
1

Efficient Tracking of Large Classes of Experts
András György, Tamás Linder, and Gábor Lugosi

October 12, 2011

Abstract

In the framework for prediction of individual sequences, sequential prediction methods are to be constructed
that perform nearly as well as the best expert from a given class. We consider prediction strategies that compete
with the class of switching strategies that can segment a given sequence into several blocks, and follow the
advice of a different “base” expert in each block. As usual, the performance of the algorithm is measured by the
regret defined as the excess loss relative to the best switching strategy selected in hindsight for the particular
sequence to be predicted. In this paper we construct prediction strategies of low computational cost for the case
where the set of base experts is large. In particular we derive a family of efficient tracking algorithms that, for
any prediction algorithm A designed for the base class, can be implemented with time and space complexity
O(nγ log n) times larger than that of A, where n is the time horizon and γ ≥ 0 is a parameter of the algorithm.
With A properly chosen, our algorithm achieves a regret bound of optimal order for γ > 0, and only O(log n)

times larger than the optimal order for γ = 0 for all typical regret bound types we examined. For example,
for predicting binary sequences with switching parameters, our method achieves the optimal O(log n) regret
rate with time complexity O(n1+γ log n) for any γ ∈ (0, 1).

I. INTRODUCTION

A. Prediction with expert advice

In the on-line (sequential) decision problems considered in this paper, a decision maker (or fore-
caster) chooses, at each time instance t = 1, 2, . . . , an action from a set D. After each action taken,
the decision maker suffers some loss based on the state of the environment and the chosen decision.
The general goal of the forecaster is to minimize its cumulative loss. Specifically, the forecaster’s aim
is to achieve a cumulative loss that is not much larger than that of the best expert (forecaster) from a
reference class E , where the best expert is chosen in hindsight. This problem is known as “prediction
with expert advice.” We refer to [1] for a survey.

Formally, let the decision space D be a convex subset of a vector space and let Y be a set representing
the outcome space. Let ` : D×Y → R be a loss function, assumed to be convex in its first argument.

This research was supported in part by the Hungarian Scientific Research Fund and the Hungarian National Office for Research and
Technology (OTKA F60787, OTKA-NKTH CNK 77782), the Natural Sciences and Engineering Research Council (NSERC) of Canada,
the Spanish Ministry of Science and Technology grant MTM2009-09063 and the PASCAL2 Network of Excellence under EC grant no.
216886.

A. György is with the Machine Learning Research Group, Computer and Automation Research Institute of the Hungarian Academy of
Sciences, Kende u. 13-17, Budapest, Hungary, H-1111 (email: gya@szit.bme.hu). T. Linder is with the Department of Mathematics
and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (email: linder@mast.queensu.ca). G. Lugosi is with
ICREA and the Department of Economics, Pompeu Fabra University, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain (email:
gabor.lugosi@gmail.com).

2

PREDICTION WITH EXPERT ADVICE

For each round t = 1, 2, . . .

(1) the environment chooses the next outcome yt and the expert advice {fi,t ∈ D : i ∈
E}; the expert advice is revealed to the forecaster;

(2) the forecaster chooses the prediction p̂t ∈ D;
(3) the environment reveals the next outcome yt ∈ Y;
(4) the forecaster incurs loss `(p̂t, yt) and each expert i incurs loss `(fi,t, yt).

Fig. 1. The repeated game of prediction with expert advice.

At each time instant t = 1, . . . , n, the environment chooses an action yt ∈ Y and each expert i ∈ E
forms its prediction fi,t ∈ D. Then the forecaster chooses an action p̂t ∈ D (without knowing yt),
suffers loss `(p̂t, yt), and the losses `(fi,t, yt), i ∈ E are revealed to the forecaster. (This is known as
the full information case and in this paper we only consider this model. In other, well-studied, variants
of the problem, the forecaster only receives limited information about the outcome.)

The goal of the forecaster is to minimize its cumulative loss L̂n =
∑n

t=1 `(p̂t, yt), which is equivalent
to minimizing its excess loss L̂n − mini∈E Li,n relative to the the set of experts E , where Li,n =∑n

t=1 `(fi,t, yt) for all i ∈ E .
Several methods are known that can compete successfully with different expert classes E in the

sense that the (worst-case) cumulative regret, defined as

Rn = max
y1,...,yn∈Yn

(
L̂n −min

i∈E
Li,n

)
= max

y1,...,yn∈Yn

(
n∑
t=1

`(p̂t, yt)−min
i∈E

n∑
t=1

`(fi,t, yt)

)
only grows sub-linearly, that is, limn→∞Rn/n = 0. One of the most popular among these is exponential
weighting. When the expert class E is finite of countably infinite, this method assigns, at each time
instant t, a nonnegative weight

πi,t =
wie

−ηtLi,t−1∑
j∈E wje

−ηtLi,t−1

to each expert i ∈ E . Here Li,t−1 =
∑t−1

τ=1 `(fi,τ , yτ) is the cumulative loss of expert i up to time t−1,
ηt > 0 is some learning parameter, and the wi > 0 are nonnegative initial weights with

∑
i∈E wi = 1,

so that
∑

i∈E πi,t = 1 (we define Li,0 = 0 for all i ∈ E , as well as L̂0 = 0). The decision chosen by
this algorithm is

p̂t =
∑
i∈E

πi,tfi,t. (1)

In this paper we concentrate on two special types of loss functions: bounded convex and exp-
concave. For such loss functions the regret of the exponentially weighted average forecaster is well

3

understood. For example, assume ` is convex in its first argument and takes its values in [0, 1], and
the set of experts is finite with |E| = N . Then if ηt is nonincreasing in t then, for any n,

L̂n ≤ min
i

{
Li,n +

1

ηn
ln

1

wi

}
+

n∑
t=1

ηt
8

(2)

see [2]. By setting the initial weights to wi = 1/N, i = 1, . . . , N and with the choice ηt = 2
√

lnN/t,
one obtains, for any n ≥ 1,

Rn ≤
√
n lnN . (3)

If, on the other hand, for some η > 0 the function F (p) = e−η`(p,y) is concave for any fixed y ∈ Y
(such loss functions are called exp-concave) then, choosing ηt ≡ η and wi = 1/N, i = 1, . . . , N , one
has for any n ≥ 1,

Rn ≤
lnN

η
. (4)

The family of exp-concave loss functions includes, for example, for p, y ∈ [0, 1], the square loss
`(p, y) = (p − y)2 with η ≤ 1/2, and the relative entropy loss `(p, y) = y ln y

p
+ (1 − y) ln 1−y

1−p with
η ≤ 1. A special case of the latter is the logarithmic loss defined for y ∈ {0, 1} and p ∈ [0, 1] by
`(p, y) = −Iy=1 log p − Iy=0 log(1 − p), which plays a central role in data compression. Here and
throughout the paper IB denotes the indicator of event B and all logarithms are to the base 2. We
refer to [1] for discussion of these bounds.

A naive implementation of the exponentially weighted average forecaster maintains one weight for
each of the N experts, and the algorithm can be performed using O(N) operations per time round.
However, when N is large or infinite, more efficient methods are called for. There are many examples
of finite or infinite expert classes for which efficient algorithms yielding good regret bounds are known.
These algorithms utilize the structure inherent in the problem that allows a more compact representation
leading to low complexity solutions. Examples include, among others, the logarithmic loss with the set
of experts consisting of all probability distributions on a finite set (here the well-known Krichevsky-
Trofimov method yields an efficient predictor [3]), or the class of all bounded-memory Markov sources
(see the context tree weighting method of [4]); the case when the set of experts consists of paths in
a directed graph such that the loss of a path is obtained as the sum of the losses corresponding to its
edges [5]; the problem of predicting as well as the best linear predictor [6], [7], [8]; or the problem
of predicting as well as the best convex combination of a set of base experts [9].

B. Tracking the best expert

The goal of the standard online prediction problem described in the previous section is to perform
nearly as well as the best expert in the class E . A more ambitious goal is to compete with the best
sequence of expert predictions that may switch its experts at a certain, limited, number of times.
This, seemingly more complex, problem may be regarded as a special case of the standard setup by
introducing the so-called meta experts. A meta expert is described by a sequence of base experts
(i1, . . . , in) ∈ En, such that at time instants t = 1, . . . , n the meta expert follows the prediction of the
“base” expert it ∈ E by predicting fit,t. The complexity of such a meta expert may be measured by
C = |{t ∈ {1, 2, . . . , n−1} : it 6= it+1}|, the number of times it changes the base predictor (each such

4

change is called a switch). Note that C switches partition {1, . . . , n} into C + 1 contiguous segments,
on each of which the meta expert’s prediction is constant. If a maximum of m changes are allowed and
the set of base experts has N elements, then the class of meta experts is of size

∑m
j=0

(
n−1
j

)
N(N−1)j .

Clearly, a naive implementation of the exponentially weighted average forecaster is not feasible in this
case, but several more efficient algorithms have been proposed.

One approach, widely used in the information theory/source coding literature, is based on transition
diagrams [10], [11]: A transition diagram is used to define a prior distribution on the switches of the
experts, and the starting point of the current segment is estimated using this prior. In its straightforward
version, at each time instant t, the performance of an expert algorithm is emulated for all possible
segment starting points 1, . . . , t, and a weighted average of the resulting estimates is used to form
the next prediction. In effect, this method converts an efficient algorithm to compete with the best
expert in a class E into one that competes with the best sequence of experts with a limited number of
changes. However, the time complexity of the resulting algorithm increases by a factor of n, the time
horizon compared with the original algorithm that competes with E , yielding a total complexity that
is quadratic in n.

