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ABSTRACT. Given an i.i.d. sample drawn from a density f on the real line, the problem of testing

whether f is in a given class of densities is considered. Testing procedures constructed on the basis

of minimizing the L1-distance between a kernel density estimate and any density in the hypo-

thesized class are investigated. General non-asymptotic bounds are derived for the power of the

test. It is shown that the concentration of the data-dependent smoothing factor and the ‘size’ of the

hypothesized class of densities play a key role in the performance of the test. Consistency and non-

asymptotic performance bounds are established in several special cases, including testing simple

hypotheses, translation/scale classes and symmetry. Simulations are also carried out to compare

the behaviour of the method with the Kolmogorov-Smirnov test and an L2 density-based approach

due to Fan [Econ. Theory 10 (1994) 316].
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1. Introduction

Given a class of densities F on R and a sample of n i.i.d. random variables X1, . . . ,Xn drawn

from an unknown density f, the problem is to decide whether the null hypothesis H0 : f 2 F is

true or not. For all goodness-of-fit tests we require that, under the null hypothesis, the

probability of rejecting H0 be at most a where a 2 (0, 1) is a pre-specified value.

The tests we propose are based on the kernel density estimator. Let K : R ! R be a kernel

function with
R
K ¼ 1. For convenience we assume that K is non-negative. For a smoothing

factor h > 0, the kernel density estimator fn,h is defined as fn;hðxÞ ¼ 1=n
Pn

i¼1 Khðx� XiÞ, where
Kh(Æ) ¼ (1/h)K(Æ/h) (see Akaike, 1954; Parzen, 1962; Rosenblatt, 1956). In most of the cases

along this paper (but not always) the smoothing parameter will tend to zero when the sample size

goes to infinity. We will use hn instead of h to make explicit the dependence on the sample size.

The composite goodness-of-fit tests we investigate in this paper all have the form: accept

H0 if and only if Tn � ca, where ca is an appropriate constant and the test statistic Tn has

the form

Tn ¼ inf
g2F

Z
jfn;hn � gj:

Different versions of these tests differ in their choices of the smoothing factor hn and the

constant ca. In general, we allow the smoothing factor hn ¼ hn(X1, . . . ,Xn) to depend on

the data. The main results of the paper point out that the choice of hn plays a crucial role in the

performance of the test. In particular, we require that the L1 error of the estimator fn,hn be

sharply concentrated around its mean. We show that this property is satisfied in several

natural choices of the smoothing factor.

Some killing-the-bias version of our test statistic may be defined as

T 0
n ¼ inf

g2F

Z
jfn;hn � Khn � gj:
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However, this version will not be considered in this paper as it is incompatible with the

minimum-distance bandwidth choice studied in section 3. This smoothing-the-model approach

has been widely used in the regression context for smooth alternatives (see Härdle & Kneip,

1999, and references therein for details).

To keep the discussion simple we only consider univariate data in this paper. Extensions to

the multivariate case are straightforward.

Classical approaches to solve this goodness-of-fit problem use empirical process theory. For

instance, the popular Kolmogorov–Smirnov test considers the maximal difference between the

empirical measure and the hypothesized probability measure over all sets of the form (�1, x].

The L1 approach is very much related to this, as it coincides with the total variation distance,

i.e. the maximal difference between the measure induced by the density estimator and the

hypothesized measure over all Borel sets.

The idea of using non-parametric density estimators for goodness-of-fit tests goes back to

Bickel & Rosenblatt (1973) and Rosenblatt (1975).

More recent work includes Ahmad & Cerrito (1993) and Fan (1994, 1998). All these papers

base their tests on the L2 error of the kernel density estimator. A distinguishing feature of the

approach of this paper is the use of the L1 error instead. This allows to drop unnecessary

assumptions as well as to obtain non-asymptotic performance bounds. In fact, our results are

strongly based on some specific desirable properties of the L1 error.

Using the L1 distance in hypothesis testing is not new: Györfi & van der Meulen (1991) have

proven the universal consistency of a similar test, in the case of a simple hypothesis, based on

the histogram estimator. In fact, the study of testing based on the L1 (or total variation)

distance goes back to Hoeffding & Wolfowitz (1958) and LeCam (1973). For related results in

a somewhat different setup we refer to Devroye & Lugosi (2002). Finally, we mention that the

results of the paper may be used to derive upper bounds for the minimax rates of testing in

certain situations. (For the definition of minimax rates see e.g. Lepski & Tsybakov, 2000.)

However, these upper bounds are very general and it remains to see in what concrete problems

the minimal rates are actually achieved by the L1 kernel-based test.

