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Abstract

Motivated by change point problems in time series and the detection of textured objects in
images, we consider the problem of detecting a piece of a Gaussian Markov random field hidden
in white Gaussian noise. We derive minimax lower bounds and propose near-optimal tests.

1 Introduction

Anomaly detection is important in a number of applications, including surveillance and environment
monitoring systems using sensor networks, object tracking from video or satellite images, and tumor
detection in medical imaging. The most common model is that of an object or signal of unusually
high amplitude hidden in noise. In other words, one is interested in detecting the presence of an
object in which the mean of the signal is different from that of the background. We refer to this as
the detection-of-means problem. In many situations, anomaly manifests as unusual dependencies
in the data. This detection-of-correlations problem is the one that we consider in this paper.

1.1 Setting and hypothesis testing problem

It is common to model dependencies by a Gaussian random field X = (Xi : i ∈ V), where V ⊂ V∞
is of size |V| = n, while V∞ is countably infinite. We focus on the important example of a d-
dimensional integer lattice

V = {1, . . . ,m}d ⊂ V∞ = Zd. (1)

We formalize the task of detection as the following hypothesis testing problem. One observes
a realization of X = (Xi : i ∈ V), where the Xi’s are known to be standard normal. Under the
null hypothesis H0, the Xi’s are independent. Under the alternative hypothesis H1, the Xi’s are
correlated in one of the following ways. Let C be a class of subsets of V. Each set S ∈ C represents
a possible anomalous subset of the components of X. Specifically, when S ∈ C is the anomalous
subset of nodes, each Xi with i /∈ S is still independent of all the other variables, while (Xi : i ∈ S)
coincides with (Yi : i ∈ S), where Y = (Yi : i ∈ V∞) is a stationary Gaussian Markov random field.
We emphasize that, in this formulation, the anomalous subset S is only known to belong to C.

We are thus addressing the problem of detecting a region of a Gaussian Markov random field
against a background of white noise. This testing problem models important detection problems
such as the detection of a piece of a time series in a signal and the detection of a textured object
in an image, which we describe below. Before doing that, we further detail the model and set some
foundational notation and terminology.
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1.2 Tests and minimax risk

We denote the distribution of X under H0 by P0. The distribution of the zero-mean stationary
Gaussian Markov random field Y is determined by its covariance operator Γ = (Γi,j : i, j ∈ V∞)
defined by Γi,j = E[YiYj ]. We denote the distribution of X under H1 by PS,Γ when S ∈ C is the
anomalous set and Γ is the covariance operator of the Gaussian Markov random field Y .

A test is a measurable function f : RV → {0, 1}. When f(X) = 0, the test accepts the null
hypothesis and it rejects it otherwise. The probability of type I error of a test f is P0{f(X) = 1}.
When S ∈ C is the anomalous set and Y has covariance operator Γ, the probability of type II error
is PS,Γ{f(X) = 0}. In this paper we evaluate tests based on their worst-case risks. The risk of a
test f corresponding to a covariance operator Γ and class of sets C is defined as

RC,Γ(f) = P0{f(X) = 1}+ max
S∈C

PS,Γ{f(X) = 0} . (2)

Defining the risk this way is meaningful when the distribution of Y is known, meaning that Γ is
available to the statistician. In this case, the minimax risk is defined as

R∗C,Γ = inf
f
RC,Γ(f) , (3)

where the infimum is over all tests f . When Γ is only known to belong to some class of covariance
operators G, it is more meaningful to define the risk of a test f as

RC,G(f) = P0{f(X) = 1}+ max
Γ∈G

max
S∈C

PS,Γ{f(X) = 0} . (4)

The corresponding minimax risk is defined as

R∗C,G = inf
f
RC,G(f) . (5)

In this paper we consider situations in which the covariance operator Γ is known (i.e., the test f
is allowed to be constructed using this information) and other situations when Γ is unknown but
it is assumed to belong to a class G. When Γ is known (resp. unknown), we say that a test f
asymptotically separates the two hypotheses if RC,Γ(f) → 0 (resp. RC,G(f) → 0), and we say that
the hypotheses merge asymptotically if R∗C,Γ → 1 (resp. R∗C,G → 1), as n = |V| → ∞. We note that,
as long as Γ ∈ G, R∗C,Γ ≤ R∗C,G, and that R∗C,G ≤ 1, since the test f ≡ 1 (which always rejects) has
risk equal to 1.

At a high-level, our results are as follows. We characterize the minimax testing risk for both
known (R∗C,Γ) and unknown (R∗C,G) covariances when the anomaly is a Gaussian Markov random
field. More precisely, we give conditions on Γ or G enforcing the hypotheses to merge asymptotically
so that detection problem is nearly impossible. Under nearly matching conditions, we exhibit tests
that asymptotically separate the hypotheses. Our general results are illustrated in the following
subsections.

1.3 Example: detecting a piece of time series

As a first example of the general problem described above, consider the case of observing a time
series X1, . . . , Xn. This corresponds to the setting of the lattice (1) in dimension d = 1. Under the
null hypothesis, the Xi’s are i.i.d. standard normal random variables. We assume that the anomaly
comes in the form of temporal correlations over an (unknown) interval S = {i + 1, . . . , i + k} of,
say, known length k < n. Here, i ∈ {0, 1 . . . , n − k} is thus unknown. Specifically, when S is the
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anomalous interval, (Xi+1, . . . , Xi+k) ∼ (Yi+1, . . . , Yi+k), where (Yi : i ∈ Z) is an autoregressive
process of order h (abbreviated ARh) with zero mean and unit variance, that is,

Yi = ψ1Yi−1 + · · ·+ ψhYi−h + σZi, ∀i ∈ Z, (6)

where (Zi : i ∈ Z) are i.i.d. standard normal random variables, ψ1, . . . , ψh ∈ R are the coefficients
of the process—assumed to be stationary—and σ > 0 is such that Var(Yi) = 1 for all i. Note that σ
is a function of ψ1, . . . , ψh, so that the model has effectively h parameters. It is well-known that the
parameters ψ1, . . . , ψh define a stationary process when the roots of the polynomial zp−

∑p
i=1 ψiz

p−i

in the complex plane lie within the open unit circle. See Brockwell and Davis (1991) for a standard
reference on time series.

In the simplest setting h = 1 and the parameter space for ψ is (−1, 1). Then, the hypothesis
testing problem is to distinguish

H0 : X1, . . . , Xn
iid∼ N (0, 1),

versus
H1 : ∃i ∈ {0, 1, . . . , n− k} such that

X1, . . . , Xi, Xi+k+1, . . . , Xn
iid∼ N (0, 1)

and (Xi+1, . . . , Xi+k) is independent of X1, . . . , Xi, Xi+k+1, . . . , Xn with

Xi+j+1 − ψXi+j
iid∼ N (0, 1− ψ2), ∀j ∈ {1, . . . , k − 1} .

Typical realizations of the observed vector under the null and alternative hypotheses are illustrated
in Figure 1.
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Figure 1: Top: a realization of the observed time series under the null hypothesis (white noise).
Bottom: a realization under the alternative with anomalous interval S = {201, . . . , 250}, assuming
an AR1 covariance model with parameter ψ = 0.9.

Gaussian autoregressive processes and other correlation models are special cases of Gaussian
Markov random fields, and therefore this setting is a special case of our general framework, with C
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being the class of discrete intervals of length k. In the simplest case, the length of the anomalous
interval is known beforehand. In more complex settings, it is unknown, in which case C may be
taken to be the class of all intervals within V of length at least kmin.

This testing problem has been extensively studied in the slightly different context of change-
point analysis, where under the null hypothesis X1, . . . , Xn are generated from an ARh(ψ0) process
for some ψ0 ∈ Rh, while under the alternative hypothesis there is an i ∈ V such that X1, . . . , Xi

and Xi+1, . . . , Xn are generated from ARh(ψ0) and ARh(ψ1), with ψ0 6= ψ1, respectively. The
order h is often given. In fact, instead of assuming autoregressive models, nonparametric models
are often favored. See, for example, Davis et al. (1995); Giraitis and Leipus (1992); Horváth
(1993); Hušková et al. (2007); Lavielle and Ludeña (2000); Paparoditis (2009); Picard (1985);
Priestley and Subba Rao (1969) and many other references therein. These papers often suggest
maximum likelihood tests whose limiting distributions are studied under the null and (sometimes
fixed) alternative hypotheses. For example, in the special case of h = 1, such a test would reject
H0 when |ψ̂| is large, where ψ̂ is the maximum likelihood estimate for ψ. In particular, from Picard
(1985), we can speculate that such a test can asymptotically separate the hypotheses in the simplest
setting described above when ψkα → ∞ for some α < 1/2 fixed. See also Hušková et al. (2007);
Paparoditis (2009) for power analyses against fixed alternatives.

Our general results imply the following in the special case when the anomaly comes in the form
of an autoregressive process with unknown parameter ψ ∈ Rh. We note that the order of the
autoregressive model h is allowed to grow with n in this asymptotic result.

Corollary 1. Assume n, k → ∞, and that h = o
(√

k/ log(n) ∧ k1/4
)
. Denote by F(h, r) the class

of covariance operators corresponding to ARh processes with valid parameter ψ = (ψ1, . . . , ψh)
satisfying ‖ψ‖22 ≥ r2. Then R∗C,F(h,r) → 1 when

r2 ≤ C1

(
log(n/k)/k +

√
h log(n/k)/k

)
. (7)

Conversely, if f denotes the pseudo-likelihood test of Section 4.2, then RC,F(h,r)(f)→ 0 when

r2 ≥ C2

(
log(n)/k +

√
h log(n)/k

)
. (8)

In both cases, C1 and C2 denote numerical constants.

Remark 1. In the interesting setting where k = nκ for some κ > 0 fixed, the lower and upper
bounds provided by Corollary 1 match up to a multiplicative constant that depends only on κ.

Despite an extensive literature on the topic, we are not aware of any other minimax optimality
result for time series detection.

1.4 Example: detecting a textured region

In image processing, the detection of textured objects against a textured background is relevant
in a number of applications, such as in the detection of local fabric defects in the textile industry
by automated visual inspection (Kumar, 2008), the detection of a moving object in a textured
background (Kim et al., 2005; Yilmaz et al., 2006), the identification of tumors in medical imag-
ing (James et al., 2001; Karkanis et al., 2003), the detection of man-made objects in natural
scenery (Kumar and Hebert, 2003), the detection of sites of interest in archeology (Litton and
Buck, 1995) and of weeds in crops (Dryden et al., 2003). In all these applications, the object is
generally small compared to the size of the image.

Common models for texture include Markov random fields (Cross and Jain, 1983) and joint
distributions over filter banks such as wavelet pyramids (Manjunath and Ma, 1996; Portilla and
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Simoncelli, 2000). We focus here on textures that are generated via Gaussian Markov random fields
(Chellappa and Chatterjee, 1985; Zhu et al., 1998). Our goal is to detect a textured object hidden
in white noise. For this discussion, we place ourselves in the lattice setting (1) in dimension d = 2.
Just like before, under H0, the (Xi : i ∈ V) are independent standard normal random variables.
Under H1, when the region S ⊂ V is anomalous, the (Xi : i /∈ S) are still i.i.d. standard normal,
while (Xi : i ∈ S) ∼ (Yi : i ∈ S), where (Yi : i ∈ Z2) is such that for each i ∈ Z2, the conditional
distribution of Yi given the rest of the variables Y (−i) := (Yj : j 6= i) is normal with mean∑

(t1,t2)∈[−h,h]2\{(0,0)}

φt1,t2Yi+(t1,t2) (9)

and variance σ2
φ, where the φt1,t2 ’s are the coefficients of the process and σφ is such that Var(Yi) = 1

for all i. The set of valid parameters φ is defined in Section 2.1. A simple sufficient condition is
‖φ‖1 =

∑
(t1,t2)∈[−h,h]2\{(0,0)} |φt1,t2 | < 1. In this model, the dependency neighborhood of i ∈ Z2

is i + [−h, h]2 ∩ Z2. One of the simplest cases is when h = 1 and φt1,t2 = φ when (t1, t2) ∈
{(±1, 0), (0,±1)} for some φ ∈ (−1/4, 1/4), and the anomalous region is a discrete square; see
Figure 2 for a realization of the resulting process.

This is a special case of our setting. While intervals are natural in the case of time series, squares
are rather restrictive models of anomalous regions in images. We consider instead the “blob-like”
regions (to be defined later) that include convex and star-shaped regions.

Figure 2: Left: white noise, no anomalous region is present. Right: a squared anomalous region
is present. In this example on the 50 × 50 grid, the anomalous region is a 15 × 15 square piece
from a Gaussian Markov random field with neighborhood radius h = 1 and coefficient vector
φt1,t2 = φ := 1

4(1− 10−4) when (t1, t2) ∈ {(±1, 0), (0,±1)}, and zero otherwise.

A number of publications address the related problems of texture classification (Kervrann and
Heitz, 1995; Varma and Zisserman, 2005; Zhu et al., 1998) and texture segmentation (Galun et al.,
2003; Grigorescu et al., 2002; Hofmann et al., 1998; Jain and Farrokhnia, 1991; Malik et al., 2001).
In fact, this literature is quite extensive. Only very few papers address the corresponding change-
point problem (Palenichka et al., 2000; Shahrokni et al., 2004) and we do not know of any theoretical
results in this literature. Our general results (in particular, Corollary 4) imply the following.

Corollary 2. Assume n, k →∞, and that h = o
(√

k/ log(n) ∧ k1/5
)
. Denote by G(h, r) the class

of covariance operators corresponding to stationary Gaussian Markov Random Fields with valid
parameter (see Section 2.1 for more details) φ = (φi,j)(i,j)∈{−h,...,h}2\{0} satisfying ‖φ‖22 ≥ r2. Then
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R∗C,G(h,r) → 1 when

r2 ≤ C1

[
log(n/k)

k
+

√
h2 log(n/k)

k

]
. (10)

Conversely, if f denotes the pseudo-likelihood test of Section 4.2, then RC,G(h,r)(f)→ 0 when

r2 ≥ C2

[
log(n/k)

k
+

√
h2 log(n/k)

k

]
. (11)

In both cases, C1 and C2 denote positive numerical constants.

Informally, the lower bound on the magnitude of the coefficient vector φ, namely r2, quantifies
the extent to which the variables Yi are explained by the rest of variables Y (−i) as in (9).

Although not in the literature on change-point or object detection, Anandkumar et al. (2009)
is the only other paper developing theory in a similar context. It considers a spatial model where
points {xi, i ∈ [N ]} are sampled uniformly at random in some bounded region and a nearest-
neighbor graph is formed. On the resulting graph, variables are observed at the nodes. Under the
(simple) null hypothesis, the variables are i.i.d. zero mean normal. Under the (simple) alternative,
the variables arise from a Gaussian Markov random with covariance operator of the form Γi,j ∝
g(‖xi − xj‖), where g is a known function. The paper analyzes the large-sample behavior of the
likelihood ratio test.