For the same problem, a method of linear complexity was developed in [12], but it requires an a
priori known upper bound on the number of switches, while transition-diagram based methods can
adapt to an arbitrary number of switches. (Of course, the regret scales with the number of switches.)
Vovk [13] showed that the method of [12] is equivalent to a an easy-to-implement weighting of the
paths in the full transition diagram. The algorithm can be modified to compete with meta experts with
an arbitrary number of switches: a linear complexity variant achieves this goal (by letting its switching
parameter α decrease to zero) at the price of somewhat increasing the regret [14]. A slightly better
regret bound can be achieved for the case when switching occurs more often at the price of increasing
the computational complexity from linear to O(n3/2) [15], [16] (by discretizing its switching parameter
α to
√
n levels). On the other hand, reduced transition diagrams have been used for the logarithmic loss

(i.e., data compression) by [17] and by [11] (the latter work considers a probabilistic setup as opposed
to the individual sequence setting). An efficient algorithm based on a reduced transition diagram for the
general tracking problem was given in [18] , while [19] developed independently a similar algorithm
to minimize the adaptive regret

Ra
n = max

t≤t′
max

yt,yt+1,...,yt′

(
t′∑
τ=t

`(p̂τ , yτ)−min
i∈E

`(fi,τ , yτ)

)
which is the maximal worst-case cumulative excess loss over any contiguous time segment relative to
a constant expert. It is clear that the regret of an algorithm, in n time steps, relative to a meta expert
that can switch the base expert C times can be bounded by (C + 1)Ra

n, so the bounds in [19] also
provide bounds for the tracking problem.

An important question is how one can compete with meta experts when the base expert class E is
very large. In such cases special algorithms are needed to compete with experts from the base class
even without switching. Such large base classes arise in on-line linear optimization [9], lossless data
compression [3], [4], the shortest path problem [5], [20], or limited-delay lossy data compression [21]–
[23]. Such special algorithms can easily be incorporated in transition-diagram-based tracking methods,
but the resulting complexity is quadratic in n (see, e.g., [11] for such an application to lossless data

5

compression or [24]–[26] for applications to signal processing and universal portfolio selection). If the
special algorithms for large base expert classes are combined with the algorithm of [12] to compete
with meta experts, the resulting algorithms again have quadratic complexity in n; see, e.g., [13], [27].

In this paper we tackle the complexity issue by presenting a general method for designing reduced
transition diagrams. Our algorithm unifies and generalizes the algorithms of [17], [19] and our earlier
work [18]. This algorithm has an explicit complexity-regret trade-off, covering essentially all such
results in the literature. In addition to the (almost) linear complexity algorithms in the aforementioned
papers, the parameters of our algorithm can be set to reproduce the methods based on the full transition
diagram [10], [11], [24], or the complexity-regret behavior of [15], [16]. Also, our algorithm has regret
of optimal order with complexity O(n1+γ log n) for any γ ∈ (0, 1), while setting γ = 0 results in
complexity O(n log n) and a regret that is only a factor of log n larger than the optimal rate (similarly
to [17]–[19]).

The rest of the paper is organized as follows. In Section II-A we describe our general algorithm.
Sections II-B and II-C present a unified method for the low-complexity implementation of the general
algorithm via reduced transition diagrams. Bounds on the algorithm are developed in Section II-D.
More explicit bounds are presented for some important special cases in Sections II-E and II-F. The
results are extended to the related framework of randomized prediction in Section III. Some applications
to concrete examples are given in Section IV.

II. A REDUCED COMPLEXITY TRACKING ALGORITHM

A. A general tracking algorithm

Here we introduce a general tracking method which forms the basis of or reduced complexity
tracking algorithm. Consider an on-line forecasting algorithm A that chooses an element of the decision
space depending on the past outcomes and the expert advices according to the protocol described in
Figure 1. Suppose that for all n and possible outcome sequences of length n, A satisfies a regret
bound

Rn ≤ ρE(n) (5)

with respect to the base expert class E , where ρE : [0,∞) → [0,∞) is a nondecreasing and concave
function with ρE(0) = 0. These assumptions on ρE are usually satisfied by the known regret bounds
for different algorithms, such as the bounds (3) and (4) (with defining ρE(0) = 0 in the latter case).
Suppose 1 ≤ t1 < t2 ≤ n and an instance of A is used for time instants t ∈ [t1, t2) := {t1, . . . , t2−1},
that is, algorithm A is run on data obtained in the segment [t1, t2). The accumulated loss of A during
this period will be denoted by LA(t1, t2). Then (5) implies

LA(t1, t2)−min
i∈E

Li(t1, t2) ≤ ρE(t2 − t1)

where Li(t1, t2) =
∑t2−1

t=t1
`(fi,t, yt) denotes the loss of expert i in the interval [t1, t2).

Fix the time horizon n ≥ 1. A meta expert that changes base experts at most C ≥ 0 times can be
described by a vector of experts a = (i0, . . . , iC) ∈ EC+1 and a “transition path” T = (t1, . . . , tC ;n)

such that t0 := 1 < t1 < . . . < tC < tC+1 := n + 1. For each c = 0, . . . , C, the meta expert
follows the advice of expert ic in the time interval [tc, tc+1). When the time horizon n is clear from
the context, we will omit it from the description of T and simply write T = (t1, . . . , tC). We note

6

that this representation is not unique as the definition does not require that base experts ic and ic+1

be different. Any meta expert that can be defined using a given transition path T is said to follow T .
The total loss of the meta expert indexed by (T, a), accumulated during n rounds, is

Ln(T, a) =
C∑
c=0

Lic(tc, tc+1) .

For any t ≥ 1, let Tt denote the set of all transition paths up to time t represented by vectors
(t1, . . . , tC ; t) with 1 < t1 < t2 < . . . < tC ≤ t and 0 ≤ C ≤ t. For any T = (t1, . . . , tC) ∈ Tn and
t ≤ n define the truncation of T at time t as Tt = (t1, . . . , tk; t), where k is such that tk ≤ t < tk+1.
Furthermore, let τt(T) = τt(Tt) = tk denote the last change up to time t, and let Ct(T) = C(Tt) = k

denote the number of switches up to time t. A transition path T with C switches splits the time
interval [1, n] into C + 1 contiguous segments. We apply algorithm A on T in such a way that at the
beginning of each segment (at time instants tc) we restart A; this algorithm will be denoted in the
sequel by (A, T). Denote the output of the algorithm at time t by fA,t(Tt) = fA,t(τt(T)). This notation
emphasizes the fact that, since A is restarted at the beginning of each segment of T , its output at time
t depends only on τt(T), the beginning of the segment which includes t. The loss of algorithm (A, T)

up to time n is

Ln(A, T) =
C∑
c=0

LA(tc, tc+1) .

As most tracking algorithms, our algorithm will use weight functions wt : Tt → [0, 1] satisfying∑
T∈Tt

wt(Tt) = 1 and wt(Tt) =
∑

T ′t+1:T
′
t=Tt

wt+1(T
′
t+1) . (6)

Thus each wt is a probability distribution on Tt such that the family {wt; t = 1, . . . , n} is consistent. To
simplify the notation, we formally define T0 as the “empty transition path” T0 := {T0}, L0(A, T0) := 0,
and w0(T0) := 1.

We say that T̂ ∈ Tn covers T ∈ Tn if the change points of T are also change points of T̂ . Note that
if T̂ covers T , then any meta expert that follows transition path T also follows transition path T̂ . We
say that wn covers Tn if for any T ∈ Tn there exists a T̂ ∈ Tn with wn(T̂) > 0 which covers T .

Now we are ready to define our first master algorithm, given in Algorithm 1.

Algorithm 1 General tracking algorithm.
Input: prediction algorithm A, weight functions {wt; t = 1, . . . , n}, learning parameters ηt > 0, t =

1, . . . , n.
For t = 1, . . . , n predict

p̂t =

∑
T∈Tt wt(T)e−ηtLt−1(A,Tt−1)fA,t(τt(T))∑

T∈Tt wt(T)e−ηtLt−1(A,Tt−1)
.

We note that the consistency of {wt} implies that, for any time horizon n, Algorithm 1 is equivalent
to the exponentially weighted average forecaster (1) with set of experts {(A, T) : T ∈ Tn, wn(Tn) > 0}
and initial weights wn(T) for (A, T).

7

The next lemma gives an upper bound on the performance of Algorithm 1.

Lemma 1: Suppose ηt+1 ≤ ηt for all t = 1, . . . , n − 1, the transition path Tn is covered by T̂n =

(t̂1, . . . , t̂C(T̂n)
) such that wn(T̂n) > 0, and A satisfies the regret bound (5). Assume that the loss

function ` is convex in its first argument and takes values in the interval [0, 1]. Then for any meta
expert (Tn, a) the regret of Algorithm 1 is bounded as

L̂n − Ln(Tn, a) ≤
C(T̂n)∑
c=0

ρE(t̂c+1 − t̂c) +
n∑
t=1

ηt
8

+
1

ηn
ln

1

wn(T̂n)

≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
+

n∑
t=1

ηt
8

+
1

ηn
ln

1

wn(T̂n)
.

(7)

On the other hand, if ` is exp-concave for the value of η and Algorithm 1 is used with ηt ≡ η, then

L̂n − Ln(Tn, a) ≤
C(T̂n)∑
c=0

ρE(t̂c+1 − t̂c) +
1

η
ln

1

wn(T̂n)

≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
+

1

η
ln

1

wn(T̂n)
.

(8)

Proof: Let â = (̂ı0, . . . , ı̂C) be the expert vector such that the meta experts (T, a) and (T̂ , â)

perform identically. Then clearly

L̂n − Ln(T, a) = L̂n − Ln(A, T̂n) + Ln(A, T̂n)− Ln(T̂n, â) .