The rest of the paper proceeds as follows. In section 2, non-asymptotic bounds are derived

for the performance of the test which are valid for all densities f and for all classes F. The main

assumption in these results is that the test statistic Tn is sharply concentrated around its mean,

a property which is proven in most natural examples. These general results show that the test

has an excellent behaviour whenever the class F is not �too large� in a certain sense and/or the

kernel estimator has certain stability properties.

In section 3, a general smoothing factor is defined which fits naturally in the framework of

the minimum-distance test studied in this paper. The corresponding test statistic is shown to

satisfy the concentration property required for the general results of section 2. As an example,

the test is shown to be universally consistent under the only requirement that F is totally

bounded, a surprisingly strong property.

In section 4, the general results of section 2 are applied to the simplest special case when F
contains a single density f0, to the composite hypothesis case, where F is a translation/scale

class, and also for testing symmetry.

To make the main ideas more transparent, in the majority of the paper we ignore com-

putational issues and assume that all quantities which depend on the data and the class F can

be computed. Nevertheless, in section 5, we describe some simulation results.

2. General results

In this section, we investigate some basic properties of tests of the proposed form. We establish

several results under general assumptions on the class F and the smoothing factor hn. In
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subsequent sections, we illustrate in several applications how these results can be used in

concrete examples.

In the rest of the paper, Ef and Pf denote expectation and probability under the assumption

that the data are drawn according to the density f.

Recall that we investigate tests based on the statistic Tn ¼ infg 2 F
R
|fn,hn � g| where hn ¼

hn(X1, . . . ,Xn) is a possibly data-dependent smoothing factor. Then, given a class of densities F
and a constant a 2 (0, 1), we may compute

ca ¼ inf c : sup
f2F

Pf ½Tn > c� � a

( )
:

Computability of this constant is a simplifying assumption we use here to focus on essentials.

In any case, ca may be approximated with arbitrary precision using Monte-Carlo simulations.

As we accept H0 if and only if Tn � ca, the definition of ca immediately guarantees that if the

data are indeed drawn from a density in F, then the rejection probability is bounded by a, as
desired. It remains to see how the test behaves when f j2 F. The starting point for bounding the
probability of acceptance is the following simple result. The key assumption is that, regardless

of whether f 2 F or not, the test statistic Tn is assumed to be concentrated around its expected

value. Later we will see that this assumption is satisfied for several natural choices of the

smoothing factor.

Theorem 1

Let bn ¼def supf2F Ef Tn and assume that there exist positive constants j1, j2 such that for every

� > 0 and for all densities f,

Pf ½jTn � Ef Tnj > �� � j1 e�j2n�2 :

Then ca � bn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=j2nÞ log ðj1=aÞ

p
and for any density f and d > 0, if

Ef Tn > bn þ dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j2n
log

j1
a

r
;

then

Pf ½H0 is accepted� � j1 e�j2nd
2

:

Note that bn � supf2F Ef
R
|fn,hn � f| which is the largest L1 error of the kernel density

estimator used in the procedure within the class F and therefore bn is typically small (unless the

class F is very large and/or contains densities which are hard to estimate with a kernel

estimator). On the other hand, if f j2 F then it is expected that EfTn is large. For example, in

typical situations we will have that bn ! 0 and for f j2 F, EfTn does not converge to zero. In

such cases the probability of making a mistake is exponentially small.

Proof. Fix any d > 0. Using the definition of the test and the assumptions,

Pf ½H0 is accepted� �Pf ½Ef Tn � Tn � d� þ IfEf Tn � ca þ dg

� j1 � e�j2nd
2 þ IfEf Tn � ca þ dg;

where I denotes the indicator function. To finish the proof, we need to show that

ca � bn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=j2nÞ log ðj1=aÞ

p
. Recall the definition of ca and fix any c > 0 and c < c, then
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sup
f2F

Pf ½Tn > c� ¼ sup
f2F

Pf ½ðTn � Ef TnÞ þ Ef Tn > c�

� j1 e�j2nc2 þ sup
f2F

IfEf Tn > c� cg

¼ j1 e�j2nc2 þ I sup
f2F

Ef Tn > c� c

( )

¼ j1 e�j2nc2 þ I bn > c� cf g:

The obtained upper bound equals a if c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=j2nÞ logðj1=aÞ

p
and c � bn þ c, which con-

cludes the proof.