1.5 More related work

As we mentioned earlier, the detection-of-means setting is much more prevalent in the literature.
When the anomaly has no a priori structure, the problem is that of multiple testing; see, for
example, Baraud (2002); Donoho and Jin (2004); Ingster (1999) for papers testing the global null
hypothesis. Much closer to what interests us here, the problem of detecting objects with various
geometries or combinatorial properties has been extensively analyzed, for example, in some of our
earlier work (Addario-Berry et al., 2010; Arias-Castro et al., 2011, 2008) and elsewhere (Desolneux
et al., 2003; Walther, 2010). We only cite a few publications that focus on theory. The applied
literature is vast; see Arias-Castro et al. (2011) for some pointers.

Despite its importance in practice, as illustrated by the examples and references given in Sec-
tions 1.3 and 1.4, the detection-of-correlations setting has received comparatively much less atten-
tion, at least from theoreticians. Here we find some of our own work (Arias-Castro et al., 2012,
2015). In the first of these papers, we consider a sequence X1, . . . , Xn of standard normal random
variables. Under the null, they are independent. Under the alternative, there is a set S in a class of
interest C where the variables are correlated. We consider the unstructured case where C is the class
of all sets of size k (given) and also various structured cases, and in particular, that of intervals.
This would appear to be the same as in the present lattice setting in dimension d = 1, but the
important difference is that that correlation operator Γ is not constrained, and in particular no
Markov random field structure is assumed. The second paper extends the setting to higher dimen-
sions, thus testing whether some coordinates of a high-dimensional Gaussian vector are correlated
or not. When the correlation structure in the anomaly is arbitrary, the setting overlaps with that
of sparse principal component analysis (Berthet and Rigollet, 2013; Cai et al., 2013). The problem
is also connected to covariance testing in high-dimensions; see, e.g., Cai and Ma (2013). We refer
the reader to the above-mentioned papers for further references.
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1.6 Contribution and content

The present paper thus extends previous work on the detection-of-means setting to the detection-
of-correlations setting in the (structured) context of detecting signals/objects in time series/images.
The paper also extends some of our own work on the detection-of-correlations to Markov random
field models, which are typically much more appropriate in the context of detection in signals
and images. The theory in the detection-of-correlations setting is more complicated than in the the
detection-of-means setting, and in particular deriving exact minimax (first-order) results remains an
open problem. Compared to our previous work on the detection-of-correlations setting, the Marko-
vian assumption makes the problem significantly more complex as it requires handling Markov
random fields which are conceptually more complex objects. As a result, the proof technique is
by-and-large novel, at least in the detection literature.

The rest of the paper is organized as follows. In Section 2 we lay down some foundations on
Gaussian Markov Random Fields, and in particular, their covariance operators, and we also derive a
general minimax lower bound that is used several times in the paper. In the remainder of the paper,
we consider detecting correlations in a finite-dimensional lattice (1), which includes the important
special cases of time series and textures in images. We establish lower bounds, both when the
covariance matrix is known (Section 3) or unknown (Section 4) and propose test procedures that
are shown to achieve the lower bounds up to multiplicative constants. In Section 5, we specialize our
general results to specific classes of anomalous regions such as classes of cubes, and more generally,
“blobs.” In Section 6 we outline possible generalizations and further work. The proofs are gathered
in Section 7.

2 Preliminaries

In this paper we derive upper and lower bounds for the minimax risk, both when Γ is known as in
(3) and when it is unknown as in (5), the latter requiring a substantial amount of additional work.
For the sake of exposition, we sketch here the general strategy for obtaining minimax lower bounds
by adapting the general strategy initiated in Ingster (1993) to detection-of-correlation problems.
This allows us to separate the technique used to derive minimax lower bounds from the technique
required to handle Gaussian Markov random fields.

2.1 Some background on Gaussian Markov random fields

We elaborate on the setting described in Sections 1.1 and 1.2. As the process Y is indexed by Zd,
note that all the indices i of φ and Γ are d-dimensional. Given a positive integer h, denote by Nh the
integer lattice {−h, . . . , h}d\{0}d with (2h+1)d−1 nodes. For any nonsingular covariance operator
Γ of a stationary Gaussian Markov random field over Zd with unit variance and neighborhood Nh,
there exists a unique vector φ indexed by the nodes of Nh satisfying φi = φ−i such that, for all
i, j ∈ Zd,

Γ−1
i,j /Γ

−1
i,i =


−φi−j if 1 ≤ |i− j|∞ ≤ h,
1 if i = j,

0 otherwise ,

(12)

where Γ−1 denotes the inverse of the covariance operator Γ. Consequently, there exists a bijective
map from the collection of invertible covariance operators of stationary Gaussian Markov random
fields over Zd with unit variance and neighborhood Nh to some subset Φh ⊂ RNh . Given φ ∈ Φh,
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Γ(φ) denotes the unique covariance operator satisfying Γi,i = 1 and (12). It is well known that Φh

contains the set of vectors φ whose `1-norm is smaller than one, that is,

{φ ∈ RNh : ‖φ‖1 < 1} ⊂ Φh ,

as the corresponding operator Γ−1(φ) is diagonally dominant in that case. In fact, the parameter
space Φh is characterized by the Fast Fourier Transform (FFT) as follows

Φh =
{
φ : 1 +

∑
1≤|i|∞≤h

φi cos(〈i, ω〉) > 0, ∀ω ∈ (−π, π]d
}
,

where and i ∈ Zd and 〈·, ·〉 denotes the scalar product in Rd. The interested reader is referred to
(Guyon, 1995, Sect.1.3) or (Rue and Held, 2005, Sect.2.6) for further details and discussions. For
φ ∈ Φh, define σ2

φ = 1/Γ−1
i,i (φ).

The correlated process Y = (Yi : i ∈ Zd) is centered Gaussian with covariance operator Γ(φ) is
such that, for each i ∈ Zd, the conditional distribution of Yi given the rest of the variables Y (−i) is

Yi|Y (−i) ∼ N
( ∑
j∈Nh

φjYi+j , σ
2
φ

)
. (13)

Define the h-boundary of S, denoted ∆h(S), as the collection of vertices in S whose distance
to Zd \ S is at most h. We also define the h-interior S as Sh = S \ ∆h(S). If S ⊂ V is a finite
set, we denote by ΓS the principal submatrix of the covariance operator Γ indexed by S. If Γ is
nonsingular, each such submatrix is invertible.

2.2 A general minimax lower bound

As is standard, an upper bound is obtained by exhibiting a test f and then upper-bounding its
risk—either (2) or (4) according to whether Γ is known or unknown. In order to derive a lower
bound for the minimax risk, we follow the standard argument of choosing a prior distribution on
the class of alternatives and then lower-bounding the minimax risk with the resulting average risk.
When Γ is known, this leads us to select a prior on C, denoted by ν, and consider

R̄ν,Γ(f) = P0{f(X) = 1}+
∑
S∈C

ν(S)PS,Γ{f(X) = 0} and R̄∗ν,Γ = inf
f
R̄ν,Γ(f) . (14)

The latter is the Bayes risk associated with ν. By placing a prior on the class of alternative
distributions, the alternative hypothesis becomes effectively simple (as opposed to composite). The
advantage of this is that the optimal test may be determined explicitly. Indeed, the Neyman-
Pearson fundamental lemma implies that the likelihood ratio test f∗ν,Γ(x) = I{Lν,Γ(x) > 1}, with

Lν,Γ =
∑
S∈C

ν(S)
dPS,Γ
dP0

,

minimizes the average risk. In most of the paper, ν will be chosen as the uniform distribution on
the class C. In this because the sets in C play almost the same role (although not exactly because
of boundary effects).

When Γ is only known to belong to some class G we also need to choose a prior on G, which
we denote by π, leading to

R̄ν,π(f) = P0{f(X) = 1}+
∑
S∈C

ν(S)

∫
PS,Γ{f(X) = 0}π(dΓ) and R̄∗ν,π = inf

f
R̄ν,π(f) . (15)
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In this case, the likelihood ratio test becomes f∗ν,π(x) = I{Lν,π(x) > 1}, where

Lν,π =
∑
S∈C

ν(S)
dPS,π
dP0

, PS,π =

∫
PS,Γπ(dΓ) ,

minimizes the average risk.

In both cases, we then proceed to bound the second moment of the resulting likelihood ratio
under the null. Indeed, in a general setting, if L is the likelihood ratio for P0 versus P1 and R
denotes its risk, then (Lehmann and Romano, 2005, Problem 3.10)

R = 1− 1

2
E0 |L(X)− 1| ≥ 1− 1

2

√
E0[L(X)2]− 1 , (16)

where the inequality follows by the Cauchy-Schwarz inequality.

Remark 2. Working with the minimax risk (as we do here) allows us to bypass making an explicit
choice of prior, although one such choice is eventually made when deriving a lower bound. Another
advantage is that the minimax risk is monotone with respect to the class C in the sense that if
C′ ⊂ C, then the minimax risk corresponding to C′ is at most as large as that corresponding to C.
This monotonicity does not necessarily hold for the Bayes risk. See Addario-Berry et al. (2010) for
a discussion in the context of the detection-of-means problem.

We now state a general minimax lower bound. (Recall that all the proofs are in Section 7.)
Although the result is stated for a class C of disjoint subsets, using the monotonicity of the minimax
risk, the result can be used to derive lower bounds in more general settings. It is particularly
useful in the context of detecting blob-like anomalous regions in the lattice. (The same general
approach is also fruitful in the detection-of-means setting.) We emphasize that this result is quite
straightforward given the work flow outlined above. The technical difficulties will come with its
application to the context that interest us here, which will necessitate a good control of (17) below.

Recall the definition (15).

Proposition 1. Let {Γ(φ) : φ ∈ Φ} be a class of nonsingular covariance operators and let C be a
class of disjoint subsets of V. Put the uniform prior ν on C and let π be a prior on Φ. Then

R̄∗ν,π ≥ 1− 1

2|C|

(∑
S∈C

VS

)1/2
,

where

VS := Eπ

( det(Γ−1
S (φ1)) det(Γ−1

S (φ2))

det(Γ−1
S (φ1) + Γ−1

S (φ2)− IS)

)1/2
 , (17)

and the expected value is with respect to φ1, φ2 drawn i.i.d. from the distribution π.

3 Known covariance

We start with the case where the covariance operator Γ is known. Although this setting is of less
practical importance, as this operator is rarely known in applications, we treat this case first for
pedagogical reasons and also to contrast with the much more complex setting where the operator
is unknown, treated later on.
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3.1 Lower bound

Recall the definition of the minimax risk (3) and the average risk (14). (Henceforth, to lighten the
notation, we replace subscripts in Γ(φ) with subscripts in φ.) For any prior ν on C, the minimax risk
is at least as large as the ν-average risk, R∗C,φ ≥ R̄∗ν,φ, and the following corollary of Proposition 1
provides a lower bound on the latter.

Corollary 3. Let C be a class of disjoint subsets of V and fix φ ∈ Φh satisfying ‖φ‖1 < 1/2. Then,
letting ν denote the uniform prior over C, we have

R̄∗ν,φ ≥ 1− 1

2|C|

[∑
S∈C

exp

(
10|S|‖φ‖22
1− 2‖φ‖1

)]1/2

. (18)

In particular, the corollary implies that, for any fixed a ∈ (0, 1), R∗C,φ ≥ 1− a as soon as

‖φ‖22
1− 2‖φ‖1

≤ min
S∈C

log
(
4|C|/a2

)
10|S|

. (19)

Furthermore, the hypotheses merge asymptotically (i.e., R∗C,φ → 1) when

log(|C|)− 10‖φ‖22
1− 2‖φ‖1

max
S∈C
|S| → ∞ . (20)

Remark 3. The condition ‖φ‖1 < 1/2 in Corollary 3 is technical and likely an artifice of our
proof method. This condition arises from the term det−1/2(2ΓS(φ) − IS) in VS in (17). For this
determinant to be positive, the smallest eigenvalue of ΓS(φ) has to be larger than 1/2, which in
turn is enforced by ‖φ‖1 < 1/2. In order to remove, or at least improve on this constraint, we would
need to adopt a more subtle approach than applying the Cauchy-Schwarz inequality in (16). We
did not pursue this as typically one is interested in situations where φ is small — see, for example,
how the result is applied in Section 5.

3.2 Upper bound: the generalized likelihood ratio test

When the covariance operator Γ(φ) is known, the generalized likelihood ratio test rejects the null
hypothesis for large values of

max
S∈C

X>S (IS − Γ−1
S (φ))XS .

We use instead the statistic

U(X) = max
S∈C

X>S (IS − Γ−1
S (φ))XS − Tr(IS − Γ−1

S (φ))

‖IS − Γ−1
S (φ)‖F

√
log(|C|) + ‖IS − Γ−1

S (φ)‖ log(|C|)
, (21)

which is based on the centering and normalization the statistics X>S (IS −Γ−1
S (φ))XS where S ∈ C.

In the following result, we implicitly assume that |C| → ∞, which is the most interesting case.

Proposition 2. Assume that φ ∈ Φh satisfies ‖φ‖1 ≤ η < 1 and that |Sh| ≥ |S|/2. The test
f(x) = I{U(x) > 4} has risk RC,φ(f) ≤ 2/|C| when

‖φ‖22 min
S∈C
|S| ≥ C0 log(|C|) , (22)

where C0 > 0 only depends on the dimension d of the lattice and η.

Comparing with Condition (20), we see that condition (22) matches (up to constants) the
minimax lower bound, so that (at least when ‖φ‖1 < 1/2) the normalized generalized likelihood
ratio test based on (21) is asymptotically minimax up to a multiplicative constant. The `1-norm
‖φ‖1 arises in the proof of Corollary 3 when bounding the largest eigenvalue of Γ(φ) (see Lemma 5).
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4 Unknown covariance

We now consider the case where the covariance operator Γ(φ) of the anomalous Gaussian Markov
random field is unknown. We therefore start by defining a class of covariance operators via a class
of vectors φ. Given a positive integer h > 0 and some r > 0, define

Φh(r) := {φ ∈ Φh, ‖φ‖2 ≥ r} , (23)

and let
G(h, r) := {Γ(φ) : φ ∈ Φh(r)} , (24)

which is the class of covariance operators corresponding to stationary Gaussian Markov Random
Fields with parameter in the class (23).