Using (5) and the concavity of ρE , we get

Ln(A, T̂n)− Ln(T̂n, â) =

C(T̂n)∑
c=0

(
LA(t̂c, t̂c+1)− Lı̂c(t̂c, t̂c+1)

)

≤
C(T̂n)∑
c=0

ρE(t̂c+1 − t̂c) ≤ (C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
. (9)

Assume that the loss function ` is convex in its first argument and takes values in the interval
[0, 1]. Since Algorithm 1 is equivalent to the exponentially weighted average forecaster with experts
{(A, T) : T ∈ Tn, wn(T) > 0} and initial weights wn(T) we can apply the bound (2) to obtain

L̂n ≤ Ln(A, T̂n) +
1

η
ln

1

wn(T̂n)
+

n∑
t=1

ηt
8
.

Combining this with (9) proves (7).
Now assume ` is exp-concave. Then by [12, Lemma 1],

L̂n − Ln(A, T̂n) ≤ 1

η
ln

1

wn(T̂n)
. (10)

This, together with (9), implies (8).

8

B. The weight function

One may interpret the weight function {wt} as the conditional probability that a new segment is
started, given the beginning of the current segment and the current time instant. In this case one may
define {wt} in terms of a time-inhomogeneous Markov chain {Ut; t = 1, 2, . . .} whose state space at
time t is {1, . . . , t}. The distribution of {Ut} is uniquely determined by prescribing P(U1 = 1) = 1

and for 1 ≤ t′ < t,

P(Ut = t|Ut−1 = t′) = 1− P(Ut = t′|Ut−1 = t′) = p(t|t′) (11)

where the so-called switch probabilities p(t|t′) need only satisfy p(t|t′) ∈ [0, 1] for all 1 ≤ t′ < t. (Thus,
this Markov chain, at time t, either stays where it was at time t− 1 or jumps to state t.) A realization
of this Markov chain uniquely determines a transition path: Tt(u1, . . . , ut) = (t1, . . . , tC) ∈ Tt if and
only if uk−1 6= uk for k ∈ {t1, . . . , tC}, and uk−1 = uk for k /∈ {t1, . . . , tC}, 2 ≤ k ≤ t. Inverting this
correspondence, any T ∈ Tt uniquely determines a realization (u1, . . . , ut). Now the weight function
is given for all t ≥ 1 and T ∈ Tt by

wt(T) = P(U1 = u1, . . . , Ut = ut) (12)

where (u1, . . . , ut) is such that T = T (u1, . . . , ut). It is easy to check that {wt} satisfies the two
conditions in (6). Clearly, the switch probabilities p(t|t′) uniquely determine {wt}.

Some examples that have been proposed for this construction (given in terms of the switch proba-
bilities) include

• wHW , used in [12], is defined by pHW (t|t′) = α for some 0 < α < 1.

• wHS , used in [14], [16], [19], is defined by pHS(t|t′) = 1/t.

• wKT , used in [10], is defined by

pKT (t|t′) =
1/2

t− t′ + 1

which is the Krichevsky-Trofimov estimate [3] for binary sequences of the probability that after
observing an all zero sequence of length t − t′, the next symbol will be a one. Using standard
bounds on the Krichevsky-Trofimov estimate, it is easy to show (see, e.g., [10]) that for any
T ∈ Tn with segment lengths s0, s1, . . . , sC ≥ 1 (satisfying

∑C
c=0 sc = n)

ln
1

wKT (T)
≤ 1

2

C∑
c=0

ln sc + (C + 1) ln 2. (13)

• wL1 and wL2 used in [11] (similar weight functions were considered in [13]), are defined as
follows: for a given ε > 0, let πj = 1/j1+ε, Zt =

∑t
j=1 π(j) and Z∞ =

∑∞
j=1 π(j). Then wL1

and wL2 are defined, respectively, by

pL1(t|t′) =
π(t− 1)

(Z∞ − Zt−2)
and pL2(t|t′) =

π(t− t′)
(Z∞ − Zt−t′+1)

.

Here we consider the weights wL1 . It is shown in [11, proof of Eq. (39)] that for any T ∈ Tn,

ln
1

wL1n (T)
≤ (Cn(T) + ε) lnn+ ln(1 + ε)− Cn(T) ln ε . (14)

9

C. A low-complexity algorithm

Efficient implementation of Algorithm 1 hinges on three factors: (i) Algorithm A can be efficiently
implemented; (ii) the exponential weighting step can be efficiently implemented; which is facilitated
by (iii) the availability of the losses LA,t. In what follows we assume that (i) and (iii) hold and develop
a method for (ii) via constructing a new weight function {ŵt} that significantly reduces the complexity
of implementing Algorithm 1.

First, we observe that the predictor p̂t of Algorithm 1 can be rewritten as

p̂t =

∑t
t′=1 vt(t

′)e−ηtLA(t
′,t−1)fA,t(t

′)∑t
t′=1 vt(t

′)e−ηtLA(t′,t−1)
(15)

where the weights vt are given by

vt(t
′) =

∑
T∈Tt: τt(T)=t′

wt(T)e−ηtLt′−1(A,Tt′−1). (16)

If the learning parameters ηt are constant during the time horizon, the above means that Algorithm 1
can be implemented efficiently by keeping a weight vt(t′) at each time instant t for every possible
starting point of a segment t′ = 1, . . . , t. Indeed, if ηt = η for all t, then (16), (11), and (12) imply
that each vt(t

′) can be computed recursively in O(t) time from the vt−1 (setting v1(1) := 1 at the
beginning) using the switch probabilities defining wt as follows:

vt(t
′) =

{
vt−1(t

′)(1− p(t|t′))e−η`(fA,t−1(t
′),yt−1) for t′ = 1, . . . , t− 1,∑t−1

t′=1 vt−1(t
′)p(t|t′)e−η`(fA,t−1(t

′),yt−1) for t′ = t.
(17)

Using this recursion, the overall complexity of computing the weights during n rounds is O(n2).
Furthermore, (15) means that one needs to start an instance of A for each possible starting point of a
segment. If the complexity of running algorithm A for n time steps is O(n) (i.e., computing A at each
time instance has complexity O(1)), then the overall complexity of our algorithm becomes O(n2).

It is clearly not a desirable feature that the amount of computation per time round grows (linearly)
with the horizon n. While we don’t know how to completely eliminate this ever-growing computational
demand, we are able to moderate this growth significantly. To this end, we modify the weight functions
in such a way that at any time instant t we allow at most O(g log t) actual segments with positive
probability (i.e., segments containing t that belong to sample paths with positive weights), where g > 0

is a parameter of the algorithm (note that g may depend on, e.g., the time horizon n). Specifically, we
will construct a new weight function ŵt such that∣∣{τt(T) : ŵt(Tt) > 0, T ∈ Tn}

∣∣ ≤ g log t.

By doing so, the time and space complexity of the algorithm becomes O(g log n) times more than
that of algorithm A, as we need to run O(g log n) instances of A in parallel and the number of non-
zero terms in (17) and (15) is also O(g log n). Thus, in case of a linear-time-complexity algorithm
A, the overall complexity of Algorithm 1 becomes O(gn log n). (To be precise, to achieve the space
complexity O(g log n) times that of A we need that the space complexity of A be at least a positive
constant as we need to store O(g log n) weights; note that the time complexity of A must be at least
linear in n).

10

In order to construct the new weight function, at each time instant t we force some segments to
end. Then any path that contains such a segment will start a new segment at time t (and hence the
corresponding vector of transitions contains t). Specifically, if a segment starts at time instant s, where
s can be written as o2u with o being an odd number and u an integer, o, u ≥ 0 (that is, 2u is the
largest power of 2 that divides t), then s can “live” for at most g2u time instances, where g > 0 is a
parameter of the algorithm. Thus at time s+ g2u we force a switch in the path. More precisely, given
any switching probability p(t|t′) for all t′ < t, we define a new switching probability

p̂(t|t′) = 1− ht(t′)
(
1− p(t|t′)

)
(18)

where

ht(s) =

{
1 if s ≤ t < s+ g2u,

0 otherwise.

Thus ht(s) = 1 if and only if a segment started at s is still valid at time t. In this way, given the
switching probabilities p(t|t′) and the associated weight function {wt}, we can define a new weight
function {ŵt} via the new switching probabilities p̂(t|t′) and the procedure described in Section II-B.
Note that the definition of {ŵt} implies that for a transition path T ∈ Tt either

ŵt(T) = 0 or ŵt(T) ≥ wt(T) . (19)

The above procedure is a common generalization of previous algorithms in the literature for pruning
the transition paths. Specifically, g = 1 yields the procedure of [17], g = 3 yields our previous
procedure [18], g = 4 yields the method of [19], while g = n yields the original weighting {wt}
without pruning. We will show that the time complexity of the method with a constant g (i.e., when g
is independent of the time horizon n) is, in each time instant, at most O(log n) times the complexity
of one step of A, while the time complexity of the algorithm without pruning is O(n) times the
complexity of A. Complexities that interpolate between these two extremes can be achieved by setting
g = O(n) appropriately.

We say that a segment at time instant t is alive if it contains t and is valid if there is a path Tt with
ŵt(Tt) > 0 that contains exactly that segment. In what follows we assume that the original switching
probabilities p(t|t′) associated with the wt satisfy p(t|t′) ∈ (0, 1) for all 1 ≤ t′ < t. (Note that the
weight function examples introduced in Section II-B all satisfy this condition.) The condition implies
that wt(Tt) > 0 for all Tt ∈ Tt. Furthermore, if Tt = (t1, . . . , tC) ∈ Tt satisfies ti+1 − ti < g2uti ,
i = 1, . . . , C, where uti is the largest power of 2 divisor of ti, then from (18) we get ŵt(T) > 0.

