√
λmax log(2/δ)

N

 ,
with probability at least 1 − δ, for any a ∈ Rd such that ‖a − µ‖ ≥ r, one has ‖Zj − a‖ >
‖Zj −µ‖ for more than k/2 indices j.
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Theorem 2 implies that for a ‘typical’ collection X1, ...,XN , µ is closer to a
majority of the Zj ’s when compared to any a ∈ Rd that is sufficiently far from µ.
Obviously, for an arbitrary collection x1, ...,xN ⊂ Rd such a point need not exist,
and it is rather surprising that for a typical i.i.d. configuration, this property is
satisfied by µ.

The fact that Theorem 2 implies Theorem 1 is straightforward. Indeed,
Theorem 2 implies that diam(Scµ) ≤ 2r and that if ‖a − µ‖ ≥ r, then µ ∈ Sca. By the
definition of Sa, one always has a ∈ Sca, and thus if ‖a− µ‖ > 2r then diam(Sca) > 2r.
Therefore, the minimizer µ̂ must satisfy that ‖µ̂−µ‖ ≤ 2r, as required.

We do not claim that the values of the constants appearing in Theorem 1
are optimal. They were obtained with the goal of making the proof transparent,
nothing more, and it is likely that they may be improved by more careful calcula-
tions.

The proof of Theorem 2 is based on the idea of “median-of-means tour-
naments” which was introduced by Lugosi and Mendelson [15] is the context of
regression function estimation.

3 Proof

The proof of Theorem 2 is based on the following idea. The mean µ is the mini-
mizer of the function f (x) = E‖X −µ‖2. A possible approach is to use the available
data to guess, for any pair a,b ∈ Rd , whether f (a) < f (b). To this end, we may set
up a “tournament” as follows.

Recall that [N ] is partitioned into k disjoint blocks B1, . . . ,Bk of sizem =N/k.
For a,b ∈ Rd , we say that a defeats b if

1
m

∑
i∈Bj

(
‖Xi − b‖2 − ‖Xi − a‖2

)
> 0

on more than k/2 blocks Bj . The main technical lemma is the following.

Lemma 1. Let δ ∈ (0,1), k = d360log(2/δ)e, and define

r = max

400

√
Tr(Σ)
N

,240

√
λmax log(2/δ)

N

 .
With probability at least 1− δ, µ defeats all b ∈ Rd such that ‖b −µ‖ ≥ r.

Proof. Note that

‖Xi − b‖2 − ‖Xi −µ‖2 = ‖Xi −µ+µ− b‖2 − ‖Xi −µ‖2 = −2
〈
Xi −µ,b −µ

〉
+ ‖b −µ‖2 ,
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set X = X−µ and put v = b−µ. Thus, for a fixed b that satisfies ‖b−µ‖ ≥ r, µ defeats
b if

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
+ ‖v‖2 > 0

on the majority of blocks Bj .

Therefore, to prove our claim we need that, with probability at least 1 − δ,
for every v ∈ Rd with ‖v‖ ≥ r,

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
+ ‖v‖2 > 0 (3.1)

for more than k/2 blocks Bj . Clearly, it suffices to show that (3.1) holds when
‖v‖ = r.

Consider a fixed v ∈ Rd with ‖v‖ = r. By Chebyshev’s inequality, with prob-
ability at least 9/10,∣∣∣∣∣∣∣∣ 1

m

∑
i∈Bj

〈
Xi ,v

〉∣∣∣∣∣∣∣∣ ≤
√

10

√
E
〈
X,v

〉2

m
≤
√

10‖v‖
√
λmax

m
,

where recall that λmax is the largest eigenvalue of the covariance matrix ofX. Thus,
if

r = ‖v‖ ≥ 4
√

10

√
λmax

m
(3.2)

then with probability at least 9/10,

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
≥ −r

2

2
. (3.3)

Applying a standard binomial tail estimate, we see that (3.3) holds for a single v
with probability at least 1− exp(−k/180) on at least 8/10 of the blocks Bj .