4.1 Lower bound

The theorem below establishes a lower bound for the risk following the approach outlined in Sec-
tion 2, which is based on the choice of a suitable prior π on Φh, defined as follows. By sym-
metry of the elements of Φh, one can fix a sublattice N′h of size |Nh|/2 such that any φ ∈ Φh

is uniquely defined (via symmetry) by its restriction to N′h. Choose the distribution π such that
φ ∼ π is the unique extension to Nh of the random vector r|Nh|−1/2ξ, where the coordinates of
the random vector ξ—indexed by N′h—are i.i.d. Rademacher random variables (i.e., symmetric ±1-
valued random variables). Note that, if r|Nh| < 1, π is acceptable since it concentrates on the set
{φ ∈ Φh, ‖φ‖2 = r} ⊂ Φh(r). Recall the definition of the minimax risk (5) and the average risk
(15). As before, for any priors ν on C and π on Φh(r), the minimax risk is at least as large as the
average risk with these priors, R∗C,G(h,r) ≥ R̄

∗
ν,π, and the following (much more elaborate) corollary

of Proposition 1 provides a lower bound on the latter.

Theorem 1. There exists a constant C0 > 0 such that the following holds. Let C be a class of
disjoint subsets of V and let ν denote the uniform prior over C. Let a ∈ (0, 1) and assume that the
neighborhood size |Nh| satisfies

|Nh| ≤ min
S∈C

[
|S|

log (|C|/a)

∧
|S|2/5 log1/5 (|C|/a)

∧(
|S|

|∆2h(S)|

)2

log−1/6 (|C|/a)

]
. (25)

Then R̄∗ν,π ≥ 1− a as soon as

r2 max
S∈C
|S| ≤ C0

[√
|Nh| log (|C|/a)

∨
log (|C|/a)

]
. (26)

This bound is our main impossibility result. Its proof relies on a number auxiliary results for
Gaussian Markov Random Fields (Section 7.3) that may useful for other problems of estimating
Gaussian Markov Random Fields. Notice that the second term in (26) is what appears in (19),
which we saw arises in the case where the covariance is known. In light of this fact, we may interpret
the first term in (26) as the ‘price to pay’ for adapting to an unknown covariance operator in the
class of covariance operators of Gaussian Markov random fields with dependency radius h.

4.2 Upper bound: a Fisher-type test

We introduce a test whose performance essentially matches the minimax lower bound of Theorem
1. Comparatively, the construction and analysis of this test is much more involved than that of the
generalized likelihood ratio test of Section 3.2.
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Let Fi = (Xi+v : 1 ≤ |v|∞ ≤ h), seen as a vector, and let FS,h be the matrix with row
vectors Fi, i ∈ Sh. Also, let XS,h = (Xi : i ∈ Sh). Under the null hypothesis, each variable
Xi is independent of Fi, although Xi is correlated with some (Fj , j 6= i). Under the alternative
hypothesis, there exists a subset S and a vector φ ∈ Φh such that

XS,h = FS,hφ+ εS,h , (27)

where each component εi of εS,h is independent of the corresponding vector Fi, but the εi’s are not
necessarily independent. Equation (27) is the so-called conditional autoregressive (CAR) represen-
tation of a Gaussian Markov random field (Guyon, 1995). For Gaussian Markov random fields, the
celebrated pseudo-likelihood method (Besag, 1975) amounts to estimating φ by taking least-squares
in (27).

Returning to our testing problem, observe that the null hypothesis is true if and only if all
the parameters of the conditional expectation of XS,h given FS,h are zero. In analogy with the
analysis-of-variance approach for testing whether the coefficients of a linear regression model are
all zero, we consider a Fisher-type statistic

T ∗ = max
S∈C

TS , TS :=
|Sh|‖ΠS,hXS,h‖22
‖XS,h −ΠS,hXS,h‖22

, (28)

where ΠS,h := FS,h(F>S,hFS,h)−1F>S,h is the orthogonal projection onto the column space of FS,h.
Since in the linear model (27) the response vector XS,h is not independent of the design matrix
FS,h, the statistic TS does not follow an F -distribution. Nevertheless, we are able to control the
deviations of T ∗, both under null and alternative hypotheses, leading to the following performance
bound. Recall the definition (4).

Theorem 2. There exist four positive constants C1, C2, C3, C4 depending only on d such that the
following holds. Assume that

|Nh|4 ∨ |Nh|2 log(|C|) ≤ C1 min
S∈C
|Sh| . (29)

Fix α and β in (0, 1) such that

log( 1
α) ∨ log( 1

β ) ≤ C2
minS∈C |Sh|
|Nh|2 log(|C|)

. (30)

Then, under the null hypothesis,

P
{
T ∗ ≥ |Nh|+ C3

[√
|Nh|(log(|C|) + 1 + log(α−1)) + log(|C|) + log(α−1)

]}
≤ α , (31)

while under the alternative,

P
{
T ∗ ≥ |Nh|+ C4

[
|Sh|

(
‖φ‖22 ∧

1

|Nh|

)
−
√
Nh(1 + log4(β−1))

]}
≥ 1− β . (32)

In particular, if αn, βn → 0 are arbitrary positive sequences, then the test f that rejects the null
hypothesis if

T ∗ ≥ |Nh|+ C3

[√
|Nh|(log(|C|) + 1 + log(α−1

n )) + log(|C|) + log(α−1
n )

]
12



satisfies RC,G(h,r)(f)→ 0 as soon as

r2 >
C0

minS∈C |Sh|

[√
|Nh|

(
log(|C|) + log( 1

αn
) + log8( 1

βn
)
)∨

log(|C|)
∨

log( 1
αn

)

]
, (33)

where C0 > 0 depends only on d.

Comparing with the minimax lower bound established in Theorem 1, we see that this test is
nearly optimal with respect to h, the size of the collection |C|, and the size |S| of the anomalous
region (under the alternative).

5 Examples: cubes and blobs

In this section we specialize our general results proved in the previous subsections to classes of
cubes, and more generally, blobs.

5.1 Cubes

Consider the problem of detecting an anomalous cube-shaped region. Let ` ∈ {1, . . . ,m} and assume
that m is an integer multiple of ` (for simplicity). Let C denote the class of all discrete hypercubes of
side length `, that is, sets of the form S =

∏d
s=1{bs, . . . , bs+`−1}, where bs ∈ {1, . . . ,m+1−`}. Each

such hypercube S ∈ C contains |S| = k := `d nodes, and the class is of size |C| = (m− 1− `)d ≤ n.
The lower bounds for the risk established in Corollary 3 and Theorem 1 are not directly ap-

plicable here since these results require subsets of the class C to be disjoint. However, they apply
to any subclass C′ ⊂ C of disjoint subsets and, as mentioned in Section 2, any lower bound on the
minimax risk over C′ applies to the minimax risk over C. A natural choice for C′ here is that of
all cubes of the form S =

∏d
s=1{as` + 1, . . . , (as + 1)`}, where as ∈ {0, . . . ,m/` − 1}. Note that

|C′| = (m/`)d = n/k.

h bounded. Consider first the case where the radius h of the neighborhood is bounded. We may
apply Corollary 3 to get

R∗C,φ ≥ 1− k1/2

2n1/2
exp

{
5k‖φ‖22

1− 2‖φ‖1

}
.

For a given r > 0 satisfying 2|Nh|r ≤ 1, we can choose a parameter φ constant over Nh such that
‖φ‖2 = r and ‖φ‖1 = r

√
(2h+ 1)d − 1. Since R∗C,G(h,r) ≥ R∗C,φ, we thus have R∗C,G(h,r) → 1 when

n → ∞, if (k, φ) = (k(n), φ(n)) satisfies log(n) � k � n and r2 ≤ log(n/k)/(11k). Comparing
with the performance of the Fisher test of Section 4.2, in this particular case, Condition (29) is met,
and letting α = α(n)→ 0 and β = β(n)→ 0 slowly, we conclude from (33) that this test (denoted
f) has risk RC,G(h,r)(f) → 0 when r2 ≥ C0 log(n)/k for some constant C0. Thus, in this setting,

the Fisher test, without knowledge of φ, achieves the correct detection rate as long as k ≤ nb for
some fixed b < 1.

h unbounded. When h is unbounded, we obtain a sharper bound by using Theorem 1 instead of
Corollary 3. Specialized to the current setting, we derive the following.

Corollary 4. There exist two positive constants C1 and C2 depending only on d such that the
following holds. Assume that the neighborhood size h is small enough that

|Nh| ≤ C1

[
k

log1∨(d/2)
(
n
k

) ∧ k2/5 log1/5
(n
k

)∧
d−

2d
d+2k

2
d+2 log

d
3d+6

(n
k

)]
. (34)
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Then the minimax risk tends to one when n→∞ as soon as (k, h, r) = (k(n), h(n), r(n)) satisfies
n/k →∞ and

r2 ≤ C2

[
log(nk )

k

∨√
|Nh| log(nk )

k

]
. (35)

Note that, in the case of a square neighborhood, |Nh| = (2h + 1)d − 1. Comparing with the
performance of the Fisher test, in this particular case, Condition (29) is equivalent to |Nh| ≤
C0

(
k1/4 ∧

√
k/ log(n)

)
for some constant C0. When k is polynomial in n, this condition is stronger

than Condition (34) unless d ≤ 5. In any case, assuming h is small enough that both (29) and (34)
hold, and letting α = α(n) → 0 and β = β(n) → 0 slowly, we conclude from (33) that the Fisher
test has risk RC,G(h,r) tending to zero when

r2 ≥ C0

[
log(n)

k

∨√
|Nh| log(n)

k

]
,

for some large-enough constant C0 > 0, matching the lower bound (35) up to a multiplicative
constant as long as k ≤ nb for some fixed b < 1.

In conclusion, whether h is fixed or unbounded but growing slowly enough, the Fisher test
achieves a risk matching the lower bound up to a multiplicative constant.

5.2 Blobs

So far, we only considered hypercubes, but our results generalize immediately to much larger classes
of blob-like regions. Here, we follow the same strategy used in the detection-of-means setting, for
example, in Arias-Castro et al. (2011, 2005); Huo and Ni (2009).

Fix two positive integers `◦ ≤ `◦ and let C be a class of subsets S such that there are hypercubes
S◦ and S◦, of respective side lengths `◦ and `◦, such that S◦ ⊂ S ⊂ S◦. Letting C◦ and C◦ denote
the classes of hypercubes of side lengths `◦ and `◦, respectively, our lower bound for the worst-case
risk associated with the class C◦ obtained from Corollary 4 applies directly to C—although not
completely obvious, this follows from our analysis—while scanning over C◦ in the Fisher test yields
the performance stated above for the class of cubes. In particular, if `◦/`

◦ remains bounded away
from 0, the problem of detecting a region in C is of difficulty comparable to detecting a hypercube
in C◦ or C◦.

When the size of the anomalous region k is unknown, meaning that the class C of interest
includes regions of different sizes, we can simply scan over dyadic hypercubes as done in the first
step of the multiscale method of Arias-Castro et al. (2005). This does not change the rate as there
are less than 2n dyadic hypercubes. See also Arias-Castro et al. (2011).

We note that when `◦/`
◦ = o(1), scanning over hypercubes may not be very powerful. For

example, for “convex” sets, meaning when

C =
{
S = K ∩ V : K ⊂ Rd convex, |K ∩ V| = k

}
,

it is more appropriate to scan over ellipsoids due to John’s ellipsoid theorem (John, 1948), which
implies that for each convex set K ⊂ Rd, there is an ellipsoid E ⊂ K such that vol(E) ≥ d−dvol(K).
For the case where d = 2 and the detection-of-means problem, Huo and Ni (2009)—expanding on
ideas proposed in Arias-Castro et al. (2005)—scan over parallelograms, which can be done faster
than scanning over ellipses.
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Finally, we mention that what we said in this section may apply to other types of regular
lattices, and also to lattice-like graphs such as typical realizations of a random geometric graph.
See Arias-Castro et al. (2011); Walther (2010) for detailed treatments in the detection-of-means
setting.

6 Discussion

We provided lower bounds and proposed near-optimal procedures for testing for the presence of a
piece of a Gaussian Markov random field. These results constitute some of the first mathematical
results for the problem of detecting a textured object in a noisy image. We leave open some
questions and generalization of interest.

More refined results. We leave behind the delicate and interesting problem of finding the exact
detection rates, with tight multiplicative constants. This is particularly appealing for simple settings
such as finding an interval of an autoregressive process, as described in Section 1.3. Our proof
techniques, despite their complexity, are not sufficiently refined to get such sharp bounds. We
already know that, in the detection-of-means setting, bounding the variance of the likelihood ratio
does not yield the right constant. The variant which consists of bounding the first two moments of
a carefully truncated likelihood ratio, possibly pioneered in Ingster (1999), is applicable here, but
the calculations are quite complicated and we leave them for future research.

Texture over texture. Throughout the paper we assumed that the background is Gaussian white
noise. This is not essential, but makes the narrative and results more accessible. A more general,
and also more realistic setting, would be that of detecting a region where the dependency structure
is markedly different from the remainder of the image. This setting has been studied in the context
of time series, for example, in some of the references given in Section 1.3. However, we are not
aware of existing theoretical results in higher-dimensional settings such as in images.

Other dependency structures. We focused on Markov random fields with limited neighborhood
range (quantified by h earlier in the paper). This is a natural first step, particularly since these are
popular models for time series and textures. However, one could envision studying other dependency
structures, such as short-range dependency, defined in Samorodnitsky (2006) as situations where
the covariances are summable in the following sense

sup
i∈V∞

∑
j∈V∞\i

|Γi,j | <∞ .

7 Proofs

7.1 Proof of Proposition 1

The Bayes risk is achieved by the likelihood ratio test f∗ν,π(x) = I{Lν,π(x) > 1} where

Lν,π(x) =
1

|C|
∑
S∈C

LS(x) , with LS(x) =

∫
dPS,Γ(φ)(x)

dP0(x)
π(dφ) .

In our Gaussian model,

LS(x) = Eπ
[
exp

(
1
2x
>
S (IS − Γ−1

S (φ))xS − 1
2 log det(ΓS(φ))

)]
, (36)

where the expectation is taken with respect to the random draw of φ ∼ π. Then, by (16),

R̄∗ν,π = 1− 1

2
E0 |Lν,π(X)− 1| ≥ 1− 1

2

√
E0[Lν,π(X)2]− 1 . (37)
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(Recall that E0 stands for expectation with respect to the standard normal random vector X.)
We proceed to bound the second moment of the likelihood ratio under the null hypothesis.

Summing over S, T ∈ C, we have

E0[Lν,π(X)2]

=
1

|C|2
∑
S,T∈C

E0[LS(X)LT (X)]

=
1

|C|2
∑
S 6=T

E0[LS(X)]E0[LT (X)] +
1

|C|2
∑
S∈C

E0[L2
S(X)]

=
|C| − 1

|C|
+

1

|C|2
∑
S∈C

E0 Eπ
[

exp
(
X>S
(
IS − 1

2Γ−1
S (φ1)− 1

2Γ−1
S (φ2)

)
XS

−1
2 log det(ΓS(φ1))− 1

2 log det(ΓS(φ2))
)]

≤ 1 +
1

|C|2
∑
S

Eπ
[

exp
(
− 1

2 log det(Γ−1
S (φ1) + Γ−1

S (φ2)− IS)− 1
2 log det(ΓS(φ1)ΓS(φ2))

)]
= 1 +

1

|C|2
∑
S

VS ,

where in the second equality we used the fact that S 6= T are disjoint, and therefore LS(X) and
LT (X) are independent, and in the third we used the fact that E0[LS(X)] = 1 for all S ∈ C.