The next lemma gives a characterization of when hs(t) = 1, and, as a consequence, bounds the
number of valid segments that are alive at t.

Lemma 2: Let t =
∑m

i=1 2ui be the binary form of t with 0 ≤ u1 < u2 < · · · < um = u, and
let sk =

∑m
i=k 2ui . Then ht(s) = 1 if and only if either (i) s = sk − j2uk+1 for some 1 ≤ k ≤ m,

0 ≤ j < g or (ii) s = sm − (2j − 1)2l with 0 ≤ l < u, l 6= ui, i = 1, . . . ,m− 1, and 1 ≤ j ≤ g/2. As
a consequence, at any time instant t there are at most g log t segments that are valid and alive.

Proof: The proof is a direct consequence of the definition of hs(t), since any possible starting
point s of a valid segment with largest 2-power divisor 2l satisfies (i) if l = ui for some i = 1, . . . ,m,
and satisfies (ii) if l 6= ui, i = 1, . . . ,m.

11

Note that for g = 1 the valid segments that are alive at t start exactly at sk, k = 1, . . . ,m, and
so the number of valid segments at time t is exactly the number of 1’s in the binary form of t [17].
The above lemma implies that Algorithm 1 can be implemented efficiently with the proposed weight
function {ŵt}.

Theorem 1: Assume Algorithm 1 is run with weight function {ŵt} derived using any g > 0 from
any weight function {wt} defined as in Section II-B. If ηt = η for some η > 0 and all t = 1, . . . , n,
then the time an space complexity of Algorithm 1 is O(g log n) times the time and space complexity
of A, respectively.

Proof: The result follows since Lemma 2 implies that the number of non-zero terms in (17) and
(15) is always O(g log t).

D. Regret bounds

To bound the regret, we need the following lemma which shows that any segment [t, t′) can be
covered with at most

⌈
log(t′−t)
blog(g+1)c

⌉
+ 1 valid segments.

Lemma 3: For any T ∈ Tn, there exists T̂ ∈ Tn such that for any segment [t, t′) of T with
1 ≤ t < t′ ≤ n+ 1,

(i) ŵt′(T̂) > 0, t and t′ are switching points of T̂ (where t′ = n + 1 is considered as a switching
point), and T̂ contains at most l =

⌈
log(t′−t)
blog(g+1)c

⌉
+ 1 segments in [t, t′);

(ii) if the switching points of T̂ in [t, t′) are t1 := t < t2 < · · · < tl′ < tl′+1 := t′ then l′ ≤ l and for
any nondecreasing function f : [0,∞)→ [0,∞),

l′∑
i=1

f(ti+1 − ti) ≤
l′−2∑
i=0

f

(
t′ − t

2iblog(g+1)c

)
+ f(t′ − t) (20)

≤
∫ log(t′−t)
blog(g+1)c

0

f

(
t′ − t

2xblog(g+1)c

)
dx+ 2f(t′ − t) (21)

where the second summation in (20) is empty if l′ = 1.
Remark: Note that it is possible to obtain for l the less compact and harder-to-handle formula

l =


log
(
t′ − t+ 1

2blog(g+1)c−1

)
− log

(
2blog(g+1)c − 1 + 1

2blog(g+1)c−1

)
blog(g + 1)c

+ 1

by taking into account that the last segment [tl, tl+1) in the construction of the proof can always be
defined to be of length at least blog(g + 1)c2ul . Furthermore, for g = 1 it follows from [17] that the
last term is not needed in (20), and hence it can be strengthened to

l′∑
c=1

f(t̂c+1 − t̂c) ≤
blog(t′−t)c∑

c=0

f(2c). (22)

12

Proof: Clearly, it is enough to define T̂ independently in each segment [t, t′) of T . We construct
the switching points t1 < t2 < · · · < tl of T̂ and an auxiliary variable tl+1 ≥ t′ one by one such that
t1 = t, tl < t′, and, defining uj as the largest 2-power divisor of tj ,

uj+1 − uj ≥ blog(g + 1)c (23)

for j = 1, . . . , l − 1. To simplify notation we also define tl+1 = t′. Let t1 = t, and assume that we
have already defined t1, . . . , ti satisfying (23) for j = 1, . . . , i− 1. Then the last segment is alive with
positive probability at any time instant in [ti, ti + g2ui). If t′ ≤ ti + g2ui , then let ti+1 = t′, else define
ui+1 to be the largest nonnegative integer such that there is a τ ∈ [ti + 1, ti + g2ui] such that 2ui+1

divides τ . Furthermore, let ti+1 denote the largest possible value of τ , that is,

ti+1 = min
{
t′,max{τ ∈ [ti + 1, ti + g2ui] : 2ui+1 divides τ}

}
.

Then, whenever ti+1 < t′, 2ui+1 is the largest 2-power divisor of ti+1, and it is easy to see that
uj+1 ≥ uj + blog(g + 1)c, proving (23) for j = i. Thus, from (23) we have

tl+1 ≥ t+
l∑

i=1

2ui = t+
l∑

i=1

2u1+
∑i
j=2(uj−uj−1)

≥ t+
l∑

i=1

2u1+
∑i
j=2blog(g+1)c ≥ t+

l−1∑
i=0

2u1+iblog(g+1)c

≥ t+ 2u1
2lblog(g+1)c − 1

2blog(g+1)c − 1
≥ t+ 2(l−1)blog(g+1)c ≥ t′

where in the last step we used the definition of l. This finishes the proof of (i).
To prove (ii), we first show that the transition path T̂ constructed above satisfies (20). First notice

that since t + g2ul′−1 ≤ tl′−1 + g2ul′−1 < t′, we have ul′−1 ≤
⌊
log t′−t

g

⌋
. Repeated application of (23)

implies, for any i = 1, . . . , l′ − 1,

ui ≤
⌊

log
t′ − t
g

⌋
− (l′ − 1− i) blog(g + 1)c

and

ti+1 − ti ≤ g2

⌊
log t

′−t
g

⌋
−(l′−1−i)blog(g+1)c

≤ g2log t
′−t
g
−(l′−1−i)blog(g+1)c = (t′ − t)2−(l′−1−i)blog(g+1)c.

Using the crude estimate t′ − tl ≤ t′ − t finishes the proof of (20). The last inequality (21) holds
trivially for l = 1, and holds for l ≥ 2 since

l′−2∑
i=0

f

(
t′ − t

2iblog(g+1)c

)
= f(t′ − t) +

l′−2∑
i=1

f

(
t′ − t

2iblog(g+1)c

)

≤ f(t′ − t) +

∫ ⌈
log(t′−t)
blog(g+1)c

⌉
−1

0

f

(
t′ − t

2xblog(g+1)c

)
dx

≤ f(t′ − t) +

∫ log(t′−t)
blog(g+1)c

0

f

(
t′ − t

2xblog(g+1)c

)
dx.

13

Taking into account that C(Tn) ≤ C(T̂n) if T̂n covers Tn, Lemma 3 trivially implies the following
bounds.

Lemma 4: For any Tn ∈ Tn there exists a T̂n ∈ Tn with ŵn(T̂n) > 0 such that T̂n covers Tn and

C(Tn) ≤ C(T̂n) ≤ (C(Tn) + 1)LC(Tn),n − 1 (24)

where

LC,n =


⌈

logn
blog(g+1)c

⌉
+ 1 if C = 0,

log n
C+1

blog(g+1)c + 2 if C ≥ 1.
(25)

Proof: The lower bound is trivial, and the upper bound directly follows from Lemma 3 for
C(Tn) = 0. For C(Tn) ≥ 1 the upper bounds follow since on each segment of Tn we can define T̂n
as in the proof of Lemma 3. Hence, if T = (t1, . . . , tC ;n), then

C(T̂n) + 1 ≤
C+1∑
i=1

(⌈
log(ti − ti−1)
blog(g + 1)c

⌉
+ 1

)
≤

C+1∑
i=1

(
log(ti − ti−1)
blog(g + 1)c

+ 2

)
≤ (C + 1)

(
log n

C+1

blog(g + 1)c
+ 2

)
where in the last step we used Jensen’s inequality and the concavity of the logarithm.

We now apply the above construction and results to the weight function {wt} = {wL1t } to obtain
our main theorem:

Theorem 2: Assume Algorithm 1 is run with weight function {ŵL1t } (derived from {wL1t }) with
g > 0, based on a prediction algorithm that satisfies (5) for some ρE . Let LC,n be defined by (25). If `
is convex in its first argument and takes values in the interval [0, 1] and ηt+1 ≤ ηt for t = 1, . . . , n−1,
then for all n, the adaptive regret of the algorithm satisfies

Ra
n ≤ L0,nρE

(
n

L0,n

)
+

n∑
t=1

ηt
8

+
rn (L0,n − 1)

ηn

while for all n and any T ∈ Tn the tracking regret satisfies

L̂n − Ln(T, a) ≤ LC(T),n(C(T) + 1)ρE

(
n

LC(T),n(C(T) + 1)

)
+

n∑
t=1

ηt
8

+
rn
(
LC(T),n(C(T) + 1)− 1

)
ηn

(26)

where
rn(C) = (Cn(T) + ε) lnn+ ln(1 + ε)− Cn(T) ln ε.