As mentioned above, the main message of theorem 1 is that the performance of the test for

f j2 F depends on the size of bn and EfTn. The sequence bn simply depends on the performance

of the kernel estimator for densities within the class F. Bounding bn is relatively straight-

forward, one may use standard techniques for analysing the L1 error of the kernel density

estimator (see the books of Devroye & Györfi, 1985; Devroye, 1987; Eggermont & LaRiccia,

2001; for exhaustive studies). To make the theorem useful, we also need to assure that for

f j2 F, EfTn is not too small. Ideally, EfTn should be something of the order of infg2F
R
|f � g|, a

strictly positive quantity. In particular, under very general conditions, theorem 1 implies

consistency and exponentially vanishing probability of acceptance. We formulate this in the

following immediate corollary.

Corollary 1

Assume the conditions of theorem 1 and suppose limn!1 bn ! 0 and that for f j2 F,
lim infn!1EfTn ¼ infg2F

R
|g � f|. Then the test is consistent (that is, for any f j2 F the test

rejects the null hypothesis eventually almost surely), and moreover, if n is so large that

bn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j2n
log

j1
a

r
<

1

2
inf
g2F

Z
jg� f j � �

for some � > 0 and EfTn � infg2F
R
|g � f| � �, then

Pf ½H0 is accepted� � j1 e�j2nðinfg2F
R

jg�f jÞ2=4:

The asymptotic condition on EfTn is satisfied under minimal assumptions on the smoothing

factor as can be seen in the following lemma. Its proof (not detailed here) can be done using

standard arguments and the L1 universal consistency of the kernel density estimator (see

Devroye & Györfi, 1985).

Lemma 1

Assume that f j2 F and (hn) is such that hn ! 0 and nhn ! 1 almost surely as n ! 1. Then

lim infn!1EfTn ¼ infg2F
R
|g � f| > 0.

In the sequel, we offer two basic tools for proving non-asymptotic lower bounds for EfTn. In

both cases we relate EfTn to infg2F Ef
R
|fn,h � g|. More precisely, our aim is to understand

under what conditions on hn and F (and possibly f ) we have

Ef Tn � inf
g2F

Ef

Z
jfn;hn � gj:

Lemma 1 shows that a desirable lower bound can be proven whenever hn is such that the

kernel estimator is stable. The second lemma offers a very different argument to show that
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such lower bounding is possible if the class F is totally bounded in L1. The notation

Jg ¼def
R
jfn;h � gj is introduced for shortening.

Lemma 2

Let the auxiliary random variables X 0
1; . . . ;Xn

0 be identically distributed with the Xis and inde-

pendent of them. Let the kernel estimate defined by the auxiliary sample be denoted by f 0
n;h0n

where

h0n ¼ hnðX0
1; . . . ;X

0
nÞ. Then for any density f, and any class F,

Ef Tn � inf
g2F

Ef

Z
jfn;hn � gj � Ef

Z
jf 0

n;h0n
� fn;hn j:

Proof. The proof is based on a symmetrization argument. Denote J 0g ¼
def R jf 0

n;h0 � gj. Then,

inf
g2F

Ef

Z
jfn;hn � gj � Ef Tn ¼ Ef inf

g2F
Ef Jg � inf

g2F
Jg

� �
� Ef sup

g2F
ðEf Jg � JgÞ

¼ Ef sup
g2F

ðEf ðJ 0g � JgjX1; . . . ;XnÞÞ

� Ef sup
g2F

ðJ 0g � JgÞ

� Ef

Z
jf 0
n;h0 � fn;hj;

which concludes the proof.

Remark. The term Ef
R
jf 0
n;h0n

� fn;hn j appearing in the lemma is independent of the size of the

class F, and it measures the stability of the kernel estimator. It may be bounded further by

2Ef
R
|fn,hn � Ef fn,hn|, twice the �variation term� of the L1 error. If hn is independent of the data,

the behaviour of this term is well understood. For example, if f is of bounded support of length

s( f ), then the variation term is bounded by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðf Þ þ 2hn

p ffiffiffiffiffiffiffiffiffiffiR
K2

p
ffiffiffiffiffiffiffi
nhn

p

(see e.g. Devroye & Lugosi, 2000). On the other hand, it is easy to see that no non-trivial

density-free upper bound exists for Ef
R
jf 0

n;h0n
� fn;hn j, even if hn is independent of the data. In

contrast to this, the next lemma provides a density-free bound which is only meaningful if the

class F is not too �large�.
The bound we offer next involves the covering numbers of the class F. The �-covering

number of a class of densities F is the smallest integer NF (�) ¼ N such that there exist N

densities f1, . . . , fN such that for all f 2 F, minj�N

R
|f � fj| � �. If no such integer exists, then

we say that NF (�) ¼ 1.