7.2 Deviation inequalities

Here we collect a few more-or-less standard inequalities that we need in the proofs. We start with
the following standard tail bounds for Gaussian quadratic forms. See, e.g., Example 2.12 and
Exercise 2.9 in Boucheron et al. (2013).

Lemma 1. Let Z be a standard normal vector in Rd and let R be a symmetric d×d matrix. Then

P
{
Z>RZ − Tr(R) ≥ 2‖R‖F

√
t+ 2‖R‖t

}
≤ e−t, ∀t ≥ 0 .

Furthermore, if the matrix R is positive semidefinite, then

P
{
Z>RZ − Tr(R) ≤ −2‖R‖F

√
t
}
≤ e−t, ∀t ≥ 0.

Lemma 2. There exists a positive constant C such that the following holds. For any Gaussian
chaos Z up to order 4 and any t > 0,

P
{
|Z − E[Z]| ≥ C Var1/2(Z)t2

}
≤ e−t .

Proof. This deviation inequality is a consequence of the hypercontractivity of Gaussian chaos. More
precisely, Theorem 3.2.10 and Corollary 3.2.6 in de la Peña and Giné (1999) state that

E exp

[(
Z − E[Z]

C Var1/2(Z)

)1/2
]
≤ 2 ,

where C is a numerical constant. Then, we apply Markov inequality to prove the lemma.
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Lemma 3. There exists a positive constant C such that the following holds. Let F be a compact
set of symmetric r × r matrices and let Y ∼ N (0, Ir). For any t > 0, the random variable
Z := supR∈F Tr

[
RY Y >

]
satisfies

P{Z ≥ E(Z) + t} ≤ exp

(
−C

(
t2

E(W )

∧ t

B

))
, (38)

where W := supR∈F Tr(RY Y >R) and B := supR∈F ‖R‖.

A slight variation of this result where Z is replaced by supR∈F Tr
[
R(Y Y > − Ir)

]
is proved in

Verzelen (2010) using the exponential Efron-Stein inequalities of Boucheron et al. (2005). Their
arguments straightforwardly adapt to Lemma 3.

Lemma 4 (Davidson and Szarek (2001)). Let W be a standard Wishart matrix with parameters
(n, d) satisfying n > d. Then for any number 0 < x < 1,

P
{
λmax(W) ≥ n

(
1 +

√
d/n+

√
2x/n

)2
}
≤ e−x ,

P
{
λmin(W) ≤ n

(
1−

√
d/n−

√
2x/n

)2

+

}
≤ e−x .

7.3 Auxiliary results for Gaussian Markov random fields on the lattice

He we gather some technical tools and proofs for Gaussian Markov random fields on the lattice.
Recall the notation introduced in Section 2.1.

Lemma 5. For any positive integer h and φ ∈ Φh with ‖φ‖1 < 1, we have that if λ is an eigenvalue
of the covariance operator Γ(φ), then

σ2
φ

1 + ‖φ‖1
≤ λ ≤

σ2
φ

1− ‖φ‖1
.

Also, we have

‖φ‖22
1 + ‖φ‖1

≤
1− σ2

φ

σ2
φ

≤ ‖φ‖22
1− ‖φ‖1

and 1− ‖φ‖1 ≤ σ2
φ ≤ 1 . (39)

Proof. Recall that ‖ · ‖ denotes the `2 → `2 operator norm. First note that by the definition of φ,
σ2
φΓ
−1(φ)− I = (φi−j)i,j∈Zd , and therefore

‖σ2
φΓ
−1(φ)− I‖ ≤ ‖φ‖1 , (40)

where whe used the bound ‖A‖ ≤ supi∈Zd
∑

j∈Zd |Aij |. This implies that the largest eigenvalue of

Γ(φ) is bounded by σ2
φ/(1− ‖φ‖1) if ‖φ‖1 < 1 and that the smallest eigenvalue of Γ(φ) is at least

σ2
φ/(1 + ‖φ‖1). Considering the conditional regression of Yi given Y−i mentioned above, that is,

Yi = −
∑

1≤|j|∞≤h

φjYi+j + εi

(with εi being standard normal independent of the Yj for j 6= i) and taking the variance of both
sides, we obtain

1− σ2
φ = Var

 ∑
1<|j|∞≤h

φjYi+j

 = φ>Γ(φ)φ ≤ ‖Γ(φ)‖‖φ‖22 ≤
‖φ‖22

1− ‖φ‖1
σ2
φ ,
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and therefore

1− σ2
φ ≤

‖φ‖22
1− ‖φ‖1

σ2
φ .

Rearranging this inequality and using the fact that ‖φ‖22 ≤ ‖φ‖21 ≤ ‖φ‖1, we conclude that σ2
φ ≥

1− ‖φ‖1. The remaining bound
‖φ‖22

1+‖φ‖1 ≤
1−σ2

φ

σ2
φ

is obtained similarly.

Recall that for any v ∈ Zd, γv is the correlation between Yi and Yi+v and is therefore equal
to Γi,i+v. This definition does not depend on the node i since Γ is the covariance of a stationary
process.

Lemma 6. For any h and any φ ∈ Φh, let Y ∼ N (0,Γ(φ)). As long as ‖φ‖1 < 1, the l2 norm of
the correlations satisfies ∑

v 6=0

γ2
v ≤

‖φ‖22
(1− ‖φ‖1)2

+

(
‖φ‖22σ2

φ

(1− ‖φ‖1)2

)2

(41)

Proof. In order to compute ‖γ‖22, we use the spectral density of Y defined by

f(ω1, . . . , ωd) =
1

(2π)d

∑
(v1,...,vd)∈Zd

γv1,...vd exp

(
ι

d∑
i=1

viωi

)
, (ω1, . . . , ωd) ∈ (−π, π]d .

Following (Guyon, 1995, Sect.1.3) or (Rue and Held, 2005, Sect.2.6.5), we express the spectral
density in terms of φ and σ2

φ:

1

f(ω1, . . . , ωd)
=

(2π)d

σ2
φ

1−
∑

v,1≤|v|∞≤h∈Zd
φve

ι〈v,ω〉

 ,

where 〈·, ·〉 denotes the scalar product in Rd. As a consequence,

|f(ω1, . . . , ωd)| ≤ σ2
φ[(2π)d(1− ‖φ‖1)]−1 .

Relying on Parseval formula, we conclude∑
v 6=0

γ2
v = (2π)d

∫
[−π;π]d

[
f(ω1, . . . , ωd)−

1

(2π)d

]2
dω1 . . . dωd

≤
σ4
φ

(2π)d(1− ‖φ‖1)2

∫
[−π;π]d

∣∣∣ 1

(2π)df(ω1, . . . , ωd)
− 1
∣∣∣2dω1 . . . dωd

≤
σ4
φ

(2π)d(1− ‖φ‖1)2

∫
[−π;π]d

∣∣∣ 1

σ2
φ

− 1− 1

σ2
φ

∑
v,1≤|v|∞≤h∈Zd

φve
ι〈v,ω〉

∣∣∣2dω1 . . . dωd

≤
σ4
φ

(2π)d(1− ‖φ‖1)2

(2π)d

(
1

σ2
φ

− 1

)2

+
∑

v,1≤|v|∞

(2π)dφ2
v

σ4
φ


≤

(
1− σ2

φ

1− ‖φ‖1

)2

+
‖φ‖22

(1− ‖φ‖1)2

≤

(
‖φ‖22σ2

φ

(1− ‖φ‖1)2

)2

+
‖φ‖22

(1− ‖φ‖1)2
,
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where we used (39) in the last line.

Lemma 7 (Conditional representation). For any h and any φ ∈ Φh, let Y ∼ N (0,Γ(φ)). Then
for any i ∈ Zd, the random variable εi defined by the conditional regression Yi =

∑
v∈Nh φvYi+v + εi

satisfies that

1. εi is independent of all Xj , j 6= i and Cov(εi, Xi) = Var(εi) = σ2
φ.

2. For any i 6= j, Cov(εi, εj) = −φi−jσ2
φ if |i− j|∞ ≤ h and 0 otherwise.

Proof. The first independence property is a classical consequence of the conditional regression
representation for Gaussian random vectors, see, for example, Lauritzen (1996). Since Var(εi) is
the conditional variance of Yi given Y (−i), it equals [(Γ−1(φ))i,i]

−1 = σ2
φ. Furthermore,

Cov(εi, Yi) = Var(εi) +
∑
v∈Nh

φj Cov(εi, Yi+v) = Var(εi) ,

by the independence of εi and Y (−i). Finally, consider any i 6= j,

Cov(εi, εj) = Cov(εi, Yj)−
∑
v∈Nh

φv Cov(εi, Yj+v) ,

where all the terms are equal to zero with the possible exception of v = i−j. The result follows.

Lemma 8 (Comparison of Γ−1(φ) and Γ−1
S (φ)). As long as ‖φ‖1 < 1, the following properties

hold:

1. If i ∈ Sh or if j ∈ Sh, then (Γ−1
S (φ))i,j = (Γ−1(φ))i,j.

2. If i ∈ Sh and j ∈ ∆h(S), then 1 ≤ (Γ−1
S (φ))j,j ≤ (Γ−1

S (φ))i,i.

3. If i ∈ ∆h(S), then
∑

j∈S:j 6=i(Γ
−1
S (φ))2

i,j ≤
2‖φ‖22

(1−‖φ‖1)3
.

Proof. We prove each part in turn.
Part 1. Consider i ∈ Sh and any j ∈ S. By the Markov property, conditionally to (Yi+k, 1 ≤

|k|∞ ≤ h), Yi is independent of all the remaining variables. Since all vertices i+k with 1 ≤ |k|∞ ≤ h
belong to S, the conditional distribution of Yi given Y (−i) is the same as the conditional distribution
of Yi given (Yj , j ∈ S \ {i}). This conditional distribution characterizes the i-th row of the inverse
covariance matrix Γ−1

S . Also, the conditional variance of Yi given Y (−i) is [(Γ−1(φ))i,i]
−1 and the

conditional variance of Yi given YS is [(Γ−1
S (φ))i,i]

−1. Furthermore, −(Γ−1(φ))i,j/(Γ
−1(φ))i,i is

the j-th parameter of the condition regression of Yi given Y (i), and therefore we conclude that
(Γ−1(φ))i,i = (σ2

φ)−1 = (Γ−1
S (φ))i,i and (Γ−1(φ))i,j/(Γ

−1(φ))i,i = −φi−j = (Γ−1
S (φ))i,j/(Γ

−1
S (φ))i,i.

Part 2. Consider any vertex i ∈ Sh and j ∈ ∆h(S). Since 1/Γ−1
S (φ))j,j and 1/Γ−1

S (φ))j,j are
the conditional variances of Yi and Yj given Yk, k ∈ S \ {j} and Yk, k ∈ S \ {i}, respectively, we
have

1/Γ−1
S (φ))j,j = Var

(
Yj
∣∣Yk : k ∈ S \ {j}

)
≥ Var

(
Yj
∣∣Y (−j))

= Var
(
Yi
∣∣Y (−i)) (by stationarity of Y )

= Var
(
Yi
∣∣Yk : k ∈ S \ {i}

)
(since the neighborhood of i is included in S)

= 1/Γ−1
S (φ))i,i .
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Part 3. Consider i ∈ ∆h(S). The vector (Γ−1
S (φ))i,−i

def
=
(
−(Γ−1

S (φ))i,j/(Γ
−1
S (φ))i,i

)
j∈S:j 6=i is

formed by the regression coefficients of Yi on (Yj , j ∈ S \ {i}). Since the conditional variance of Yi
given (Yj , j ∈ S \ {i}) is at least σ2

φ (by Parts 1 and 2), we get

1− σ2
φ ≥ 1−Var (Yi|Yj : j ∈ S \ {i})

= Var
(
E {Yi|Yj , j ∈ S \ {i}}

)
= Var

 ∑
j∈S\{i}

−
(Γ−1

S (φ))i,j

(Γ−1
S (φ))i,i

Yj


≥ σ4

φ Var
( ∑
j∈S\{i}

−(Γ−1
S (φ))i,jYj

)
= σ4

φ(Γ−1
S (φ))>i,−iΓS(φ)(Γ−1

S (φ))i,−i

≥
σ6
φ

1 + ‖φ‖1
‖(Γ−1

S (φ))i,−i‖22 ,

where the equality in the second line above we use Var(Yj) = 1 and the law of total variance (i.e.,
Var(Y ) = E[V ar(Y |B)] + V ar(E[Y |B])) and in the last line we use that the smallest eigenvalue of
Γ(φ) (and also of ΓS(φ)) is larger than σ2

φ/(1 + ‖φ‖1) (Lemma 5). Rearranging this inequality and
using the fact that ‖φ‖1 < 1, we arrive at

‖(Γ−1
S (φ))i,−i‖22 ≤

1− σ2
φ

σ6
φ

(1 + ‖φ‖1) ≤ 2
1− σ2

φ

σ6
φ

≤ 2‖φ‖22
σ4
φ(1− ‖φ‖1)

(by (39))

≤ 2‖φ‖22
(1− ‖φ‖1)3

(using Lemma 5).

Lemma 9. For any φ1, φ2 ∈ Φh, define

Bφ1,φ2 :=

(
det(Γ−1

S (φ1)) det(Γ−1
S (φ2))

det(Γ−1
S (φ1) + Γ−1

S (φ2)− IS)

)1/2

.

(Note that VS defined in Proposition 1 equals the expected value of Bφ1,φ2 when φ1 and φ2 are drawn
independently from the distribution π.) Assuming that ‖φ1‖1 ∨ ‖φ2‖1 < 1/5, we have

logBφ1,φ2 ≤
1

2
|S|〈φ1, φ2〉+ 8QS ,

where

QS := |S|
2∑

s1,s2,s3=1

∣∣ ∑
j,k∈Nh

φs1,jφs2,kφs3,k−j
∣∣+ 15|S|(‖φ1‖32 ∨ ‖φ2‖32) + |∆h(S)|(‖φ1‖22 ∨ ‖φ2‖22)

+ 28|∆2h(S)| (|∆2h(S)| ∨ (|Nh|+ 1))1/2 (‖φ1‖32 ∨ ‖φ2‖32) .
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Proof. Since for any φ, the spectrum of Γ−1
S (φ) lies between the extrema of the spectrum of Γ−1(φ),

by Lemma 5, we have

1− ‖φ‖1
σ2
φ

− 1 ≤ λmin
(
Γ−1
S (φ)− IS

)
≤ λmax

(
Γ−1
S (φ)− IS

)
≤ 1 + ‖φ‖1

σ2
φ

− 1 ,

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a matrix A. Since
σ2
φ ≤ Var (Yi) = 1, the left-hand side is larger than −‖φ‖1, while relying on (39), we derive

1 + ‖φ‖1
σ2
φ

− 1 ≤ (‖φ‖1 + 1)

[
1 +

‖φ‖22
1− ‖φ‖1

]
− 1 ≤ 2‖φ‖1

1− ‖φ‖1
.