Now we need to extend the above from a fixed vector v to all vectors with
norm r. In order to show that (3.3) holds simultaneously for all v ∈ r · Sd−1 on at
least 7/10 of the blocks Bj , we first consider a maximal ε-separated set V1 ⊂ r ·Sd−1

with respect to the L2(X) norm. In other words, V1 is a subset of r ·Sd−1 of maximal
cardinality such that for all v1,v2 ∈ V1, ‖v1−v2‖L2(X) = 〈v1 − v2,Σ(v1 − v2)〉1/2 ≥ ε. We
may estimate this cardinality by the “dual Sudakov” inequality (see [13] and also
[18] for a version with the specified constant), which implies that the cardinality
of V1 is bounded by

log |V1| ≤

E
[
〈G,ΣG〉1/2

]
4ε/r


2

,
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where G is a standard normal vector in Rd . Notice that for any a ∈ Rd , EX 〈a,X〉2 =
〈a,Σa〉, and therefore,

E
[
〈G,ΣG〉1/2

]
= EG

[(
EX

[〈
G,X

〉2
])1/2

]
≤

(
EXEG

[〈
G,X

〉2
])1/2

=
(
E
[∥∥∥X∥∥∥2

])1/2
=

√
Tr(Σ) .

Hence, by setting

ε = 5r
(1
k

Tr(Σ)
)1/2

, (3.4)

we have |V1| ≤ ek/360 and thus, by the union bound, with probability at least 1 −
e−k/360 ≥ 1− δ/2, (3.3) holds for all v ∈ V1 on at least 8/10 of the blocks Bj .

Next we check that property (3.1) holds simultaneously for all xwith ‖x‖ = r
on at least 7/10 of the blocks Bj .

For every x ∈ r ·Sd−1, let vx be the nearest element to x in V1 with respect to
the L2(X) norm. It suffices to show that, with probability at least 1−exp(−k/200) ≥
1− δ/2,

sup
x∈r·Sd−1

1
k

k∑
j=1

1{|m−1 ∑
i∈Bj 〈Xi ,x−vx〉|≥r2/4} ≤

1
10

. (3.5)

Indeed, on that event it follows that for every x ∈ r · Sd−1, on at least 7/10 of the
coordinate blocks Bj , both

− 2
m

∑
i∈Bj

〈
Xi ,vx

〉
≥ −r

2

2
and 2

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x

〉
− 1
m

∑
i∈Bj

〈
Xi ,vx

〉∣∣∣∣∣∣∣∣ < r
2

2

hold and hence, on those blocks, − 2
m

∑
i∈Bj

〈
Xi ,x

〉
+ r2 > 0 as required.

It remains to prove (3.5). Observe that

1
k

k∑
j=1

1{|m−1 ∑
i∈Bj 〈Xi ,x−vx〉|≥r2/4} ≤

4
r2

1
k

k∑
j=1

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣ .
Since ‖x − vx‖L2(X) = (E〈X,x − vx〉2)1/2 ≤ ε it follows that for every j

E

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣ ≤
√√

E
[〈
X,x − vx

〉2
]

m
≤ ε
√
m
,
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and therefore,

E sup
x∈r·Sd−1

1
k

k∑
j=1

1{|m−1 ∑
i∈Bj 〈Xi ,x−vx〉|≥r2/4}

≤ 4
r2E sup

x∈r·Sd−1

1
k

k∑
j=1


∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣−E
∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣
+

4ε
r2
√
m

def.= (A) + (B) .

To bound (B), note that, by (3.4),

4ε
r2
√
m

= 20
(

Tr(Σ)
N

)1/2

· 1
r
≤ 1

20

provided that

r ≥ 400
(

Tr(Σ)
N

)1/2

.

Turning to (A), by symmetrization, contraction for Bernoulli processes and de-
symmetrization (see, e.g., [13]), and noting that ‖x − vx‖ ≤ 2r, we have

(A) ≤ 8
r2E sup

x∈r·Sd−1

∣∣∣∣∣∣∣ 1
N

N∑
i=1

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣ ≤ 16
r
E sup
{t:‖t‖≤1}

∣∣∣∣∣∣∣ 1
N

N∑
i=1

〈
Xi , t

〉∣∣∣∣∣∣∣
≤ 16
r
·
E
∥∥∥X∥∥∥
√
N

=
16
r

(
Tr(Σ)
N

)1/2

≤ 1
20

provided that r ≥ 320
(Tr(Σ)
N

)1/2
.