Lemma 3

Assume that the smoothing factor hn is such that, for all densities f and g, and any d > 0,

Pf [EfJg � Jg > d] � j1 e
�j2nd2, where j1, j2 are constants. Then for any density f,

Ef Tn � inf
g2F

Ef

Z
jfn;hn � gj � inf

�>0
2�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log j1eNF ð�Þð Þ

j2n

s !
:
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Proof. Fix � > 0 and let the densities g1, . . . , gN form an �-covering of F, where N ¼ NF (�).

Then, just like in lemma 2,

inf
g2F

Ef

Z
jfn;hn � gj � Ef Tn � Ef sup

g2F
ðEf Jg � JgÞ:

The right-hand side, in turn, may be bounded, using the triangle inequality twice, as

Ef sup
g2F

ðEf Jg � JgÞ � 2�þ Ef max
j¼1;...;N

ðEf Jgj � JgjÞ:

By assumption, and using the union-of-events bound, for any d > 0,

Pf max
j¼1;...;N

ðEf Jgj � JgjÞ > d

� �
� Nj1 e�j2nd

2

:

As for any non-negative random variable Z and positive number u,

EZ �
ffiffiffiffiffiffiffiffiffiffiffiffi
EðZ2Þ

q
¼

Z 1

0

P½Z2 > d� dd
� �1=2

� uþ
Z 1

u
P½Z2 > d� dd

� �1=2

we may integrate the above inequality and optimize the bound in u to obtain the desired

inequality.

We end this section by investigating the assumptions of concentration in theorem 1 and also

in lemma 3. We begin by pointing out that if hn does not depend on the data then these

conditions are indeed satisfied.

Lemma 4

Assume that the smoothing factor hn may depend on the sample size n and on the class F but not

on the data X1, . . . ,Xn. Then for all f and � > 0,

Pf ½jTn � Ef Tnj > �� � 2 e�n�2=2:

Moreover, for any density g,

Pf ½Ef Jg � Jg > d� � e�nd2=2:

Proof. The proof of both inequalities is based on a well-known concentration inequality

due to McDiarmid (1989), and is similar to arguments of Devroye (1991).

We only prove the first inequality, the second is similar. Write

/ðx1; . . . ; xnÞ ¼ Tn ¼ inf
g2F

Z
1

n

Xn
i¼1

Khn ðx� xiÞ � g

�����
�����:

To apply McDiarmid’s inequality, we only need to show that the difference of the function /
evaluated at two vectors that only differ in their ith component can be bounded by 2/n for all

i ¼ 1, . . . , n. Indeed, writing f ðiÞ
n;hn

for the kernel density estimate obtained by replacing xi by x0i
(but leaving the other data points unchanged), and g0 for the density minimizing

R
jf ðiÞ
n;hn

� gj
over g 2 F, we obtain

/ðx1; . . . ; xnÞ � /ðx1; . . . ; x0i; . . . ; xnÞ

�
Z

jfn;hn � g0j �
Z

f ðiÞ
n;hn

� g0
��� ���
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�
Z

jfn;hn � f ðiÞ
n;hn

j

¼ 1

n

Z
jKhnðx� xiÞ � Khnðx� x0iÞj dx

� 2

n

and the proof is complete.

Very often, the smoothing factor depends on the data but it is concentrated, with high

probability, around its expected value. We will face such situations in several specific examples

below. Here we show that concentration of hn implies the concentration of Tn (and also that of

Jg) as required by the conditions of theorem 1 and lemma 3. For simplicity, we assume that the

kernel K is of bounded support. This assumption may be weakened easily.

Lemma 5

Let hn ¼ hn (X1, . . . ,Xn) be an arbitrary data-dependent smoothing factor and let �hn be a

deterministic sequence of positive numbers (e.g. one may take �hn ¼ Ef hn). Assume that K is

supported in the interval [�1/2, 1/2] and that K is Lipschitz with constant L. Writing

Zn ¼ max
jhn � �hnj

�hn
;
jhn � �hnj

hn

� �
;

we have, for every � � 3(L/4 þ 1)EZn,

Pf ½jTn � Ef Tnj > �� � 2 e�n�2=18 þ Pf Zn >
�

3ðL=4þ 1Þ

� �
:

Proof. Define the uncomputable version of the test statistic based on the deterministic

smoothing factor �hn by �Tn ¼ infg2F
R
jfn;�hn � gj. Then

Pf ½jTn � Ef Tnj > �� �Pf jTn � �Tnj >
�

3

h i
þ Pf j�Tn � Ef �Tnj >

�

3

h i
þ I jEf �Tn � Ef Tnj >

�

3

n o
:

By lemma 4 the middle term is bounded by 2 e�n�2/18. Define the sequence

an ¼ minðhn=�hn; �hn=hnÞ, then,

jTn � �Tnj �
1

n

Xn
i¼1

Z
Khnðx� XiÞ � K�hnðx� XiÞ
� ��� �� dx

¼
Z

jKðxÞ � anKðxanÞj dx

�
Z

jKðxÞ � KðxanÞj dxþ
Z

jKðxanÞ � anKðxanÞj dx

� L
4
j1� anj þ 1� 1

an

����
����

� L
4
þ 1

� �
max j1� anj; 1� 1

an

����
����

� �
:

The statement now follows.
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3. Minimum distance smoothing factor

In this section, we investigate a general principle of selecting the smoothing factor hn. For any

class F, we may define the smoothing factor by

hn ¼ argmin
h2A

inf
g2F

Z
jfn;h � gj

where A is some fixed subset of (0, 1). Very often A ¼ (0, 1) but sometimes it may be

convenient to restrict the choice either for theoretical or for computational reasons. For

simplicity we assume that the minimum exists. Otherwise straightforward modifications yield

essentially identical results. This choice of hn leads to the test statistic

Tn ¼ inf
h2A

inf
g2F

Z
jfn;h � gj:

An important feature of this choice is that the test statistic is sharply concentrated around its

mean, regardless of the class F. This property will allow us to use theorem 1 in a convenient

way. The final conclusion is presented in the following lemma. Its proof is omitted as it is

similar to that of lemma 4.

Lemma 6

With the minimum-distance choice of the smoothing factor we have, for all f,

Pf ½jTn � ETnj > �� � 2 e�n�2=2:

Thus, for all choices of F and A, theorem 1 may be applied easily. According to the theorem

(and, in particular, corollary 1), the test performs well if bn is small (ideally converging to zero

at a fast rate) and EfTn is large whenever f j2 F.
To bound bn, simply recall that by the definition of hn,

bn ¼ sup
f2F

Ef inf
g2F

Z
jfn;hn � gj

¼ sup
f2F

Ef inf
g2F

inf
h2A

Z
jfn;h � gj

� sup
f2F

inf
h2A

Ef

Z
jfn;h � f j:

Thus, for this choice of the smoothing factor, bn is always bounded by the largest expected

error of the kernel estimator in the class, with optimally chosen smoothing factor.

This quantity may typically be bounded easily if the class F is not too large. For example,

if the class F is such that every f 2 F has a bounded support with length s( f ) and is

absolutely continuous with an absolutely continuous first derivative such that c( f ) ¼R
|f 00| < 1 such that supf2F s

2( f )c( f ) < 1 then, assuming that K is bounded, symmetric,

and of bounded support, bn � Cn�2/5 for some constant C (see Devroye & Lugosi,

2000).

To complete the analysis of the test based on the minimum-distance smoothing factor, one

needs to understand the behaviour of EfTn when f j2 F. To this end, we offer the following

version of lemma 3.
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Lemma 7

For any density f,

Ef inf
g2F

inf
h2A

Z
jfn;h � gj � inf

g2F
Ef inf

h2A

Z
jfn;h � gj � inf

�>0
2�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNF ð�Þ

n

r !
:

Proof. Let the densities g1, . . . , gN form an � covering of F, where N ¼ NF (�). Then, as in

the proof of lemma 3,

inf
g2F

Ef inf
h2A

Z
jfn;h � gj � Ef inf

g2F
inf
h2A

Z
jfn;h � gj

� 2�þ Ef max
j�N

Ef inf
h2A

Z
jfn;h � gjj � inf

h2A

Z
jfn;h � gjj

� �
:

Denote Zj ¼ Ef infh2A
R
|fn,h � gj| � infh2A

R
|fn,h � gj|. Then again, it follows by McDiarmid’s

inequality that for all j � N and s > 0, Ef e
sZj � es

2/2n, and therefore, using a Jensen’s

inequality,

Ef max
j�N

Zj ¼
1

s
log esEf maxj�N Zj � 1

s
log Ef max

j�N
esZj

� 1

s
log Ef

XN
j¼1

esZj � logN
s

þ s
2n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
logN
n

r
ðby choosing s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n logN

p
Þ:

This concludes the proof.