Consequently, as long as ‖φ‖1 < 1/5, the spectrum of Γ−1
S (φ) lies in (4

5 ,
3
2). This allows us to use

the Taylor series of the logarithm, which for a matrix A with spectrum in (1
2 , 2), gives∣∣∣∣log

(
det(A)

)
− Tr

[
A− IS

]
+

1

2
Tr
[(

A− IS
)2]∣∣∣∣ ≤ 8

3

∣∣∣Tr
[(

A− IS
)3]∣∣∣ .

Applying this expansion to Γ−1
S (φ1), Γ−1

S (φ2) and Γ−1
S (φ1) + Γ−1

S (φ2)− IS ,

2 logBφ1,φ2 ≤ V1 +
16

3
V2 + 8V3 + 8V4 ,

V1 := Tr
[(

Γ−1
S (φ1)− IS

)(
Γ−1
S (φ2)− IS

)]
,

V2 :=
∣∣∣Tr

[(
Γ−1
S (φ1)− IS

)3]∣∣∣+
∣∣∣Tr

[(
Γ−1
S (φ2)− IS

)3]∣∣∣ ,
V3 :=

∣∣∣Tr
[(

Γ−1
S (φ1)− IS

)(
Γ−1
S (φ2)− IS

)(
Γ−1
S (φ1)− IS

)]∣∣∣ ,
V4 :=

∣∣∣Tr
[(

Γ−1
S (φ2)− IS

)(
Γ−1
S (φ1)− IS

)(
Γ−1
S (φ2)− IS

)]∣∣∣ .
Control of V1. We use the fact that

Tr
[(

Γ−1
S (φ1)− IS

)(
Γ−1
S (φ2)− IS

)]
=
∑
i,j∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ2))i,j − δi,j

)
.

To bound the right-hand side, first consider any node i ∈ Sh in the h-interior of S. By the first part
of Lemma 8, the i-th row of Γ−1

S (φ) equals the restriction to S of the i-th row of Γ−1(φ). Using
the definition of φ1, φ2, we therefore have∑

j∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ2))i,j − δi,j

)
(42)

= (Γ−1(φ1))i,i(Γ
−1(φ2))i,i〈φ1, φ2〉+ ((Γ−1(φ1))i,i − 1)((Γ−1(φ2))i,i − 1)

=
〈φ1, φ2〉
σ2
φ1
σ2
φ2

+
(1− σ2

φ1
)(1− σ2

φ2
)

σ2
φ1
σ2
φ2

= 〈φ1, φ2〉+ 〈φ1, φ2〉
1− σ2

φ1
σ2
φ2

σ2
φ1
σ2
φ2

+
(1− σ2

φ1
)(1− σ2

φ2
)

σ2
φ1
σ2
φ2

≤ 〈φ1, φ2〉+
3

2

‖φ1‖42 + ‖φ2‖42
(1− ‖φ1‖1)(1− |φ2‖1)

,
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using Lemma 5 in the last line. Next, consider a node i ∈ ∆h(S), near the boundary of S. Relying
on Lemmas 5 and 8, we get

∑
j∈S

(
(Γ−1

S (φ1))i,j − δi,j
)2 ≤ 2‖φ1‖22

(1− ‖φ1‖1)3
+
(
1/σ2

φ1 − 1
)2

≤ 2‖φ1‖22
(1− ‖φ1‖1)3

+
‖φ1‖42

(1− ‖φ1‖1)2
≤ 3‖φ1‖22

(1− ‖φ1‖1)3
, (43)

since we assume that ‖φ‖1 < 1. By the Cauchy-Schwarz inequality,

∑
j∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ2))i,j − δi,j

)
≤ 3

‖φ1‖22 ∨ ‖φ2‖22
(1− ‖φ1‖1 ∨ ‖φ2‖1)3

. (44)

Summing (42) over i ∈ Sh and (44) over i ∈ ∆h(S), we get

V1 ≤ |S|〈φ1, φ2〉+
3

2
|S| ‖φ1‖42 + ‖φ2‖42

(1− ‖φ1‖1)(1− ‖φ2‖1)
+ 3|∆h(S)| ‖φ1‖22 ∨ ‖φ2‖22

(1− ‖φ1‖1 ∨ ‖φ2‖1)3
.

Control of V2. We proceed similarly as in the previous step. Note that

Tr
[(

Γ−1
S (φ1)− IS

)3]
=

∑
i,j,k∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ1))j,k − δj,k

)(
(Γ−1

S (φ1))k,i − δk,i
)

≤
∑
i∈S

∣∣∣∣∣∣
∑
j,k∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ1))j,k − δj,k

)(
(Γ−1

S (φ1))k,i − δk,i
)∣∣∣∣∣∣ .

First, consider a node i in S \ ∆2h(S). Here, we use ∆2h(S) instead of ∆h(S) so that we may
replace Γ−1

S (φ) below with Γ−1(φ). We use again Lemma 8 to replace (Γ−1
S (φ))i,j by (Γ−1(φ))i,j in

the sum ∣∣∣∑
j∈S

∑
k∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ1))j,k − δj,k

)(
(Γ−1

S (φ1))k,i − δk,i
)∣∣∣

≤
∣∣∣ ∑
j,k∈Nh

−φ1,jφ1,kφ1,k−j
σ6
φ1

∣∣∣+ 3
∑
j∈Nh

|φ1,j |2
1− σ2

φ1

σ6
φ1

+

(
1− σ2

φ1

)3
σ6
φ1

≤
∣∣∣ ∑
j,k∈Nh

−φ1,jφ1,kφ1,k−j
(1− ‖φ1‖1)3

∣∣∣+ 4
‖φ1‖32

(1− ‖φ1‖1)3
,

using Lemma 6 in the last line. Next, consider a node i ∈ ∆2h(S). If i /∈ ∆h(S), then the support
of (Γ−1

S (φ1))i,−i is of size |Nh|. If i ∈ ∆h(S), then ∆2h(S) \ {i} separates {i} from S \∆2h(S) in
the dependency graph and the Global Markov property (Lauritzen, 1996) entails that

Yi ⊥⊥ (Yk, k ∈ S \∆2h(S))|(Yk, k ∈ ∆2h(S) \ {i}) ,
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and therefore the support of (Γ−1
S (φ1))i,−i is of size smaller than |∆2h(S)|. Using the Cauchy-

Schwarz inequality and (43), we get∑
j∈S

∑
k∈S

(
(Γ−1

S (φ1))i,j − δi,j
)(

(Γ−1
S (φ1))j,k − δj,k

)(
(Γ−1

S (φ1))k,i − δk,i
)

≤
∑
j∈S

∣∣(Γ−1
S (φ1))i,j − δi,j

∣∣∥∥(Γ−1
S (φ1))i,. − δi,.

∥∥
2

∥∥(Γ−1
S (φ1))j,. − δj,.

∥∥
2

≤
√
|∆2h(S)| ∨ (|Nh|+ 1)

∥∥(Γ−1
S (φ1))i,. − δi,.

∥∥
2

∥∥(Γ−1
S (φ1))i,. − δi,.

∥∥
2

sup
j∈S

∥∥(Γ−1
S (φ1))j,. − δj,.

∥∥
2

≤
√
|∆2h(S)| ∨ (|Nh|+ 1)33/2 ‖φ1‖32

(1− ‖φ1‖1)9/2
.

In conclusion,

V2 ≤ |S|
∣∣∑

j,k∈Nh φ1,jφ1,kφ1,k−j
∣∣+
∣∣∑

j,k∈Nh φ2,jφ2,kφ2,k−j
∣∣

(1− ‖φ1‖1 ∨ ‖φ2‖1)3
+ 8|S| ‖φ1‖32 ∨ ‖φ2‖32

(1− ‖φ1‖1 ∨ ‖φ2‖1)3

+11|∆2h(S)|(|∆2h(S)| ∨ (|Nh|+ 1))1/2 ‖φ1‖32 ∨ ‖φ2‖32
(1− ‖φ1‖1 ∨ ‖φ2‖1)9/2

.

Control of V3 + V4. Arguing as above, we obtain

V3 + V4 ≤ |S|
∣∣∑

j,k∈Nh φ1,jφ1,kφ2,k−j
∣∣+
∣∣∑

j,k∈Nh φ1,jφ1,kφ2,k−j
∣∣

(1− ‖φ1‖1 ∨ ‖φ2‖1)3
+ 8|S| ‖φ1‖32 ∨ ‖φ2‖32

(1− ‖φ1‖1 ∨ ‖φ2‖1)3

+ 11|∆2h(S)|(|∆2h(S)| ∨ (|Nh|+ 1))1/2 ‖φ1‖32 ∨ ‖φ2‖32
(1− ‖φ1‖1 ∨ ‖φ2‖1)9/2

.

7.4 Proof of Corollary 3

As stated in Lemma 5, all eigenvalues of the covariance operator Γ−1(φ) lie in (1 − ‖φ‖1, 1+‖φ‖1
1−‖φ‖1 ).

Since the spectrum of Γ−1
S (φ) lies between the extrema of the spectrum of Γ−1(φ), and using the

assumption that ‖φ‖1 < 1/2, this entails

‖ΓS(φ)− IS‖ ≤ max

[
2‖φ‖1

1 + ‖φ‖1
,
‖φ‖1

1− ‖φ‖1

]
< 1 , (45)

We now apply Proposition 1 with the probability measure π concentrating on φ. In this case,

VS =
det(Γ−1

S (φ))

det(2Γ−1
S (φ)− IS)1/2

= det(IS − (IS − ΓS(φ))2)−1/2,

and we get

R̄∗ν,φ ≥ 1− 1

2|C|

[∑
S∈C

det(IS − (IS − ΓS(φ))2)−1/2

]1/2

≥ 1− 1

2|C|

[∑
S∈C

exp

(
‖ΓS(φ)− IS‖2F

2(1− ‖ΓS(φ)− IS‖)

)]1/2

≥ 1− 1

2|C|

[∑
S∈C

exp

(
‖ΓS(φ)− IS‖2F
2(1− 2‖φ‖1)

)]1/2

,
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where ‖ · ‖F denotes the Frobenius norm. The second inequality above is obtained by applying the
inequality 1/(1 − λ) ≤ eλ/(1−λ) for 0 ≤ λ < 1 to the eigenvalues of (ΓS(φ) − IS)2, while the third
inequality follows from (45) and the fact that ‖φ‖1 < 1/2. It remains to bound ‖ΓS(φ)− IS‖2F :

‖ΓS(φ)− IS‖2F =
∑

(i,j∈S), i 6=j

Cor2(Yi, Yj)

≤ |S|
∑
v 6=0

γ2
v

≤ 20|S|‖φ‖22 ,

where we used Lemma 6, σ2
φ ≤ 1, and ‖φ‖2 ≤ ‖φ‖1 ≤ 1/2 in the last line.

7.5 Proof of Theorem 1

Recall the definition of the prior π defined just before the statement of the theorem. Taking the
numerical constant C in (26) sufficiently small and relying on condition (25), we have ‖φ‖1 =
r
√
Nh < 1/5. Consequently, the support of π is a subset of the parameter space Φh and we are in

position to invoke Lemma 9.

Let φ1, φ2 be drawn independently according to the distribution π and denote by ξ1 and ξ2 the
corresponding random vectors defined on N′h. By Lemma 9,

logBφ1,φ2 ≤ |S|r2N−1
h 〈ξ1, ξ2〉+ 8QS ,

where

QS ≤ 23|S|r3
√
|Nh|+ |∆h(S)|r2 + 28|∆2h(S)|(|∆2h(S)| ∨ (|Nh|+ 1))1/2r3 .

Since 〈ξ1, ξ2〉 is distributed as the sum of |Nh|/2 independent Rademacher random variables, we
deduce that

VS ≤ cosh

(
r2|S|
|Nh|

)|Nh|/2
exp

(
383(|S|

√
|Nh| ∨ |∆2h(S)|3/2)r3 + 8|∆h(S)|r2

)
≤ exp

(
r4|S|2

4|Nh|
∧ r2|S|

2
+ 383(|S|

√
|Nh| ∨ |∆2h(S)|3/2) + 8|∆h(S)|r2

)
,

since cosh(x) ≤ exp(x) ∧ exp(x2/2) for any x > 0. Combining this bound with Proposition 1, we
conclude that the Bayes risk R̄∗ν,π is bounded from below by

1− 1

2
√
|C|

max
S∈C

exp

(
|S|2r4

4|Nh|
∧ |S|r2

2
+ 383

(
|S|
√
|Nh|+ 1 ∨ |∆2h(S)|3/2

)
r3 + 8|∆h(S)|r2

)
. (46)

If the numerical constant C in Condition (26) is sufficiently small, then |S|
2r4

4|Nh|
∧ |S|r2

2 ≤ 0.5 log(|C|/a).

Also, choosing C0 small enough in condition (26), relying on condition (25) and on |Nh| ≥ 1, we
also have

383
(
|S|
√
|Nh|+ 1 ∨ |∆2h(S)|3/2

)
r3 + 8|∆h(S)|r2 ≤ 0.5 log(|C|/a) .

Thus, we conclude that R̄∗ν,π ≥ 1− a.
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7.6 Proof of Corollary 4

We deduce the result by closely following the proof of Theorem 1. We first prove that 5r
√
|Nh| ≤ 1

is satisfied for n large enough. Starting from (35), we have, for n large enough,

5r
√
|Nh| ≤ 5C

1/2
2

(
|Nh| log(nk )

k

∨ |Nh|3/2√log(nk )

k

)1/2

≤ 5C
1/2
2

(
C1

∨ |Nh|3/2√log(nk )

k

)1/2

,

where we used Condition (34) in the second line. Taking C1 and C2 small enough, we only have to
bound |Nh|3/2

√
log(nk )/k. We distinguish two cases.

• Case 1: |Nh| ≤ log(n/k). Since |Nh| ≤ C1k/ log
(
n
k

)
, it follows that |Nh|3/2

√
log(nk )/k ≤ C1.

• Case 2: |Nh| ≥ log(n/k). Then the second part of Condition (34) enforces log4/5(n/k) ≤
C1k

2/5. Using again the second part of Condition (34) yields

|Nh|3/2
√

log(nk )

k
≤ C3/2

1

log4/5(n/k)

k2/5
≤ C3/2

1 .