On the other hand, if ` is exp-concave for some η > 0 and we let ηt = η for t = 1, . . . , n in
Algorithm 1, then

Ra
n ≤ L0,nρE

(
n

L0,n

)
+
rn (L0,n − 1)

ηn

14

while for any T ∈ Tn the tracking regret satisfies

L̂n − Ln(T, a) ≤ LC(T),n(C(T) + 1)ρE

(
n

LC(T),n(C(T) + 1)

)
+
rn
(
LC(T),n(C(T) + 1)− 1

)
ηn

. (27)

Proof: First we show the bounds for the tracking regret. To prove the theorem, let T̂n be defined
as in Lemma 1, and we bound the first and last terms on the right-hand side of (7) and (8) (with ŵL1n
in place of wn). Note that the conditions on ρE imply that xρE(y/x) is a nondecreasing function of x
for any fixed y > 0 (this follows since ρE(z)/z = (ρE(z)− 0)/(z − 0) is a nonincreasing function of
z > 0 by the concavity of ρE , and hence zρE(1/z) is nondecreasing). Combining this with the bounds
on C(Tn) in Lemma 4 implies

(C(T̂n) + 1)ρE

(
n

C(T̂n) + 1

)
≤ LC(T),n(C(T) + 1)ρE

(
n

LC(T),n(C(T) + 1)

)
.

The last term (1/ηn) ln(1/ŵL1n (T̂n) in (7) and (8) can be bounded by noting that 1/ŵL1n (T̂n) ≤
1/wL1n (T̂n) by (19) and the latter can be bounded using (14); this is given by rn. This finishes the
proof of the tracking regret bounds.

Next we prove the bounds for the adaptive regret. Assume we want to bound the regret of our
algorithm in a segment [t, t′) with 1 ≤ t < t′ ≤ n + 1. By Lemma 3 there exists a transition path
T̂n such that it has a switching point at t, has at most l =

⌈
log(t′−t)
blog(g+1)c

⌉
+ 1 ≤ L0,n segments in [t, t′),

and ŵn(T̂n) > 0. Furthermore, let (T̃n, a) be a meta expert that follows the optimal base expert ı̃ in
the time interval [t, t′) and outside this interval it predicts the same as algorithm A applied on T̂n.
Now let t̂1, t̂2, . . . , t̂Ĉ denote the switching points of T̂n in [t+ 1, t′) where Ĉ < l, and let t̂0 = t and
t̂Ĉ+1 = t′.

Repeating the proof of Lemma 1 to bound the difference L̂n−Ln(T̃n, a), we obtain modified versions
of (7) and (8), where the first terms are changed. Indeed, instead of (9) we have

Ln(A, T̂n)− Ln(T̃n, a) =
Ĉ∑
c=0

(
LA(t̂c, t̂c+1)− Lı̃(t̂c, t̂c+1)

)

≤
Ĉ∑
c=0

ρE(t̂c+1 − t̂c) ≤ lρE

(
t′ − t
l

)
≤ L0,nρE

(
n

L0,n

)
. (28)

This proves the adaptive regret bounds.

Remark: Note that the tracking regret can be trivially bounded by (C(T) + 1) times the adaptive
regret (as suggested by [19]) but the tracking regret bounds are clearly better than this. The difference
is more pronounced for the case of the convex and bounded loss function, where the constant of
the main term is affected, while only lower order terms are affected in case of an exp-concave loss
function. In either case, the bounds of Theorem 2 slightly improve those of [19] for the adaptive regret.

15

E. Exponential weighting

We now apply Theorem 2 to the case where A is the exponentially weighted average forecaster
and the set of base experts is of size N , and discuss the obtained bounds (for simplicity we assume
C(T) ≥ 1, but C(T) = 0 would just slightly change the presented bounds). In this case, if ` is convex
and bounded, then by (3) the regret of A is bounded by ρE(n) =

√
n lnN . Setting ηt ≡ φ lnn/

√
n for

some φ > 0 (ηt is independent of C(T) but depends on the time horizon n), the bound (26) becomes,
for g = O(1),

L̂n − Ln(T, a) ≤

√
n(C(T) + 1)

(
log n

blog(g + 1)c
+ 2

)
lnN

+
φ
√
n lnn

8
+

(C + 1)
√
n

φ

(
log n

blog(g + 1)c
+ 2

)
+O

(√
n

lnn

)
.

Furthermore, if an upper bound C on the complexity (number of switches) of the meta experts in the
reference class is known in advance, then ηt can be set as a function of C ≥ C(T) as well, resulting

ηt ≡
√

8(C + 1) lnn
(

logn
blog(g+1)c + 2

)
/n, in which case the bound (26) becomes

L̂n − Ln(T, a) ≤

√
n(C(T) + 1)

(
log n

blog(g + 1)c
+ 2

)
lnN

+

√√√√n(C + 1)
(

logn
blog(g+1)c + 2

)
lnn

2
+O

√ n

(C + 1) lnn
(

logn
blog(g+1)c + 2

)
 .

We note that these bounds are only larger by a factor of O(
√

lnn) than the ones resulting from
earlier algorithms [11], [12], [27] which have complexity O(n2). In some applications, such as online
quantization [27], the number of base experts N depends on the time horizon n in a polynomial fashion,
that is, N ∼ nβ for some β > 0. In such cases the upper bound becomes O((C(T) + 1)

√
n ln2 n) if

the number of switches is unknown, and O(
√

(C(T) + 1)n ln2 n) if the maximum number of switches
C(T) is known in advance. This bound is within a factor of O(

√
log n) of the best achievable regret

for this case.
Next we observe that at the price of a slight increase of computational complexity, regret bounds

of the optimal order can be obtained. Indeed, setting g = 2nγ − 1 for some γ ∈ (0, 1) and ηt ≡
φ
√

(2+1/γ) lnn
n

, φ > 0 independently of the maximum number of switches,

L̂n − Ln(T, a)

≤

√
n(C(T) + 1) lnN

(
1

γ
+ 2

)
+

(
φ

8
+
C + 1

φ

)√(
1

γ
+ 2

)
n lnn+O

(√
n

lnn

)
.

If ηt is optimized for an a priori known bound C ≥ C(T), then we get

L̂n − Ln(T, a)

≤

√
n(C(T) + 1)

(
1

γ
+ 2

)(√
lnN +

√
lnn

2

)
+O

(√
n

(C + 1) lnn

)
.

16

These bounds are of the same order as the ones achievable with the quadratic complexity algorithms
[11], [24], [27], but the complexity of our algorithm is only O(nγ log n) times larger than that of
running A (which is typically linear in n). Thus, in a sense the complexity of our algorithm can get
very close to linear while guaranteeing a regret of optimal order. (Note however, that a factor 1/

√
γ

appears in the regret bounds so setting γ very small comes at a price.)
A similar behavior is observed for exp-concave loss functions. Indeed, if ` is exp-concave and A is

the exponentially weighted average forecaster, then by (4) the regret of A is bounded by ρE(n) = logN
η

.
In this case, for g = O(1), the bound (27) becomes

L̂n − Ln(T, a) ≤
(C(T) + 1)

(
log n

C(T)+1

blog(g+1)c + 2
)

η
(lnN + lnn) +O(1).

which is a factor of O(lnn) larger than the existing bounds [10]–[12], [14], [24] valid for algorithms
having complexity O(n2). Note that in this case the algorithm is strongly sequential as its parametriza-
tion is independent of the time horizon n. For g = 2nγ − 1, we obtain a bound of optimal order:

L̂n − Ln(T, a) ≤
(C(T) + 1)

(
1
γ

+ 2
)

η
(lnN + lnn) +O(1).

F. The weight function wKT

In this section we analyze the performance of Algorithm 1 for the case when the “Krichevsky-
Trofimov” weight function wKT is used. Our analysis is based on part (ii) of Lemma 3, following
ideas of Willems and Krom [17] who only considered the logarithmic loss. Applying the weight
function ŵKT (derived from wKT), this analysis improves the constants relative to Theorem 2 for
small values of g, although the resulting bound has a less compact form. Nevertheless, in some special
situations the bounds can be expressed in a simple form. This is the case for the logarithmic loss,
where, for the special choice g = 1, applying (22), the new bound now achieves that of [17] proved
for the same algorithm. The idea is that in the proof of Theorem 2 the concavity of ρE was used to get
simple bonds on sums which are sharp if the segments are of (approximately) equal length. However,
in our construction the length of the sub-segments (corresponding to the same segment of the original
transition path), or more precisely, their lower bounds, grow exponentially according to (23). This
makes it possible to improve the upper bounds in Theorem 2. It is interesting to note that the weight
functions wL1 and wL2 give better bounds for g = nγ , where the segment lengths are approximately
equal, while the large differences in the segment lengths for g = O(1) can be exploited by the weight
function wKT .

To obtain “almost closed-form” regret bounds for a general ρE , we need the following technical
lemma.

Lemma 5: Assume f : [1,∞)→ (0,∞) is a differentiable function and G ≥ 1. Define F : [1,∞)→
[0,∞) by

F (s) =

∫ log s
G

0

f
(s

2cG

)
dc

17

for all s ≥ 1. Then the second derivative of F is given by

F ′′(s) =
f ′(s)

sG ln 2
− f(s)

s2G ln 2
.

Therefore, F is concave on [1,∞) if sf ′(s) ≤ f(s) for all s ≥ 1.

Proof: First note that, since 2cG = s for c = log s
G

, Leibniz’s integral rule gives

F ′(s) =
f(1)

sG ln 2
+

∫ log s
G

0

f ′
(s

2cG

)
2−cG dc =

f(1)− f(1) + f(s)

sG ln 2
=

f(s)

sG ln 2

since

− ∂

∂c

f
(
s2−cG

)
sG ln 2

= f ′
(
s2−cG

)
2−cG.

Differentiating F ′ gives the desired result.

Next we give an improvement of Theorem 2 for small values of g.