The term

CnðFÞ ¼ inf
�>0

2�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNF ð�Þ

n

r !

may be considered as a measure of complexity of the class F. Clearly, for any totally bounded

class, Cn(F) ! 0 as n ! 1. Also, for many classes, it is easy to obtain explicit estimates for

the covering numbers. Several examples may be found in Kolmogorov & Tikhomirov (1961)

(see also Devroye, 1987; Devroye & Lugosi, 2000). For example, if F is any class of Lipschitz

densities supported in [0,1] with Lipschitz constant C, then, using an estimate from Devroye

(1987), we have

CnðFÞ � ðnCÞ�1=3ðlog 3Þ1=3ð2�2=3 þ 2�4=3Þ:

Summarizing the arguments above, we obtain the following corollary of Theorem 1.

Corollary 2

Let F be a totally bounded class of densities with complexity Cn(F) and consider the test based on
the minimum-distance smoothing factor. Then

ca � sup
f2F

inf
h2A

Ef

Z
jfn;h � f j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
log

2

a

r

and for any density f j2 F and d > 0, if
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inf
g2F

Ef inf
h2A

Z
jfn;h � gj > sup

f 02F
inf
h2A

Ef 0

Z
jfn;h � f 0j þ CnðFÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
log

2

a

r
þ d;

the probability of acceptance is at most 2 e�nd2/2.

In the rest of this section we show that the test based on the minimum-distance smoothing

factor is consistent for all f under the only assumption that F is totally bounded, that is,

Cn(F) ¼ o(1). To achieve this, we need to restrict the minimum-distance smoothing factor

such that A � [an, bn] where fang and fbng are arbitrary sequences of positive numbers such

that an � bn, nan ! 1, and bn ! 0.

Corollary 3

Let F be a totally bounded class of densities and consider the test based on the minimum-distance

smoothing factor with A � [an, bn]. Then for any density f j2 F, the hypotheses f 2 F is rejected,

almost surely, as n ! 1.

Proof. In order to make sure that the test is consistent almost surely, one may choose d to

be the order of n�1/2þ� for some small positive �. Then by corollary 2, consistency can be

proven if (i) supf2F infh2AEf
R
|fn,h � f | converges to zero, and (ii) infg2FEf infh2A

R
|fn,h � g|

stays bounded away from zero.

To prove (i), fix any � > 0, and let f1, . . . , fNF(�) be any �-covering of F. Let f 2 F, and
assume that i � NF(�) is such that

R
|f � fi| � �. Then, if hi denotes the smoothing factor in A

minimizing Efi
R
|fn,hi � fi|, then

inf
h2A

Ef

Z
jfn;h � f j � Ef

Z
jfn;hi � f j

� Efi

Z
jfn;hi � fij þ 2�

¼ inf
h2A

Efi

Z
jfn;h � fij þ 2�

where the second inequality follows by the embedding device of Devroye (1987, pp. 46–47).

Thus,

lim sup
n!1

sup
f2F

inf
h2A

Ef

Z
jfn;h � f j � 2�þ lim sup

n!1
max

i¼1;...;NF ð�Þ
inf
h2A

Efi

Z
jfn;h � fij

¼ 2�

by the L1 consistency of the kernel estimator. As � is arbitrary, (i) is proven.

To show (ii), note that by an application of the triangle inequality,

inf
g2F

Ef inf
h2A

Z
jfn;h � gj � inf

g2F

Z
jf � gj � Ef sup

h2A

Z
jfn;h � f j:

As the choice of the minimum-distance smoothing factor is restricted such that A � [an, bn]

where nan ! 1 and bn ! 0, Devroye & Györfi (1985, p. 148), implies that

Ef suph2A
R
|fn,h � f| ! 0 and, indeed,

lim inf
n!1

inf
g2F

Ef inf
h2A

Z
jfn;h � gj � inf

g2F

Z
jf � gj > 0

which implies the universal consistency of the test.
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4. Applications

In this section, three particular cases are considered: testing a simple null hypothesis, testing

for translation/scale families and testing for symmetry.

4.1. Simple hypotheses

As a first application, we consider the simplest case when F contains a single nominal density

f0, that is, F ¼ ff0g. In other words, one has to test the simple null hypothesis whether the data

X1, . . . ,Xn are distributed according to f0 or not.

In this case, it is natural to define the smoothing factor hn to minimize the expected L1 error,

that is,

hn ¼ argmin
h>0

Ef0

Z
jfn;h � f0j:

Note that hn is not data-dependent, it may be computed by Monte-Carlo approximation even

before seeing the data. Similarly, a Monte-Carlo approximation of the ca is straightforward

since ca ¼ inffc : Pf0
[Tn > c] � ag in this case.