As 5r
√
|Nh| ≤ 1, we can use the same prior π as in the proof of Theorem 1 and arrive at the

same lower bound (46) on R∗π. It remains to prove that this lower bound goes to one, namely that

2|S|2r4

|Nh|
∧

(|S|r2) + 765
(
|S|
√
|Nh|+ 1 ∨ |∆2h(S)|3/2

)
r3 + 16|∆2h(S)|r2 − 1

2
log(n/k)→ −∞ ,

where S is a hypercube of size k. Taking the constant C2 small enough in (35) leads to 2k2r4

|Nh|
∧

(kr2) ≤
log(n/k)/4 for n large enough.

kr3
√
|Nh| ≤ C

3/2
2

[
log(n/k)3|Nh|

k

∨ log(n/k)3/2|Nh|5/2

k

]1/2

≤ C3/2
2

(
C

1/2
1 ∨ C5/4

1

)
log(n/k) ,

where we used again the second part of Condition (34). Taking C1 and C2 small enough ensures
that 765kr3

√
|Nh|+ 1 ≤ log(n/k)/8 for n large enough. Finally, it suffices to control |∆2h(S)|3/2r3

since |∆2h(S)|r2 ≤ |∆2h(S)|3/2r3 ∨ 1. Observe that

|∆2h(S)| = `d − (`− 4h)d = `d
[
1− (1− 4h/`)d

]
≤ 4`ddh/` ≤ 4d|Nh|1/dk

d−1
d .

It then follows from Condition (35) that

(d|Nh|1/dk
d−1
d )3/2r3 ≤ C

3/2
2

[
d3/2|Nh|3/(2d)

k3/(2d)
log1/2

(n
k

)∨ d3/2|Nh|3/(2d)+3/4

k3/(2d) log1/4
(
n
k

) ] log
(n
k

)
≤ C

3/2
2

[
C

3/(2d)
1 d3/2 log−1/4

(n
k

)∨
C

6+3d
4d

1

]
log
(n
k

)
where we used again (34) in the second line. Choosing C1 and C2 small enough concludes the proof.
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7.7 Proof of Proposition 2

We leave φ implicit throughout. Define

U ′S = X>S (IS − Γ−1
S )XS − Tr(IS − Γ−1

S ).

Under the null, X is standard normal, so applying the union bound and Lemma 1 gives

P {U > 4} ≤
∑
S∈C

P
{
U ′S > 4‖IS − Γ−1

S ‖F
√

log(|C|) + 4‖IS − Γ−1
S ‖ log(|C|)

}
≤ |C|−1 .

Under the alternative where S ∈ C is anomalous, XS has covariance ΓS , so that we have
X>S (IS−Γ−1

S )XS ∼ Z>(ΓS−IS)Z, where Z is standard normal in dimension |S|. Since Var(Yi) = 1,
the diagonal elements of ΓS − IS are all equal to zero. We apply Lemma 1 to get that

P
[
X>S (IS − Γ−1

S )XS ≤ −2‖ΓS − IS‖F
√

log(|C|)− 2‖ΓS − IS‖ log(|C|)
]
≤ |C|−1 ,

In view of the definition of U , we have P[U > 4] ≥ 1− |C|−1 as soon as

Tr[Γ−1
S − IS ] ≥ 4

[
‖ΓS − IS‖F ∨ ‖Γ−1

S − IS‖F
]√

log(|C|) + 6
[
‖Γ− I‖ ∨ ‖Γ−1 − I‖

]
log(|C|) . (47)

Therefore, it suffices to bound ‖ΓS − IS‖F , ‖Γ−1
S − IS‖F , ‖Γ− I‖, ‖Γ−1 − I‖ and Tr[Γ−1

S − IS ]. In
the sequel, the C denotes a large enough positive constant depending only on η, whose value may
vary from line to line. From Lemma 6, we deduce that

‖ΓS − IS‖2F ≤ C|S|‖φ‖22 .

Lemma 5 implies that

‖Γ− I‖ ∨ ‖Γ−1 − I‖ ≤ C .

We apply Lemma 8 to obtain

‖Γ−1
S − IS‖2F ≤ C|S|‖φ‖22 + |S|(σ−2

φ − 1)2

≤ C|S|‖φ‖22 ,

where we used Lemma 5 in the second line. Finally, we use again Lemmas 8 and 5 to obtain

Tr[Γ−1
S − IS ] = |Sh|

σ2
φ − 1

σ2
φ

+
∑

j∈∆h(S)

(Γ−1
S )j,j − 1

≥ |Sh|
σ2
φ − 1

σ2
φ

≥ C|S|‖φ‖22 .

Consequently, (47) holds as soon as |S|‖φ‖22 ≥ C log(|C|).

7.8 Proof of Theorem 2

We use C,C ′, C ′′ as generic positive constants, whose actual values may change with each appear-
ance.
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Under the null hypothesis. First, we bound the 1−α quantile of T ∗ under the null hypothesis.
Denote ZS := ‖ΠS,hXS,h‖22 so that TS = ZS |Sh|[‖XS,h‖22−ZS ]−1. Since ZS is the squared norm of
the projection of XS,h onto the column space of FS,h, we can express ZS as a least-squares criterion:

ZS = max
φ∈RNh

‖XS,h‖22 −
∑
i∈Sh

(
Xi −

∑
j∈Nh

φjXi+j

)2
.

Given φ ∈ RNh , define the matrix Bφ,S ∈ RS×S such that for any i ∈ Sh, and any j, (Bφ,S)i,i+j = φj ,
and all the remaining entries of Bφ,S are zero. It then follows that

ZS = max
φ∈RNh

Tr
[
Rφ,SXSX

>
S

]
, Rφ,S := (IS −B>φ,S)(IS −Bφ,S)− IS . (48)

Observe that ZS can be seen as the supremum of a Gaussian chaos of order 2. As the collection of
matrices in the supremum of (48) is not bounded, we cannot directly apply Lemma 3. Nevertheless,
upon defining defining Z̃S := max‖φ‖1≤1 Tr

[
Rφ,SXSX

>
S

]
, we have for any t > 0,

P[ZS ≥ t] ≤ P[Z̃S ≥ t] + P[Z̃S 6= ZS ] , (49)

and we can control the deviations of Z̃S using Lemma 3. Observe that for any φ with ‖φ‖1 ≤ 1,
‖IS −Bφ,S‖ ≤ 2, so that ‖Rφ,S‖ ≤ 3. Choose φ̂S among the φ’s achieving the maximum in (48),

and note that P[Z̃S 6= ZS ] = P[‖φ̂S‖1 > 1]. We bound the right-hand side below. In view of
Lemma 3, we also need to bound E[Z̃S ] and E

[
sup‖φ‖1≤1 Tr(Rφ,SXSX

>
S Rφ,S)

]
in order to control

P[Z̃S ≥ t].
Control of P[‖φ̂S‖1 > 1]. When F>S,hFS,h is invertible, φ̂S = (F>S,hFS,h)−1FS,hXS,h. By the Cauchy-
Schwarz inequality,

P
[
‖φ̂S‖1 > 1

]
≤ P

[
‖φ̂S‖2 > |Nh|−1/2

]
≤ P

[
λmin(F>S,hFS,h) ≤ 1

2 |S
h|
]

+ P
[
‖FS,hXS,h‖2 ≥

|Sh|
2|Nh|1/2

]
≤ P

[
λmin(F>S,hFS,h) ≤ 1

2 |S
h|
]

+ P
[
‖FS,hXS,h‖∞ ≥

|Sh|
2|Nh|

]
. (50)

First, we control the smallest eigenvalue of F>S,hFS,h. Under the null hypothesis, the vectors Fi

follow the standard normal distribution, but F>S,hFS,h is not a Wishart matrix since the vectors Fi

are correlated. However, F>S,hFS,h decomposes as a sum of |Nh|+ 1 (possibly dependent) standard
Wishart matrices. Indeed, define

Si = Sh ∩ {i+ (2h+ 1)u, u ∈ Zd}, i ∈ Nh ∪ {0} , (51)

and then Ai =
∑

j∈Si FjF
>
j . The vectors (Fj , j ∈ Si) are independent since the minimum `∞

distance between any two nodes in Si is at least 2h+ 1, so that Ai is standard Wishart. Denoting
ni = |Si|, we are in position to apply Lemma 4, to get

P
[
λmin(Ai) ≤ ni − 2

√
|Nh|ni − 2

√
2xni

]
≤ e−x , ∀x > 0 .

Since the {Si : i ∈ Nh ∪ {0}} forms a partition of Sh, we have F>S,hFS,h =
∑

i∈Nh∪{0}Ai, and

in particular, λmin(F>S,hFS,h) ≥
∑

i λmin(Ai). Using this, the tail bound for λmin(Ai) with x ←
x+ log(|Nh|+ 1), some simplifying algebra, and the union bound, we conclude that, for all x > 0,

P
[
λmin(F>S,hFS,h) ≤ |Sh| − 5(|Nh|+ 1)

√
|Sh| − 3

√
(|Nh|+ 1)|Sh|x

]
≤ e−x , (52)
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since ∑
i∈Nh∪{0}

(
ni − 2

√
|Nh|ni − 2

√
2xni

)
≥

∑
i∈Nh∪{0}

ni − 2(
√
|Nh|+

√
2x)

∑
i∈Nh∪{0}

√
ni ,

with
∑

i∈Nh∪{0} ni = |Sh|, and
∑

i∈Nh∪{0}
√
ni ≤

√
|Sh|(|Nh|+ 1), by the Cauchy-Schwarz inequal-

ity. Taking x = C|Sh|/(|Nh| + 1) in the above inequality for a sufficiently small constant C and
relying on Condition (29), we get

P
{
λmin(F>S,hF

>
S,h) ≤ 1

2 |S
h|
}
≤ exp

(
−C|Sh|/(|Nh|+ 1)

)
.

We now turn to bounding ‖FS,hXS,h‖∞. Each component of FS,hXS,h is of the form Qv :=∑
i∈Sh XiXi+v for some v ∈ Nh. Note that Qv is a quadratic form of |S| standard normal variables,

and the corresponding symmetric matrix has zero trace, Frobenius norm equal to
√
|Sh|/2, and

operator norm smaller than 1 by diagonal dominance. Combining Lemma 1 with a union bound,
we get

P
{
‖FS,hXS,h‖∞ ≥

√
2|Sh|(x+ |Nh|) + 2(x+ |Nh|)

}
≤ 2e−x ,∀x > 0 .

Taking x = C|Sh|/|Nh|2 in the above inequality for a sufficiently small constant C and using once
again Condition (29) allows us to get the bound

P
{
‖FS,hXS,h‖∞ ≥

|Sh|
2|Nh|

}
≤ exp[−C|Sh|/|Nh|2] .

Plugging these bounds into (50), we conclude that

P
{
‖φ̂S‖1 > 1

}
≤ 3 exp

(
−C |S

h|
|Nh|2

)
. (53)

Control of E[Z̃S ]. Since

Z̃S ≤ ZS = ‖ΠS,hXS,h‖22 ≤ ‖(F>S,hFS,h)−1‖‖FS,hXS,h‖22 ≤ ‖XS,h‖22 ,

we have, for any a > 0,

E[Z̃S ] ≤ aE
[
‖FS,hXS,h‖22

]
+ E

[
‖XS,h‖22I{‖(F>S,hFS,h)−1‖ ≥ a}

]
≤ aE

[
‖FS,hXS,h‖22

]
+

√
P
{
‖(F>S,hFS,h)−1‖ ≥ a

}
E
[
‖XS,h‖42

]
,

where we used the Cauchy-Schwarz inequality in the second line. Since, under the null, XS ∼
N (0, IS), it follows that E

[
‖FS,hXS,h‖22

]
= |Nh(S)||Sh| and E

[
‖XS,h‖42

]
= |Sh|(|Sh|+2). Gathering

this, the deviation inequality (52) with x = C|Sh|/|Nh|2 with a small constant C > 0, and Condition
(29), and choosing as threshold a = (|Sh|(1− |Nh|−1/2)−1, leads to

E[Z̃S ] ≤ |Nh|
1− |Nh|−1/2

+
√

3|Sh|
√

P
{
λmin(F>S,hFS,h) ≤ 1/a

}
≤ |Nh|+ C ′|Nh|1/2 +

√
3|Sh| exp

(
−C |S

h|
|Nh|2

)
≤ |Nh|+ C|Nh|1/2 . (54)
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Control of E
[

sup‖φ‖1≤1 Tr(Rφ,SXSX
>
S Rφ,S)

]
. As explained above, ‖Rφ,S‖ ≤ 3 and we are there-

fore able to bound this expectation in terms of E[Z̃S ] as follows:

E

[
sup
‖φ‖1≤1

Tr(Rφ,SXSX
>
S Rφ,S)

]
≤ 3E

[
Z̃S
]
≤ C|Nh| , (55)

where we used (54) in the last inequality.

Combining the decomposition (49) with Lemma 3 and (53), (54) and (55), we obtain

P
{
ZS ≥ |Nh|+ C

(
|Nh|1/2 +

√
|Nh|t+ t

)}
≤ e−t + 3 exp

(
−C ′ |S

h|
|Nh|2

)
, ∀t > 0 .

Since

TS =
|Sh|ZS

‖XS,h‖22 − ZS
, where ‖XS,h‖22 follows a χ2 distribution with |Sh| degrees of freedom ,

from Lemma 1, we derive

P
[
‖XS,h‖22 ≥ |Sh| − 2

√
|Sh|t− 2t

]
≤ e−t ,

for any t > 0, and from these two deviation inequalities, we get, for all t ≤ C ′′|Sh|,

P

TS ≥ |Nh|+ C
(
|Nh|1/2 +

√
|Nh|t+ t

)
1− C

[√
t
|Sh| ∨

|Nh|
|Sh|

]
 ≤ 2e−t + 3 exp

[
−C ′ |S

h|
|Nh|2

]
.

Finally, we take a union bound over all S ∈ C and invoke again Condition (29) to conclude that,
for any t ≤ C ′′|Sh|,

P
{

max
S∈C

TS ≥ |Nh|+ C
(√
|Nh|(log(|C|) + 1 + t) + log(|C|) + t

)}
≤ 2e−t + 3|C| exp

(
−C ′ |S

h|
|Nh|2

)
.

To conclude, we let t = log(1/(4α)) in the above inequality, and use the condition on α in the
statement of the theorem together with Condition (29), to get the following control of T ∗ under
the null hypothesis:

P
{

max
S∈C

TS ≥ |Nh|+ C
(√
|Nh|(log(|C|) + 1 + log(α−1)) + log(|C|) + log(α−1)

)}
≤ α .

Under the alternative hypothesis. Next we study the behavior of the test statistic T ∗ under
the assumption that there exists some S ∈ C such that XS = YS ∼ N (0,ΓS(φ)). Since T ∗ ≥ TS ,
it suffices to focus on this particular TS . For any i ∈ Sh, recall that Yi = φ>Fi + εi where
Fi = (Yi+v : 1 ≤ |v|∞ ≤ h) and εi is independent of Fi. Hence, ZS decomposes as

ZS = ‖ΠS,hYS,h‖22
= ‖FS,hφ+ ΠS,hεS,h‖22
= ‖FS,hφ‖22 + 2φ>F>S,hεS,h + ‖ΠS,hεS,h‖22 = (I) + (II) + (III) .