Theorem 3: Assume ρE(x) is differentiable and satisfies ρE(x) ≥ xρ′E(x) for all x ≥ 1, Algorithm 1
is run with weight function {ŵKTt }. Let

S(C, n) = (C + 1)

∫ log n
C+1

blog(g+1)c

0

ρE

(
n

C + 1
2−cblog(g+1)c

)
dc+ 2(C + 1)ρE

(
n

C + 1

)
and

r̄n(C) =
(C + 1) ln 2

4

(
log2 n

C+1

blog(g + 1)c
+

(
4 +

4

blog(g + 1)c

)
log

n

C + 1

+ blog(g + 1)c+ 8

)
.

If ` is convex in its first argument and takes values in the interval [0, 1], and ηt+1 ≤ ηt for t =

1, . . . , n− 1, then for all n the adaptive regret of the algorithm satisfies

Ra
n ≤ S(0, n) +

n∑
t=1

ηt
8

+
r̄n(0)

ηn

while for any T ∈ Tn the tracking regret satisfies, for all n,

L̂n − Ln(T, a) ≤ S(C, n) +
n∑
t=1

ηt
8

+
r̄n(C)

ηn
. (29)

On the other hand, if ` is exp-concave for the value of η and ηt = η for t = 1, . . . , n in Algorithm 1,
then

Ra
n ≤ S(0, n) +

r̄n(0)

ηn

while for any T ∈ Tn the tracking regret satisfies

L̂n − Ln(T, a) ≤ S(C, n) +
r̄n(C)

ηn
. (30)

18

Proof: We proceed similarly to the proof of Theorem 2 by first applying Lemma 1. However, the
resulting two terms are now bounded using Lemma 3 (ii) instead of Jensen’s inequality, which allows
us to make use of the potentially large differences in the segment lengths.

For any transition path T = (t1, . . . , tC) ∈ Tn let T̂ = (t̂1, . . . , t̂Ĉ) ∈ Tn denote the transition path
defined by Lemma 3 with ŵKTn (T̂) > 0. The first term of the first upper bound given in Lemma 1 can
be bounded as follows: for any segment [tc, tc+1) = [t̂ĉ, t̂ĉ′) of T , Lemma 3 (i) and (21) yield

ĉ′−1∑
i=ĉ

ρE(t̂i+1 − t̂i) ≤
∫ log(tc+1−tc)

blog(g+1)c

0

ρE

(
tc+1 − tc

2cblog(g+1)c

)
dc+ 2ρE(tc+1 − tc).

Since the right-hand side of the above equation is a concave function of s = tc+1 − tc by Lemma 5
and the conditions on ρE , Jensen’s inequality implies

Ĉ∑
i=0

ρE(t̂i+1 − t̂i)

=
C∑
c=0

ĉ′−1∑
i=ĉ

ρE(t̂i+1 − t̂i)

≤
C∑
c=0

(∫ log(tc+1−tc)
blog(g+1)c

0

ρE

(
tc+1 − tc

2cblog(g+1)c

)
dc+ 2ρE(tc+1 − tc)

)

≤ (C + 1)

∫ log n
C+1

blog(g+1)c

0

ρE

(
n

C + 1
· 2−cblog(g+1)c

)
dc+ 2(C + 1)ρE

(
n

C + 1

)
. (31)

The weight function can be bounded in a similar way. By the standard bound (13) on the Krichevsky-
Trofimov estimate, we have

ln
1

ŵKTn (T̂)
≤ ln

1

wKTn (T̂)
≤

Ĉ∑
c=0

(
1

2
ln(t̂c+1 − t̂c) + ln 2

)
. (32)

Applying (20) for a segment [tc, tc+1) = [t̂ĉ, t̂ĉ′) of T yields
ĉ′−1∑
i=ĉ

(
1

2
ln(t̂i+1 − t̂i) + ln 2

)

≤

⌈
log(tc+1−tc)
blog(g+1)c

⌉
−1∑

i=0

(
1

2
ln

(
tc+1 − tc

2iblog(g+1)c

)
+ ln 2

)
+

1

2
ln(tc+1 − tc) + ln 2

=
ln 2

2

⌈
log(tc+1 − tc)
blog(g + 1)c

⌉log(tc+1 − tc)−

⌈
log(tc+1−tc)
blog(g+1)c

⌉
− 1

2
blog(g + 1)c+ 2


+

1

2
ln(tc+1 − tc) + ln 2

≤ ln 2

4

(
log2(tc+1 − tc)
blog(g + 1)c

+

(
4 +

4

blog(g + 1)c

)
log(tc+1 − tc) + blog(g + 1)c+ 8

)

19

where in the last step we bounded the ceiling function from above and from below, as appropriate.
Furthermore, it is easy to check that the last expression above is concave in s = tc+1 − tc. Therefore,
combining it with (32), applying Jensen’s inequality, we obtain

ln
1

ŵKTn (T̂)
≤ r̄n(C).

Applying this bound and (31) in Lemma 1 yields the statements of the theorem.

We now apply Theorem 3 to the exponentially weighted average predictor. For convex loss functions
we have ρE(n) =

√
n lnN . Assuming g = O(1), if ηt ≡ φ

√
2 ln 2

nblog(g+1)c log n, φ > 0 (i.e., ηt is
independent of the number of switches C(T)), we obtain

L̂n − Ln(T, a) ≤ 2
√

(C(T) + 1)n lnN

1 +
1−

√
C+1
n

blog(g + 1)c ln 2


+
φ+ C+1

φ

4
log n

√
n ln 2

2 blog(g + 1)c
+ o
(
(C + 1)

√
n
)
.

Optimizing ηt as a function of an upper bound C on the number of switches yields

L̂n − Ln(T, a) ≤ 2
√

(C(T) + 1)n lnN

1 +
1−

√
C+1
n

blog(g + 1)c ln 2


+

√
(C + 1)n log2 n

C+1
ln 2

8 blog(g + 1)c
+ o
(√

(C + 1)n
)
.

Note that if N = O(nβ) for some β > 0, the first term is asymptotically negligible compared to the
second in the above bounds. For example, if η is set independently of C, we obtain

L̂n − Ln(T, a) ≤
φ+ C+1

φ

4
log n

√
n ln 2

2 blog(g + 1)c
+ o
(
(C + 1)

√
n
)
.

On the other hand, if g = 2nγ − 1, the bound becomes

L̂n − Ln(T, a) ≤ 2
√

(C(T) + 1)n lnN

1 +
1−

√
C+1
n

γ lnn


+
φ+ C+1

φ

8

√
2n lnn

(
4 + γ +

1

γ

)
+O

(√
n

lnn

)
when η is set independently of C.

For exp-concave loss functions we have, for g = O(1),

L̂n − Ln(T, a) ≤ C + 1

4η

(
log n

C+1

blog(g + 1)c
+ 2

)(
4 lnN + ln

n

C + 1

)
+O(C lnn)

20

while if g = 2nγ − 1 we get

L̂n − Ln(T, a) ≤ C + 1

4η

(
4

(
1

γ
+ 2

)
lnN +

(
4 + γ +

1

γ

)
lnn

)
+O(C).

Note that for both types of loss functions we have a clear improvement relative to Theorem 2, where
we used the weight function wL1 , for the case when g = O(1). However, no such distinction can be
made for g = 2nγ − 1. Indeed, for convex loss functions constant multiplicative changes in η vary the
exact form of the factor (C + a)/b, with constants a, b > 0 in the second term, and, consequently, the
order of the bounds depends on the relative size of C, while, for example, the value of η determines
the order of the bounds for exp-concave losses, e.g., constructing the weigh function ŵ from wL1 is
better for γ ≥ 1/3. Also note that the above bounds for g = 3 and g = 4 have improved leading
constant compared to [18] and [28], respectively.

III. RANDOMIZED PREDICTION

The results of the previous section may be adapted to the closely related model of randomized
prediction. In this framework, the decision maker plays a repeated game against an adversary as
follows: at each time instance t = 1, . . . , n, the decision maker chooses an action It from a finite set,
say {1, . . . , N} and, independently, the adversary assigns losses `i,t ∈ [0, 1] to each action i = 1, . . . , n.
The goal of the decision maker is to minimize the cumulative loss L̂n =

∑n
t=1 `It,t.

Similarly to the previous section, the decision maker may try to compete with the best sequence
of actions that can change actions a limited number of time instants. More precisely, the set of base
experts is E = {1, . . . , N} and as before, we may define a meta expert that changes base experts
C times by a transition path T = (t1, . . . , tC ;n) and a vector of actions a = (i0, . . . , iC), where
t0 := 1 < t1 < . . . < tC < tC+1 := n + 1 and ij ∈ {1, . . . , N}. The total loss of the meta expert
indexed by (T, a), accumulated during n rounds, is

Ln(T, a) =
C∑
c=0

Lic(tc, tc+1) with Lic(tc, tc+1) =

tc+1−1∑
t=tc

`ic,t .

There are two differences relative to the setup considered earlier. First, we do not assume that the
loss function satisfies special properties such as convexity in the first argument (although we do require
that it be bounded). Second, we do not assume in the current setup that the action space is convex,
and so a convex combination of the experts’ advice is not possible. On the other hand, similar results
as before can be achieved if the decision maker may randomize its decisions, and in this section we
deal with this situation.

In randomized prediction, before taking an action, the decision maker chooses a probability distri-
bution pt over {1, . . . , N} (a vector in the probability simplex ∆N in RN), and chooses an action It
distributed according to pt (conditionally, given the past actions of the decision maker and the losses
assigned by the adversary).