For example, once hn has been calculated, the following simple Monte-Carlo (or bootstrap)

approach can be used to calculate ca : (i) draw an artificial sample of size n from f0, say X
!�

;

(ii) compute the kernel estimator with this new sample, say f �
n;hn , and approximate numerically

the �bootstrap� L1-distance: T �
n ¼

R
jf �

n;hn � f0j; (iii) repeat steps (i)–(ii) a large number of times

(call it B) to obtain the �bootstrap� replications T �1
n , T �2

n , . . . , T �B
n ; (iv) sort these values and

define c�a ¼ T �ðdBð1�aÞeÞ
n , i.e. the dB(1 � a)eth order statistic of the bootstrap replications.

This c�a is the approximation that will be used for the true value ca. It is clear that in the case

of simple null hypothesis, c�a is a consistent estimator (as B ! 1) of ca and hence the practical

level of the test approaches to the nominal a provided that B is large (and we can choose B

with the �only� price of computing time!)

Now theorem 1 can be applied directly, together with lemma 4. We obtain the following

corollary.

Corollary 4

Let �bn denote the expected L1 error of the kernel density estimator of f0, based on the optimal

bandwidth hn:

�bn ¼def inf
h>0

Ef0

Z
jfn;h � f0j:

Then for all a > 0, ca � �bn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=nÞ log ð2=aÞ

p
and for any density f and d > 0, if

Ef

Z
jfn;hn � f0j > �bn þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
log

2

a

r
;

then

Pf ½H0 is accepted� � 2 e�nd2=2:

Also, for any f0, limn!1 �bn ¼ 0 and the test is consistent for all f.

Obviously, a sufficient condition for the lower bound of the expected L1 error in the pre-

vious corollary is
R
jEfn;h � f0j > �bn þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=nÞ logð2=aÞ

p
. We remark here that in the case of

a simple null hypothesis, consistency of a similar test based on the histogram density estimator

was shown by Györfi & van der Meulen (1991).
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The corollary shows that the performance of the test depends on how well the density f0 can

be estimated by the kernel estimate. The smaller the �bn, the more efficient the test is. In most

hypothesis testing problems f0 is sufficiently regular so that �bn is of the order of n�2/5.

However, if f0 is either unsmooth or heavy-tailed, the kernel estimator is poor and for a finite

sample size, only densities far from f0 (in the L1 distance) will be rejected with a high prob-

ability. In such cases, by a simple modification of the test, the performance may be improved

significantly. The idea is to first transform the data X1, . . . ,Xn by a transformation T so that if

the density of the Xi was f0 then the transformed data have a density which is easy to estimate

with the kernel estimator, and the proposed test is performed on the transformed data. Some

densities are well-known to be very easy to estimate with the kernel density estimator. One

such example is the triangular density (1 � |x|)þ if the Epanechnikov kernel K(x) ¼ (3/4)

(1 � x2)þ is used. In this case, �bn � 1:177 � n�2=5 (see Devroye & Györfi, 1985) and the fact that

the L1 error is invariant under monotone transformations implies the following.

Corollary 5

Consider the simple null hypothesis that the data are distributed according to the density f0 where

f0 is an arbitrary density on R. Let T be the unique monotone increasing function with the

property that if the random variable X has density f0 then T(X) has density f �(x) ¼ (1 � |x|)þ.

Consider the test which first transforms the data to Y1, . . . ,Yn, where Yi ¼ T(Xi) for all i ¼
1, . . . , n and then accepts the null hypotheses if and only if T �

n � c�a where T
�
n and c�a are defined as

above (using the Epanechnikov kernel) but for the null hypothesis that the Yi have density f �.

Then for all a > 0, ca � 1:177 � n�2=5 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=nÞ log ð2=aÞ

p
and for any density f and d > 0, if

Ef

Z
jfn;h � f0j > 1:177 � n�2=5 þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n
log

2

a

r
;

then

Pf ½H0 is accepted� � 2 e�nd2=2:

4.2. Translation/scale classes

In this section, we consider the problem of testing whether the underlying density of the data

may be obtained by translation and/or scaling of a fixed density f0.

To begin, observe that if F is a simple translation class, that is,

F ¼ f ðxÞ ¼ f0ðx� aÞ : a 2 R;f g;

for some nominal density f0, then the translation-invariance of the kernel estimator

immediately implies that the value of ca remains the same as in the case of the simple null

hypothesis F ¼ ff0g and moreover corollary 4 remains true in this case as well.