To bound the numerator of TS , we bound each of these three terms. (I) and (II) are simply quadratic
functions of multivariate normal random vectors and we control their deviations using Lemma 1.
In contrast, (III) is more intricate and we use an ad-hoc method. In order to structure the proof,
we state four lemmas needed in our calculations. We provide proofs of the lemmas further down.
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Lemma 10. Under condition (29), there exists a numerical constant C > 0 such that

P
{

(I) ≥ |Sh|‖φ‖22
2(1 + ‖φ‖1)

σ2
φ

}
≥ 1− exp

(
−C |S

h|
|Nh|

)
. (56)

Lemma 11. For any t > 0,

P
{

(II) ≥ −2σφ‖φ‖2
√

2|Sh|‖Γ(φ)‖(2 + ‖φ‖1)t− 12
[
‖Γ(φ)‖ ∨ (1 + ‖φ‖1)σ2

φ

]
t

}
≥ 1− e−t ,(57)

P
{

(II) ≥ −2
√

2σφ
√

(|Nh|+ 1)[log(|Nh|+ 1) + t]‖FS,hφ‖2
}
≥ 1− e−t .(58)

Recall that γj = (Γ(φ))0,j denotes the covariance between Y0 and Yj .

Lemma 12. Denote by ΓNh(φ) the covariance matrix of (Yi, i ∈ Nh). For any t ≤ |Sh|,

λmax

(
ΓNh(φ)−1/2

F>S,hFS,h

|Sh|
ΓNh(φ)−1/2

)
≤ 1 + 4‖Γ(φ)‖‖Γ−1(φ)‖ |Nh|

|Sh|1/2
(√

t+ log(|Nh|)
)

(59)

with probability larger than 1− 2e−t. Also, for any t ≥ 1,

‖ΓNh(φ)−1/2F>S,hεS,h‖22
|Sh|σ2

φ

≥ |Nh| − C

(
|Nh|‖φ‖1 + ‖Γ−1(φ)‖‖φ‖22 +

|Nh|5/2 + |Nh|2(
∑

j 6=0 γ
2
j )√

|Sh|

)
t2

(60)
with probability larger than 1− 2e−t.

To bound the denominator of TS , we start from the inequality

‖YS,h‖22 − ‖ΠS,hYS,h‖22 = ‖εS,h‖22 − ‖ΠS,hεS,h‖22 ≤ ‖εS,h‖22

and then use the following result.

Lemma 13. Under condition (29), we have

P
{
‖εS,h‖2 ≤ σ2

φ|Sh|(1 + |Nh|−1/2)
}
≥ 1− exp

(
−C |S

h|
|Nh|2

)
. (61)

With these lemmas in hand, we divide the analysis into two cases depending on the value of
‖φ‖22. For small ‖φ‖22, the operator norm of the covariance operator Γ(φ) remains bounded, which
simplifies some deviation inequalities. For large ‖φ‖22, we are only able to get looser bounds which
are nevertheless sufficient as in that case ‖φ‖22 is far above the detection threshold.

Case 1: ‖φ‖22 ≤ (4|Nh|)−1. This implies that ‖φ‖1 ≤ 1/2 and also that ‖Γ(φ)‖ ≤ 2σ2
φ by Lemma 5.

Combining (56) and (57) together with the inequality 2xy ≤ x2 + y2, we derive that for any t > 0,

(I) + (II)

σ2
φ

≥ C
(
|Sh|‖φ‖22 − t

)
(62)

with probability larger than 1− e−t − exp
(
−C |Sh|

(|Nh|+1)

)
. Turning to the third term, we have

(III)

σ2
φ

≥ λmax

(
ΓNh(φ)−1/2

F>S,hFS,h

|Sh|
ΓNh(φ)−1/2

)−1 ‖ΓNh(φ)−1/2F>S,hεS,h‖22
σ2
φ|Sh|

.
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Let a > 0 be a positive constant whose value we determine later. For any t > 0, with probability
larger than 1− 4e−t, we have

(III)

σ2
φ

≥
|Nh| − C

(
|Nh|‖φ‖1 + ‖Γ−1(φ)‖‖φ‖22 +

|Nh|5/2+|Nh|2(
∑
j 6=0 γ

2
j )√

|Sh|

)
t2

1 + 4‖Γ(φ)‖‖Γ−1(φ)‖ |Nh|√
|Sh|

(√
t+ log(|Nh|)

)
≥ |Nh| − C

(
|Nh|3/2‖φ‖2 + ‖φ‖22 +

|Nh|5/2 + |Nh|2(
∑

j 6=0 γ
2
j )√

|Sh|

)
t2 − 16

|Nh|√
|Sh|

(√
t+ log(|Nh|)

)
≥ |Nh| − C

(
|Nh|3/2‖φ‖2 +

|Nh|5/2√
|Sh|

)
t2 − C ′ |Nh| log(|Nh|)√

|Sh|
(
1 + t4

)
≥ |Nh| − a|Sh|‖φ‖22 − C

(
a−1 |Nh|3

|Sh|
t4 +

|Nh|5/2√
|Sh|

t2 +
|Nh| log(|Nh|)√

|Sh|
(
1 + t4

))
≥ |Nh| − a|Sh|‖φ‖22 − C

√
|Nh|

(
1 + (a−1 + 1)t4

)
.

Here in the first line, we used Lemma 12. In the second line, we used the fact that (1−y)/(1+x) ≥
1 − x − y for all x, y ≥ 0, ‖φ‖1 ≤

√
|Nh|‖φ‖2 by the Cauchy-Schwarz inequality, and ‖Γ(φ)‖ ∨

‖Γ−1(φ)‖ ≤ 2. In the third line, we applied the inequality
∑

j 6=0 γ
2
j ≤ 4‖φ‖42 + 16‖φ‖22 ≤ 20, which

is a consequence of ‖φ‖1 ≤ 1/2 and Lemma 6. The last line is a consequence of Condition (29).
Then, we take a = C/2 with C as in (62) and apply Lemma 13 to control the denominator of TS .
This leads to

P
{
TS ≥ C|Sh|‖φ‖22 + |Nh| − C ′

√
Nh(1 ∨ t4)

}
≥ 1− 4e−t − 2e

−C′′ |S
h|

|Nh|2 .

Taking t = log(8/β) and letting C2 be small enough in (30), we get

P
{
TS ≥ C|Sh|‖φ‖22 + |Nh| − C ′

√
Nh(1 + log4(β−1))

}
≥ 1− β ,

proving (32) in Case 1.

Case 2: ‖φ‖22 ≥ (4|Nh|)−1. This condition entails

2‖φ‖22
1 + ‖φ‖1

≥ ‖φ‖2√
|Nh|

.

Since the term (III) is non-negative, we can start from the lower bound ZS ≥ (I) + (II). We derive
from Lemma 10 and the above inequality that

P

{
(I) ≥ |Sh|

σ2
φ‖φ‖2

4
√
|Nh|

}
≥ 1− exp

(
−C |S

h|
|Nh|

)
. (63)

Taking t = C|Sh|/|Nh|2 in (58) for a constant C sufficiently small, and using Condition (29), we
get that (II) ≥ −3

√
Cσφ

√
|Sh|/|Nh|

√
(I) with probability at least 1− e−t. Also, ‖φ‖22 ≥ (4|Nh|)−1

implies that the right-hand side exceeds −1
2(I) when the event in (63) holds and C is small enough.

Hence, we get

P

{
(I) + (II) ≥ |Sh|

σ2
φ‖φ‖2

8
√
|Nh|

}
≥ 1− 2 exp

(
− C |S

h|
|Nh|2

)
.
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Finally, we combine this bound with (61) and the condition ‖φ‖22 ≥ (4|Nh|)−1, to get

P
{
TS ≥

|Sh|
32|Nh|

}
≥ 1− 3 exp

(
−C |S

h|
|Nh|2

)
≥ 1− β,

where we used the condition on β. In view of Condition (29), we have proved (32). This concludes
the proof of Theorem 2. It remains to prove the auxiliary lemmas.

7.8.1 Proof of Lemma 10

Recall the definition of Si in (51). Let FSi denote the matrix with row vectors Fj , j ∈ Si. We have

(I) = ‖FS,hφ‖22 =
∑

i∈Nh∪{0}

‖FSiφ‖22 .

For any u ∈ RSi ,

Var

∑
j∈Si

ujFSiφ

 = Var

∑
j∈Si

∑
v∈Nh

ujφvYv+j

 ≥ ‖u‖22‖φ‖22λmin(Γ(φ)) ,

since the indices (v + j : v ∈ Nh, j ∈ Si) are all distinct. Since λmin(Γ(φ)) ≥ σ2
φ

1+‖φ‖1 by Lemma 5,
1+‖φ‖1
σ2
φ‖φ‖

2
2
‖φ>FSi‖22 is stochastically lower bounded by a χ2 distribution with |Si| degrees of freedom.

By Lemma 1 and the union bound, we have that for any t > 0,

(I) ≥ ‖φ‖22
1 + ‖φ‖1

σ2
φ

∑
i∈Nh∪{0}

|Si| − 2
√
|Si|[log(|Nh|+ 1) + t]

≥ ‖φ‖22
1 + ‖φ‖1

σφ2

(
|Sh| − 2

√
|Sh|(|Nh|+ 1)[log(|Nh|+ 1) + t]

)
,

with probability larger than 1 − e−t. Finally we set t = |Sh|
32(|Nh|+1) and use Condition (29) to

conclude.

7.8.2 Proof of Lemma 11

We first prove (57). Denote by Σ̃φ,S the covariance matrix of the random vector (ε>φ,S , φ
>F>S,h) of

size 2|Sh|. Let R be the block matrix defined by

R =

(
0 ISh

ISh 0

)
.

Letting Z be a standard Gaussian vector of size 2|Sh|, we have 2φ>F>S,hεS,h ∼ Z>Σ̃
1/2
φ,SRΣ̃

1/2
φ,SZ .

From Lemma 1 we get that for all t > 0, with probability at least 1− e−t,

2φ>F>S,hεS,h ≤ Tr[Σ̃
1/2
φ,SRΣ̃

1/2
φ,S ]− 2‖Σ̃1/2

φ,SRΣ̃
1/2
φ,S‖F

√
t− 2‖Σ̃1/2

φ,SRΣ̃
1/2
φ,S‖t ,

≤ −2‖Σ̃1/2
φ,SRΣ̃

1/2
φ,S‖F

√
t− 2‖Σ̃φ,S‖t , (64)
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where we used the fact that Tr[Σ̃
1/2
φ,SRΣ̃

1/2
φ,S ] = E[φ>F>S,hεS,h] = 0 and that ‖R‖ = 1. In order to

bound the Frobenius norm above, we start from the identity

‖Σ̃1/2
φ,SRΣ̃

1/2
φ,S‖2F = Var[2φ>F>S,hεS,h] = E

[
(2φ>F>S,hεS,h)2

]
= 4

∑
i,j∈Sh

E[εiεj(φ
>Fi)(φ

>Fj)] ,

with εi being the ith component of εS,h. For i = j, the expectation of the right-hand side is
σ2
φ E[(φ>Fi)

2], while if the distance between i and j is larger than h, then εi and (εj , Fi, Fj) are
independent and the expectation of the right-hand side is zero. If 1 ≤ |i − j| ≤ h, then we use
Isserlis’ theorem, together with the fact that εi ⊥ Fi, to obtain

|E[εiεj(φ
>Fi)(φ

>Fj)]| =
∣∣E[εiεj ]E[(φ>Fi)(φ

>Fj)] + E[εiφ
>Fj ]E[εjφ

>Fi]
∣∣

≤ σ2
φ|φi−j |E[(φ>Fi)

2] + φ2
j−iσ

2
φ .

Putting all the terms together, we obtain

‖Σ̃1/2
φ,SRΣ̃

1/2
φ,S‖2F ≤ 4|Sh|σ2

φ

{
E[(φ>Fi)

2](1 + ‖φ‖1) + ‖φ‖22
}

≤ 4σ2
φ|Sh|‖φ‖22‖Γ(φ)‖(2 + ‖φ‖1) ,

using the fact that ‖Γ(φ)‖ ≥ 1.
Turning to ‖Σ̃φ,S‖, denote Γ(φ)ε the covariance of the process (εi, i ∈ Zd). By Lemma 7,

(Γ(φ)ε)i,j = [−φi−j + 1Ii=j ]σ
2
φ, and it follows that ‖Γ(φ)ε‖ ≤ (1 + ‖φ‖1)σ2

φ. Then, for all vectors

u, v ∈ RSh ,

Var

∑
i∈Sh

uiφ
>Fi +

∑
i∈Sh

viεi

 = Var

∑
i∈Sh

uiYi +
∑
i∈Sh

(vi − ui)εi


≤ 2 Var

∑
i∈Sh

uiYi

+ 2 Var

∑
i∈Sh

(vi − ui)εi


≤ 2‖u‖22‖Γ(φ)‖+ 2‖u− v‖22‖Γ(φ)ε‖
≤ 6

(
‖u‖22 + ‖v‖22

)
[‖Γ(φ)‖ ∨ ‖Γ(φ)ε‖] .

Consequently, ‖Σ̃φ,S‖ ≤ 6[‖Γ(φ)‖ ∨ ‖Γ(φ)ε‖] ≤ 6[‖Γ(φ)‖ ∨ (1 + ‖φ‖1)σ2
φ].

We conclude that (57) holds by virtue of the two bounds we obtained for the two terms in (64).

Turning to (58), we decompose (II) into 2
∑

i∈Nh∪{0} φ
>F>SiεSi . For any j1 6= j2 ∈ Si, |j1−j2|∞ ≥

2h + 1 and therefore εj1 is independent of (Yj2+v, v ∈ Nh ∪ {0}). Since εj2 and Fj2φ are linear
combinations of this collection, we conclude that εj1 ⊥ (ε>j2 , φ

>F>j2 ). Consequently, εSi/σφ follows a
standard normal distribution and is independent of FSiφ. By conditioning on FSiφ and applying
a standard Gaussian concentration inequality, we get

P
{
|φ>F>SiεSi | ≤ σφ‖FSiφ‖2

√
2t
}
≤ e−t ,

for any t > 0. We then take a union bound over all i ∈ Nh ∪ {0}. For any t > 0,

(II) ≥ −2
√

2σφ
√

log(|Nh|+ 1) + t
∑

i∈Nh∪{0}

‖φ>FSi‖2

≥ −2
√

2σφ
√

log(|Nh|+ 1) + t
√
|Nh|+ 1‖FS,hφ‖2 ,

with probability larger than 1− e−t.
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7.8.3 Proof of Lemma 12

Proof of (59). Fix (v1, v2) ∈ Nh and consider the random variable

(F>S,hFS,h)v1,v2 =
∑
i∈Sh

Yi+v1Yi+v2 = Y >S RYS = V >ΓS(φ)1/2RΓ
1/2
S (φ)V ,

which constitutes a definition for the symmetric matrix R, and V ∼ N (0, IS). Observe that
‖R‖2F = |Sh| and ‖R‖ ≤ 1 as the l1 norm of each row of R is smaller than one. We derive

from Lemma 1, and the fact that ‖ΓS(φ)1/2RΓ
1/2
S (φ)‖2F ≤ ‖R‖2F ‖Γ

1/2
S (φ)‖4 ≤ |Sh|‖Γ(φ)‖2 and

‖ΓS(φ)1/2RΓ
1/2
S (φ)‖ ≤ ‖R‖‖ΓS(φ)‖ ≤ ‖Γ(φ)‖, that for any t > 0,

P
{∣∣(F>S,hFS,h)v1,v2 − |Sh|γv1,v2

∣∣ ≤ 2‖Γ(φ)‖
√
|Sh|t+ 2‖Γ(φ)‖t

}
≤ 2e−t .