Note that now both L̂n and Ln(T, a) are random variables not only because the decision takes
randomized decisions but also because the losses set by the adversary may depend on past randomized

21

choices of the decision maker. (This model is known as the “non-oblivious adversary”.) We may define
the expected loss of the decision maker by

`t(pt) =
N∑
i=1

pi,t`i,t

where pi,t denotes the i-th component of pt.
For details and discussion of this standard model we refer to [1, Section 4.1]. In particular, since the

results presented in Section I can be extended to time-varying loss functions and since `t is a linear
(convex) function, it can be shown that regret bounds of any forecaster in the model of Section I can
be extended to the sequence of loss functions `t. That is, the bounds can be converted into bounds
for the expected regret of a randomized forecaster. Furthermore, it is shown in [1, Lemma 4.1] how
such bounds in expectation can be converted to bound that hold with high probability.

For example, a straightforward combination of [1, Lemma 4.1] and Theorem 2 implies the following.
Consider a prediction algorithm A defined in the model of Section II-A, that chooses an action in the
decision space D = ∆N and suppose that it satisfies a regret bound of the form (5) under the loss
function `t(pt). Algorithm 2 below, which is a variant of Algorithm 1, converts A into a forecaster
under the randomized model. At each time instant t, the algorithm chooses, in a randomized way, a
transition path T = (t1, . . . , tC ; t) ∈ Tt, and uses the distribution pA,t(τt(T)) that A would choose, had
it been started at time τt(T), the time of the last change in the path T up to time t. In the definition
of the algorithm

Lt(A, T) =
C∑
c=0

LA(tc, tc+1)

denotes the cumulative expected loss of algorithm A, where we define t0 = 1 and tc+1 = t+ 1, and

LA(tc, tc+1) =

tc+1−1∑
τ=tc

`τ (pA,τ (tc))

is the cumulative expected loss suffered by A in the time interval [tc, tc+1) with respect to `τ for
τ ∈ [tc, tc+1).

Algorithm 2 Randomized tracking algorithm.
Input: Prediction algorithm A, weight function {wt; t = 1, . . . , n}, learning parameters ηt > 0, t =

1, . . . , n.
For t = 1, . . . , n choose T ∈ Tt according to the distribution

qt(T) =
wt(T)e−ηtLt−1(A,Tt−1)∑

T ′∈Tt wt(T
′)e−ηtLt−1(A,T ′t−1)

,

choose pt = pA,t(τt(T)), and pick It ∼ pt.

Corollary 1: Suppose `i,t ∈ [0, 1] for all i = 1, . . . , N and t = 1, . . . , n, and A satisfies (5) with
respect to the loss function {`t}. Assume Algorithm 2 is run with weight function {ŵL1} for some

22

ε > 0. Let δ ∈ (0, 1). For any T ∈ Tn, the regret of the algorithm satisfies, with probability at least
1− δ,

L̂n − Ln(T, a) ≤ LC(T),n(C(T) + 1)ρE

(
n

LC(T),n(C(T) + 1)

)
+

n∑
t=1

ηt
8

+
rn
(
LC(T),n(C(T) + 1)− 1

)
ηn

+

√
n

2
ln

1

δ
.

where rn(C) and LC,n are defined as in Theorem 2.

Proof: First note that Theorem 2 can easily be extended to time-varying loss functions (in fact,
Lemma 1, and consequently Theorem 2, uses the bound (2) which allows time-varying loss functions).
Combining the obtained bound for the expected loss with [1, Lemma 4.1] proves the corollary.

IV. EXAMPLES

In this section we apply the results of the paper for a few specific examples.

Example 1 (Krichevsky-Trofimov mixtures): Assume D = E = (0, 1) and Y = {0, 1}, and consider
the logarithmic loss defined as `(p, y) = −Iy=1 log p − Iy=0 log(1 − p). As mentioned before, the
logarithmic loss is exp-concave with η ≤ 1, and hence we choose η = 1. This loss plays a central role
in data compression. In particular, if a prediction method achieves, on a particular binary sequence
yn = (y1, . . . , yn), a loss L̂n, then using arithmetic coding the sequence can be described with at most
Ln + 2 bits [29]. We note that the choice of the expert class E = (0, 1) corresponds to the situation
where the sequence yn is encoded using an i.i.d. coding distribution. Competing against the expert
class E = (0, 1) also has a probabilistic interpretation: it is equivalent to minimizing the worst case
maximum coding redundancy relative to the class of i.i.d. source distributions on {0, 1}n.

Let n0(t) =
∑t

τ=1 Iyτ=0 and n1(t) =
∑t

τ=1 Iyτ=1 denote the number of 0s and 1s in yt, respectively.
Then the loss of an expert θ ∈ (0, 1) at time t is

Lθ,t = − log
(
(1− θ)n0(t)θn1(t)

)
= −n0(t) log(1− θ)− n1(t) log θ

which is the negative log-probability assigned to yt by a memoryless binary Bernoulli source generating
1s with probability θ. The Krichevsky-Trofimov forecaster is an exponentially weighted average
forecaster over all experts θ ∈ E using initial weights 1/(π

√
θ(1− θ)) (i.e., the Beta(1/2, 1/2)

distribution) defined as

pKTt (yt−1) =

∫ 1

0

e−Lθ,t−1

π
√
θ(1− θ)

dθ =

∫ 1

0

(1− θ)n0(t−1)θn1(t−1)

π
√
θ(1− θ)

dθ.

It is well known that pKTt can be computed efficiently as pKTt (yt−1) = (n1(t − 1) + 1/2)/t. The
performance of the Krichevsky-Trofimov mixture forecaster can be bounded as

Rn ≤
1

2
lnn+ ln 2.

In this framework, a meta expert based on the base expert class E is allowed to change θ ∈ E a
certain number of times. In the probabilistic interpretation, this corresponds to the problem of coding
a piecewise i.i.d. source [10], [11], [15]–[17]. If we apply Algorithm 1 to this problem with ŵKT , we

23

can improve upon Theorem 3 by using r̄n(C) instead of S(C, n) in the bound (note that r̄n(C) was
obtained by calculating the Krichevsky-Trofimov bound for the transition probabilities), and obtain,
for any transition path T ∈ Tn and meta expert (T, a)

L̂n − Ln(T, a) ≤ 2r̄n(C(T)) =
(C(T) + 1) ln 2

2

log2 n
C(T)+1

blog(g + 1)c
+O((C(T) + 1) log n).

For g = 1, this bound recovers that of [17] (at least in the leading term), and improves the leading
constant for g = 3 and g = 4 when compared to [18] and [19], respectively.

On the other hand, for g = 2nγ − 1, γ > 0, using with ŵL1 in Algorithm 1, Theorem 3 implies

L̂n − Ln(T, a) ≤ 3(C + 1)

2

(
1

γ
+ 2

)
lnn+O(1).

This bound achieves the optimal O(lnn) order for any γ > 0; however, with increased leading constant.
On the negative side, for specific choices of γ our algorithm does not recover the best leading constants
now in the literature (partly due to the common bounding technique for all γ): If γ = 1/2, our bound
is a constant factor worse than those of [15] and [16] which have the same O(n3/2) complexity
(disregarding logarithmic factors); on the other hand, in case γ = 1 our algorithm is identical to the
O(n2) complexity algorithm of Shamir and Merhav [11], and hence an optimal bound can be proved
for ŵL1 (and for ŵL2), as done in [11] achieving Merhav’s lower bound [30].

Example 2 (Tracking structured classes of base experts): In recent years a significant body of re-
search has been devoted to prediction problems in which the forecaster competes with a large but
structured class of experts. We refer to [1], [5], [7], [8], [20], [27], [31], [32] for an incomplete but
representative list of papers. A quite general framework that has been investigated is the following:
a base expert is represented by a d-dimensional binary vector v ∈ {0, 1}d. Let E ⊂ {0, 1}d be the
class of experts. The decision space D is the convex hull of E , so the forecaster chooses, at each time
instance t = 1, . . . , n, a convex combination p̂t =

∑
v∈E πv,tv ∈ D ⊂ [0, 1]d. The outcome space is

Y = [0, 1]d and if the outcome is yt ∈ Y , then the loss of expert v is `(v, yt) = vTyt, the standard
inner product of v and yt. The loss of the forecaster equals `(p̂t, yt) =

∑
v∈E πv,tv

Tyt. [8] introduces
a general prediction algorithm, called “Component Hedge,” that achieves a regret

n∑
t=1

`(p̂t, yy)−min
v∈E

n∑
t=1

`(v, yt) ≤ d
√

2Kn ln(d/K) + dK ln(d/K)

where K = maxv∈E ‖v‖1. What makes Component Hedge interesting, apart from its good regret
guarantee, is that for many interesting classes of base experts it can be calculated in time that is
polynomial in d, even when E has exponentially many experts. We refer to [8] for a list of such
examples. The results of this paper show that we may obtain efficiently computable algorithms for
tracking such structured classes of base experts. For example, (26) of Theorem 2 applies in this case,
with ρE(n) = d

√
2Kn ln(d/K)+dK ln(d/K). The calculations of Section II-E may be easily modified

for this case in a straightforward manner.