Thus, for

Y = sup
x∈r·Sd−1

1
k

k∑
j=1

1{|m−1 ∑
i∈Bj 〈Xi ,x−vx〉|≥r2/4} ,

we have proved that EY ≤ 1/20. Finally, in order to prove (3.5), it suffices to prove
that, P{Y > EY + 1/20} ≤ e−k/200, which follows from the bounded differences in-
equality (see, e.g., [3, Theorem 6.2]).
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Proof of Theorem 2

Theorem 2 is easily derived from Lemma 1. Fix a block Bj , and recall that Zj =
1
m

∑
i∈Bj Xi . Let a,b ∈ Rd . Then

1
m

∑
i∈Bj

(
‖Xi − a‖2 − ‖Xi − b‖2

)
=

1
m

∑
i∈Bj

(
‖Xi − b − (a− b)‖2 − ‖Xi − b‖2

)
= − 2

m

∑
i∈Bj

〈Xi − b,a− b〉+ ‖a− b‖2 = (∗)

Observe that − 2
m

∑
i∈Bj 〈Xi − b,a− b〉 = −2

〈
1
m

∑
i∈Bj Xi − b,a− b

〉
= −2

〈
Zj − b,a− b

〉
,

and thus

(∗) = −2
〈
Zj − b,a− b

〉
+ ‖a− b‖2

= −2
〈
Zj − b,a− b

〉
+ ‖a− b‖2 + ‖Zj − b‖2 − ‖Zj − b‖2

= ‖Zj − b − (a− b)‖2 − ‖Zj − b‖2 = ‖Zj − a‖2 − ‖Zj − b‖2 .

Therefore, (∗) > 0 (i.e., b defeats a on block Bj) if and only if ‖Zj − a‖ > ‖Zj − b‖.
Recall that Lemma 1 states that, with probability at least 1− δ, if ‖a−µ‖ ≥ r

then on more than k/2 blocks Bj ,
1
m

∑
i∈Bj

(
‖Xi − a‖2 − ‖Xi −µ‖2

)
> 0, which, by the

above argument, is the same as saying that for at least k/2 indices j, ‖Zj − a‖ >
‖Zj −µ‖.

4 Computational considerations

The problem of computing various notions of multivariate medians has been thor-
oughly studied in computational geometry and we refer to Aloupis [2] for a sur-
vey on this topic. For example, computing the geometric median—and therefore
the multivariate median-of-means estimator proposed by Hsu and Sabato [9] and
Minsker [16]—involves solving a convex optimization problem. Thus, the geomet-
ric median may be approximated efficiently, see [5] for the most recent result and
for the rich history of the problem.

In contrast, efficiently computing, or even approximating, the multivariate
median proposed in this paper appears to be a nontrivial challenge.

A possible approach for computing a mean estimator that approximates µ̂N
is based on a variant of a coordinate descent algorithm that works roughly as fol-
lows: starting with an arbitrary line in Rd , one may discretize, with mesh O(r),
the segment on the line that supports the convex hull of Z1, . . . ,Zk. Then one uses
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pairwise comparisons of the discretized values, using the median-of-means esti-
mate, to find a point that defeats every other candidate on the line that is at least
distance 2r apart from it. (With a minor adjustment of our arguments above one
may prove that such a point always exists.) Then take a line that is orthogonal to
the first line and contains the “winner” and repeat the search on that line. Con-
tinue for d steps. One may prove that the point µ̃N obtained at the final step is
such that, with probability at least 1− δ, ‖µ̃N − µ‖∞ ≤ Cr for a numerical constant
C. This algorithm runs in time quadratic in 1/r and linear in d but unfortunately
it only guarantees closeness to the true mean in the `∞ sense. If one replaces or-
thogonal lines by random ones and keeps repeating the procedure, one eventually
achieves the desired guarantee in the Euclidean distance. However, one needs to
consider exponentially many (in d) directions to approach µ with the desired pre-
cision. Note that such algorithms use r as an input parameter. Naturally, the value
of r is not known but the algorithm is guaranteed to work well as long as the true
value of r is larger that the prior guess.

Another possibility is to start with computing the geometric median µ̃(δ) of
the Zj . By (1.3), one may now restrict search to a ball of radius at most r

√
log(1/δ).

By exhaustively searching through this ball (after appropriately discretizing), one
finds an estimate with the desired properties in additional time of order logd(1/δ).
However, this is surely unrealistic in most interesting cases.

We leave the question of efficiently computing the proposed mean estimate
(or another one with sub-Gaussian performance guarantees) as an interesting re-
search problem.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences, 58:137–147,
2002.

[2] G. Aloupis. Geometric measures of data depth. DIMACS series in discrete
mathematics and theoretical computer science, 72:147–158, 2006.

[3] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities:A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[4] O. Catoni. Challenging the empirical mean and empirical variance: a de-
viation study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques,
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