Then we bound the `2 operator norm of |Sh|−1F>S,hFS,h − ΓNh(φ) by its `1 operator norm and
combine the above deviation inequality with a union bound over all (v1, v2) ∈ Nh. Thus, for any
t ≤ |Sh|, ∥∥∥∥∥F>S,hFS,h

|Sh|
− ΓNh(φ)

∥∥∥∥∥ ≤ sup
v1∈Nh

∑
v2∈Nh

∣∣∣∣∣(F>S,hFS,h)v1,v2

|Sh|
− γv1,v2

∣∣∣∣∣
≤ 2‖Γ(φ)‖ |Nh|

|Sh|1/2

(√
log |Nh|+ t+

log |Nh|+ t√
|Sh|

)

≤ 4‖Γ(φ)‖ |Nh|
|Sh|1/2

(√
t+ log(|Nh|)

)
,

with probability larger than 1− 2e−t. Hence, under this event,

λmax

(
ΓNh(φ)−1/2

F>S,hFS,h

|Sh|
ΓNh(φ)−1/2

)
≤ 1 + 4‖Γ(φ)‖‖Γ−1(φ)‖ |Nh|

|Sh|1/2
(√

t+ log(|Nh|)
)
,

since ‖ΓNh(φ)−1‖ ≤ ‖Γ−1(φ)‖. This concludes the proof of (59).

Proof of (60). Turning to the second deviation bound, we use the following decomposition

‖ΓNh(φ)−1/2F>S,hεS,h‖22 =
∑
i∈Sh

ε2i ‖ΓNh(φ)−1/2Fi‖22 +
∑

(i,j), i 6=j

εiεjF
>
j ΓNh(φ)−1Fi =: A+B ,

with εi being the ith entry of εS,h. Since both A and B are Gaussian chaos variables of order 4, we
apply Lemma 2 to control their deviations. For any t > 0,

P
{
A+B ≥ E[A+B]− C

(
Var1/2(A) + Var1/2(B)

)
t2
}
≤ 2e−t , (65)

using the fact that Var1/2(A + B) ≤ Var1/2(A) + Var1/2(B). Thus, it suffices to compute the
expectation and variance of A and B.

First, we have E[A] = |Sh||Nh|σ2
φ, by independence of εi and Fi, and from this we get

Var(A) =
∑
i,j∈Sh

(
E
[
ε2i ε

2
j‖ΓNh(φ)−1/2Fi‖22‖ΓNh(φ)−1/2Fj‖22

]
− σ4

φ|Nh|2
)

=:
∑
i,j∈Sh

Ai,j .
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If |i− j|∞ ≤ h, we may use the Cauchy-Schwarz inequality to get

|Ai,j | ≤ E
[
ε4i ‖ΓNh(φ)−1/2Fi‖42

]
= 3σ4

φ|Nh|(|Nh|+ 2) ,

again by independence of εi and ‖ΓNh(φ)−1/2Fi‖22. If |i − j|∞ > h, then εi is independent of
(Fi, Fj , εj) and εj is independent of (Fi, Fj , εi), so we get

Ai,j
σ4
φ

= E
[
‖ΓNh(φ)−1/2Fi‖22‖ΓNh(φ)−1/2Fj‖22

]
− |Nh|2

=
∑

v1,v2,v3,v4∈Nh

(ΓNh(φ)−1)v1,v2(ΓNh(φ)−1)v3,v4 [γv1−v2γv3−v4 + γi+v1−j−v3γi+v2−j−v4 + γi+v1−j−v4γi+v3−j−v2 ]

−|Nh|2

=
∑

v1,v2,v3,v4∈Nh

(ΓNh(φ)−1)v1,v2(ΓNh(φ)−1)v3,v4 [γi+v1−j−v2γi+v3−j−v4 + γi+v1−j−v4γi+v3−j−v2 ]

where we apply Isserlis’ theorem in the second line and use the definition of ΓNh(φ) in the last line.
By symmetry, we get

|Ai,j |
σ4
φ

≤ 2‖ΓNh(φ)−1‖2∞
∑

v1,v2,v3,v4∈Nh

|γi+v1−j−v3γi+v2−j−v4 |

≤ 2‖ΓNh(φ)−1‖2|Nh|
∑

v1,v2∈Nh

γ2
i−j+v1−v2

≤ 2‖Γ−1(φ)‖2|Nh|2
∑
v∈N2h

γ2
i−j+v ,

using the Cauchy-Schwarz inequality in the second line. Here ‖A‖∞ denotes the supremum norm
of the entries of A. Then, summing over all j lying at a distance larger than h from i,∑

j∈Sh, |j−i|∞>h

|Ai,j |
σ4
φ

≤ 2‖Γ−1(φ)‖2|Nh|2
∑

j∈Sh, |j−i|∞>h

∑
v∈N2h

γ2
i−j+v

≤ 2d+1‖Γ−1(φ)‖2|Nh|3
∑

j∈Zd\{0}

γ2
j .

Putting the terms together, we conclude that

Var(A) ≤ σ4
φ|Sh||Nh|3

6 + 2d+1
∑

j∈Zd\{0}

γ2
j

 . (66)

Next we bound the first two moments of B. Consider (i, j) ∈ Sh such that |i − j|∞ > h.
Then E

[
εiεjF

>
j ΓNh(φ)−1Fi

]
= 0 by independence of εi with the other variables in the expectation.

Suppose now that |i− j|∞ ≤ h. By Isserlis’ theorem, and the independence of εi and Fi, as well as
εj and Fj , and symmetry, to get

E
[
εiεjF

>
j ΓNh(φ)−1Fi

]
= E

[
εiF

T
j

]
ΓNh(φ)−1 E [Fiεj ] + E [εiεj ]E

[
F>j ΓNh(φ)−1Fi

]
≥ −σ4

φ|φi−j |2‖ΓNh(φ)−1‖ − σ2
φ|φi−j ||Nh| ,
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using the Cauchy-Schwarz inequality and Lemma 7. As a consequence,

E[B] ≥ −σ4
φ|Sh|‖φ‖22‖Γ−1(φ)‖ − σ2

φ|Sh||Nh|‖φ‖1 . (67)

Turning to the variance, we obtain

Var(B) ≤ E[B2] =
∑
i1 6=i2

∑
i3 6=i4

E[Vi1,i2,i3,i4 ] ,

where
Vi1,i2,i3,i4 := εi1εi2εi3εi4F

>
i1 ΓNh(φ)−1Fi2F

>
i3 ΓNh(φ)−1Fi4 .

Fix i1. If one index among (i1, i2, i3, i4) lies at a distance larger than h from the three others, then
the expectation of Vi1,i2,i3,i4 is equal to zero. If one index lies within distance h of i1 and the two
remaining indices lie within distance 3h of i1, we use the Cauchy-Schwarz inequality to get

E[Vi1,i2,i3,i4 ] ≤ E
[ 4∏
k=1

|εik |(F
>
ik

ΓNh(φ)−1Fik)1/2
]
≤ E[ε41(F>1 ΓNh(φ)−1F1)2] = 3σ4

φ|Nh|(|Nh|+ 2) .

Finally, if say |i1 − i2|∞ ≤ h and |i3 − i4|∞ ≤ h and |ik − i`| > h for k = 1, 2 and ` = 3, 4, then we
use again Isserlis’ theorem and simplify the terms to get

E[Vi1,i2,i3,i4 ] = E[εi1εi2 ]E[εi3εi4 ]E[F>i1 ΓNh(φ)−1Fi2F
>
i3 ΓNh(φ)−1Fi4 ]

+ E[εi2F
>
i1 ]ΓNh(φ)−1 E[Fi2εi1 ]E[εi4F

>
i3 ]ΓNh(φ)−1 E[Fi4εi3 ]

≤ σ4
φ|φi2−i1φi4−i3 ||Nh|(|Nh|+ 2) + ‖Γ−1(φ)‖2σ8

φφ
2
i2−i1φ

2
i4−i3 ,

where we used again Lemma 7 to control the terms involving ε’s and the Cauchy-Schwarz inequality
to bound the term in (Fik , k = 1, . . . , 4). Putting all the terms together, we conclude that

Var(B) ≤ Cσ4
φ

(
|Sh||Nh|5 + |Sh|2‖φ‖21|Nh|2 + |Sh|2σ2

φ‖φ‖42‖Γ−1(φ)‖2
)
, (68)

since σ2
φ ≤ Var[Yi] = 1.

Plugging in the bounds that we obtained for the moments of A and B in (65), we conclude the
proof of (60).

7.8.4 Proof of Lemma 13

Recall the definition of Si in (51). We decompose ‖εS,h‖22 =
∑

i∈Nh∪{0} ‖εSi‖
2
2 and note that

‖εSi‖22 ∼ σ2
φχ

2
|Si|. Applying the second deviation bound of Lemma 1 together with a union bound,

we obtain that for any t > 0,

‖εS,h‖22 ≤ σ2
φ

∑
i∈Nh∪{0}

(
|Si|+ 2

√
|Si| log(|Nh|+ 1) + t+ 2t+ 2 log(|Nh|+ 1)

)
≤ σ2

φ

(
|Sh|+ 2

√
|Sh|(|Nh|+ 1) log(|Nh|+ 1) + t) + 2|Nh| (t+ log(|Nh|+ 1))

)
,

with probability larger 1− e−t. Relying on Condition (29), we derive that

P
{
‖ε2S,h‖ ≤ σ2

φ|Sh|(1 + |Nh|−1/2)
}
≥ 1− exp

(
−C |S

h|
|Nh|2

)
,

for a numerical constant C > 0 small enough.
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7.9 Proof of Corollary 1

It is well known—see, e.g., Lauritzen (1996)—that any ARh process is also a Gaussian Markov
random field with neighborhood radius h (and vice-versa). Denote τ2

ψ the innovation variance of

an ARh(ψ) process. The bijection between the parameterizations (ψ, τ2
ψ) and (φ, σ2

φ) is given by
the following equations

φ−i = φi =
ψi −

∑h
k=i+1 ψkψk−i

1 + ‖ψ‖22
, for i = 1, . . . , h , (69)

σ2
φ =

τ2
ψ

1 + ‖ψ‖22
. (70)

This correspondence is maintained below.

Lower bound. In this proof, C is a positive constant that may vary from line to line. It follows
from the above equations that

‖φ‖22 ≤ C
‖ψ‖22 + h‖ψ‖42

1 + ‖ψ‖22
.

Consider any r ≤ 1/h. In that case, if ‖φ‖2 ≥ r then the inequality above implies that ‖ψ‖2 ≥
Cr, and as a consequence, R∗C,G(h,r) ≤ R∗C,F(h,Cr). Therefore, since (7) and our condition on h

together imply that r ≤ 1/h eventually, it suffices to prove that R∗C,G(h,r) → 1. For that, we

apply Corollary 4. Condition (34) there is satisfied eventually under our assumptions ((7) and our
condition on h). Consequently, we have R∗C,G(h,r) → 1 as soon as (35) holds, which is the case when

(7) holds.

Upper bound. It follows from (70) and the inequality τ2
ψ ≤ 1 that

1− σ2
φ ≥

‖ψ‖22
1 + ‖ψ‖22

.

Denoting un := log(n)/k+
√
h log(n)/k, observe as above that un � 1/h by our assumption on h.

Assume that ‖ψ‖22 ≥ r2 for some r2 ≥ un. If ‖φ‖1 ≤ 1/2, it follows from the inequality
1 − σ2

φ ≤ ‖φ‖22/(1 − ‖φ‖1) ≤ 2‖φ‖22 (Lemma 5) that ‖φ‖22 ≥ r2/4. And if ‖φ‖1 > 1/2, then

‖φ‖22 ≥ (8h)−1 by the Cauchy-Schwarz inequality. Thus, when r2 ≤ 1/h, we have ‖φ‖22 ≥ r2/8, and
this implies

RC,F(h,r)(f) ≤ RC,G(h,r/
√

8)(f) , for any test f .

When r2 ≥ 1/h, we simply use a monotonicity argument

RC,F(h,r)(f) ≤ RC,F(h,h−1/2)(f) ≤ RC,G(h,1/
√

8h)(f) , for any test f .

The result then follows from Theorem 2.
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de la Peña, V. H. and E. Giné (1999). Decoupling. Probability and its Applications (New York).
Springer-Verlag, New York. From dependence to independence, Randomly stopped processes.
U -statistics and processes. Martingales and beyond.

Desolneux, A., L. Moisan, and J.-M. Morel (2003). Maximal meaningful events and applications
to image analysis. Ann. Statist. 31 (6), 1822–1851.

Donoho, D. and J. Jin (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann.
Statist. 32 (3), 962–994.

Dryden, I. L., M. R. Scarr, and C. C. Taylor (2003). Bayesian texture segmentation of weed and

38



crop images using reversible jump Markov chain Monte Carlo methods. J. Roy. Statist. Soc.
Ser. C 52 (1), 31–50.

Galun, M., E. Sharon, R. Basri, and A. Brandt (2003). Texture segmentation by multiscale aggre-
gation of filter responses and shape elements. In Proceedings IEEE International Conference on
Computer Vision, Nice, France, pp. 716–723.

Giraitis, L. and R. Leipus (1992). Testing and estimating in the change-point problem of the
spectral function. Lithuanian Mathematical Journal 32, 15–29. 10.1007/BF00970969.

Grigorescu, S. E., N. Petkov, and P. Kruizinga (2002). Comparison of texture features based on
Gabor filters. IEEE Trans. Image Process. 11 (10), 1160–1167.

Guyon, X. (1995). Random fields on a network. Probability and its Applications (New York). New
York: Springer-Verlag. Modeling, statistics, and applications, Translated from the 1992 French
original by Carenne Ludeña.

Hofmann, T., J. Puzicha, and J. Buhmann (1998). Unsupervised texture segmentation in a deter-
ministic annealing framework. IEEE Trans. Pattern Analysis and Machine Intelligence 20 (8),
803–818.
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