Example 3 (Tracking the best quantizers): The problem of limited-delay adaptive universal lossy
source coding of individual sequences has recently been investigated in detail [21]–[23], [27], [33]–[35].
In the widely used model of fixed-rate lossy source coding at rate R, an infinite sequence of [0, 1]-valued

24

source symbols x1, x2, . . . is transformed into a sequence of channel symbols y1, y2, . . . which take
values from the finite channel alphabet {1, 2, . . . ,M}, M = 2R, and these channel symbols are then
used to produce the ([0, 1]-valued) reproduction sequence x̂1, x̂2, The quality of the reproduction
is measured by the average distortion

∑n
t=1 d(xt, x̂t), where d is some nonnegative bounded distortion

measure. The squared error d(x, x′) = (x− x′)2 is perhaps the most popular example.
The scheme is said to have overall delay at most δ if there exist nonnegative integers δ1 and δ2

with δ1 + δ2 ≤ δ such that each channel symbol yn depends only on the source symbols x1, . . . , xn+δ1
and the reproduction x̂n for the source symbol xn depends only on the channel symbols y1, . . . , yn+δ2 .
When δ = 0, the scheme is said to have zero delay. In this case, yn depends only on x1, . . . , xn, and
x̂n on y1, . . . , yn, so that the encoder produces yn as soon as xn becomes available, and the decoder
can produce x̂n when yn is received. The natural reference class of codes (experts) in this case is the
set of M -level scalar quantizers

Q = {Q : [0, 1]→ {c1, . . . , cM}, {c1, . . . , cM} ⊂ [0, 1]} .

The relative loss with respect to the reference class Q is known in this context as the distortion
redundancy. For the squared error distortion, the best randomized coding methods [23], [33], [35],
with linear computational complexity with respect to the set Q, yield a distortion redundancy of order
O(n−1/4

√
log n).

The problem of competing with the best time-variant quantizer that can change the employed
quantizer several times (i.e., tracking the best quantizer), was analyzed in [27], based on a com-
bination of [23] and the tracking algorithm of [12]. There the best linear-complexity scheme achieves
O((C + 1) log n/n6) distortion redundancy when an upper bound C on the number of switches in
the reference class is known in advance. On the other hand, applying our scheme with g = O(1) in
the method of [27] and using the bounds in Section II-E, gives a linear-complexity algorithm with
distortion redundancy O((C + 1)1/2 log3/4(n)/n1/4) + O((C + 1)/(log1/2(n)/n1/2)) if C is known in
advance and only slightly worse O((C + 1)1/2 log3/4(n)/n1/4) + O((C + 1) log(n)/n1/2) distortion
redundancy if C is unknown. When g = 2nγ − 1, the distortion redundancy for linear complexity
becomes somewhat worse, proportional to n−

1
2(2+γ) up to logarithmic factors.

V. CONCLUSION

We examined the problem of efficiently tracking large expert classes where the goal of the predictor
is to perform as well as a given reference class. We considered prediction strategies that compete with
the class of switching strategies that can segment a given sequence into several blocks, and follow the
advice of a different base expert in each block. We derived a family of efficient tracking algorithms
that, for any prediction algorithm A designed for the base class, can be implemented with time and
space complexity O(nγ log n) times larger than that of A, where n is the time horizon and γ ≥ 0

is a parameter of the algorithm. With A properly chosen, our algorithm achieves a regret bound of
optimal order for γ > 0, and only O(log n) times larger than the optimal order for γ = 0 for all
typical regret bound types we examined. For example, for predicting binary sequences with switching
parameters, our method achieves the optimal O(log n) regret rate with time complexity O(n1+γ log n)

for any γ ∈ (0, 1).

25

While if an upper bound on the maximal number of switches in the reference class is known in
advance and the base expert class is small, the optimal regret rate is achievable with an algorithm
of linear computational complexity [12]. Our results show that the optimal rate is achievable with
the slightly larger O(n1+γ log n), γ > 0, complexity even if the number of switches is not known in
advance and the base expert class is large. It remains, however, an open question whether the optimal
rate is achievable with a linear complexity algorithm in this case.

REFERENCES

[1] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge: Cambridge University Press, 2006.
[2] A. V. Chernov and F. Zhdanov, “Prediction with expert advice under discounted loss,” in ALT, 2010, pp. 255–269.
[3] R. E. Krichevsky and V. K. Trofimov, “The performance of universal encoding,” IEEE Trans. Inform. Theory, vol. IT-27, pp.

199–207, Mar. 1981.
[4] F. M. J. Willems, Y. N. Shtarkov, and T. J. Tjalkens, “The context-tree weighting method: Basic properties,” IEEE Trans. Inform.

Theory, vol. IT-41, pp. 653–664, May 1995.
[5] E. Takimoto and M. K. Warmuth, “Path kernels and multiplicative updates,” Journal of Machine Learning Research, vol. 4, pp.

773–818, 2003.
[6] M. Herbster and M. K. Warmuth, “Tracking the best linear predictor,” Journal of Machine Learning Research, vol. 1, pp. 281–309,

2001.
[7] D. P. Helmbold and M. K. Warmuth, “Learning permutations with exponential weights,” JMLR, vol. 10, pp. 1705–1736, 2009.
[8] W. M. Koolen, M. K. Warmuth, and J. Kivinen, “Hedging structured concepts,” in 23rd Annual Conference on Learning Theory,

2010.
[9] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for online convex optimization,” Machine Learning Journal,

vol. 69, no. 2-3, pp. 169–192, 2007.
[10] F. M. J. Willems, “Coding for a binary independent piecewise-identically-distributed source,” IEEE Trans. Inform. Theory, vol.

IT-42, pp. 2210–2217, Nov. 1996.
[11] G. I. Shamir and N. Merhav, “Low-complexity sequential lossless coding for piecewise-stationary memoryless sources,” IEEE

Trans. Inform. Theory, vol. IT-45, pp. 1498–1519, July 1999.
[12] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine Learning, vol. 32, no. 2, pp. 151–178, 1998.
[13] V. Vovk, “Derandomizing stochastic prediction strategies,” Machine Learning, vol. 35, no. 3, pp. 247–282, Jun. 1999.
[14] W. Koolen and S. de Rooij, “Combining expert advice efficiently,” in Proceedings of the 21st Annual Conference on Learning

Theory, COLT 2008, Helsinki, Finland, July 2008, pp. 275–286.
[15] C. Monteleoni and T. S. Jaakkola, “Online learning of non-stationary sequences,” in Advances in Neural Information Processing

Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.
[16] S. de Rooij and T. van Erven, “Learning the switching rate by discretising Bernoulli sources online,” in Proceedings of the

Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS 2009), ser. JMLR Workshop and Conference
Proceedings, vol. 5, Clearwater Beach, Florida USA, April 2009, pp. 432–439.

[17] F. Willems and M. Krom, “Live-and-die coding for binary piecewise i.i.d. sources,” in Proceedings of the 1997 IEEE International
Symposium on Information Theory (ISIT 1997), Ulm, Germany, June-July 1997, p. 68.

[18] A. György, T. Linder, and G. Lugosi, “Efficient tracking of the best of many experts,” in Information and Communication
Conference, Budapest, Aug. 25–28 2008, pp. 3–4.

[19] E. Hazan and C. Seshadhri, “Efficient learning algorithms for changing environments,” in Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, 2009, pp. 393–400.

[20] A. Kalai and S. Vempala, “Efficient algorithms for the online decision problem,” in Proceedings of the 16th Annual Conference
on Learning Theory and the 7th Kernel Workshop, COLT-Kernel 2003, B. Schölkopf and M. Warmuth, Eds. New York, USA:
Springer, Aug. 2003, pp. 26–40.

[21] T. Linder and G. Lugosi, “A zero-delay sequential scheme for lossy coding of individual sequences,” IEEE Trans. Inform. Theory,
vol. 47, pp. 2533–2538, Sep. 2001.

[22] T. Weissman and N. Merhav, “On limited-delay lossy coding and filtering of individual sequences,” IEEE Trans. Inform. Theory,
vol. 48, pp. 721–733, Mar. 2002.

[23] A. György, T. Linder, and G. Lugosi, “Efficient algorithms and minimax bounds for zero-delay lossy source coding,” IEEE
Transactions on Signal Processing, vol. 52, pp. 2337–2347, Aug. 2004.

[24] S. Kozat and A. Singer, “Universal switching linear least squares prediction,” IEEE Transactions on Signal Processing, vol. 56,
no. 1, pp. 189–204, Jan. 2008.

26

[25] ——, “Switching strategies for sequential decision problems with multiplicative loss with application to portfolios,” IEEE
Transactions on Signal Processing, vol. 57, no. 6, pp. 2192–2208, June 2009.

[26] ——, “Universal randomized switching,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1922–1927, March 2010.
[27] A. György, T. Linder, and G. Lugosi, “Tracking the best quantizer,” IEEE Transactions on Information Theory, vol. 54, pp.

1604–1625, Apr. 2008.
[28] E. Hazan and C. Seshadhri, “Adaptive algorithms for online decision problems,” Elestronic Colloquium on Computational

ComplexityProceedings of the 26th Annual International Conference on Machine Learning, p. Report No. 88, 2007.
[29] T. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 2006.
[30] N. Merhav, “On the minimum description length principle for sources with piecewise constant parameters,” IEEE Trans. Inform.

Theory, pp. 1962–1967, November 1993.
[31] N. Cesa-Bianchi and G. Lugosi, “Combinatorial bandits,” Journal of Computer and System Sciences, to appear.
[32] V. Dani, T. Hayes, and S. Kakade, “The price of bandit information for online optimization,” in Proceedings of NIPS 2008., 2008.
[33] A. György, T. Linder, and G. Lugosi, “A ”follow the perturbed leader”-type algorithm for zero-delay quantization of individual

sequences,” in Proc. Data Compression Conference, Snowbird, UT, USA, Mar. 2004, pp. 342–351.
[34] S. Matloub and T. Weissman, “Universal zero delay joint source-channel coding,” IEEE Transactions on Information Theory,

vol. 52, pp. 5240–5250, 2006.
[35] A. György and G. Neu, “Near-optimal rates for limited-delay universal lossy source coding,” in Proceedings of the IEEE

International Symposium on Information Theory, St. Petersburg, Russia, July-August 2011, pp. 2344–2348.