The case of translation/scale class is somewhat more interesting. In other words, we consider

classes of the form

F ¼ f ðxÞ ¼ 1

c
f0

x� a
c

	 

: a 2 R; c > 0

� �

where f0 is a fixed density. For example, if the goal is to test normality, one may take f0 to be

the standard normal density.

Clearly, as the scale of the density is arbitrary, a data-dependent choice of the

bandwidth hn is necessary. To determine a good data-dependent choice, note that if

h�n ¼ argminh>0Ef0
R
jfn;h � f0j is the optimal smoothing factor for the density f0, then ch�n is

the optimal bandwidth for the scaled and translated density (1/c) f0 ((Æ � a)/c). As h�n can be

610 R. Cao and G. Lugosi Scand J Statist 32

� Board of the Foundation of the Scandinavian Journal of Statistics 2005.



computed before seeing the data (just like in the case of simple hypothesis), all one needs to

estimate is the scaling factor c. Recall that by lemma 5 the estimated bandwidth should be

concentrated around its mean value. One simple way to achieve this is to estimate the scale

based on order statistics. Let X(1) < X(2) < Æ Æ Æ < X(n) be the ordered sample X1, . . . ,Xn, and

introduce the estimator

cn ¼
Xðb3n=4cÞ � Xðbn=4cÞ

qð0Þ3=4 � qð0Þ1=4

where qð0Þ1=4 and qð0Þ3=4 denote the 25th and 75th percentiles of the density f0. The values 1/4 and

3/4 do not have any special role, they may be replaced by any pair of different numbers in

(0,1). The only property we need for the estimator to work is that the density f0 is bounded

away from zero in a neighbourhood of qð0Þ3=4 and qð0Þ1=4. If this property is not satisfied, the values

1/4 and 3/4 should be modified appropriately.

Based on cn, we define the data-based smoothing factor by hn ¼ cnh�n. Thus, if �hn ¼ ch�n
denotes the optimal smoothing factor for the scaled density (1/c)f0((Æ � a)/c), then, under mild

conditions on the true underlying density f, we have the following stability property for the

estimated smoothing factor.

Lemma 8

Let 0 < � � 1. Assume that the density f is such that there exists a positive number s such that

f(x) � s for all x 2 (q1/4 � d, q1/4 þ d) [ (q3/4 � d, q3/4 þ d) where qp denotes the 100p per-

centile of f and d ¼ (q3/4 � q1/4)�/2. Define

�hn ¼ h�n
q3=4 � q1=4

qð0Þ3=4 � qð0Þ1=4

:

Then
Pf ½Zn > �� � 12 e�n�2s2ðq3=4�q1=4Þ2=8;

where Zn is the random variable defined in lemma 5.

Proof. First observe that

Pf
hn � �hn

�hn

����
���� > �

� �
¼ Pf

Xðb3n=4cÞ � Xðbn=4cÞ
q3=4 � q1=4

� 1

����
���� > �

� �

� Pf jXðb3n=4cÞ � q3=4j >
ðq3=4 � q1=4Þ�

2

� �

þ Pf jXðbn=4cÞ � q1=4j >
ðq3=4 � q1=4Þ�

2

� �
:

Both terms on the right-hand side can be bounded similarly. For example, the first term may

be written as a sum of two terms (one for the lower tail, one for the upper tail). Now using the

assumption of the positivity of f in the neighbourhood of its 75th percentile, for the upper tail

of the first term we obtain

Pf Xðb3n=4cÞ � q3=4 >
ðq3=4 � q1=4Þ�

2

� �
� Pf ½F ðq3=4 þ dÞ � Fnðq3=4 þ dÞ > ds�

� e�2nd2s2

where F and Fn denote the cumulative distribution function of f and its empirical counterpart,

respectively. The second inequality follows by Hoeffding’s (1963) inequality for the tail of the

binomial distribution. Thus, we have
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Pf
hn � �hn

hn

����
���� > �

� �
� 4 e�n�2s2ðq3=4�q1=4Þ2=2:

Using the fact that � � 1, we may similarly bound the tail probabilities of ðhn � �hnÞ=hn by

observing that

Pf
hn � �hn

hn

����
���� > �

� �

� Pf q3=4 � q1=4
� �

� Xðb3n=4cÞ � Xðbn=4cÞ
� ��� �� > q3=4 � q1=4

� �
�

2

� �

þ Pf Xðb3n=4cÞ � Xðbn=4cÞ
� �

<
q3=4 � q1=4

2

h i
� 2Pf q3=4 � q1=4

� �
� Xðb3n=4cÞ � Xðbn=4cÞ
� ��� �� > q3=4 � q1=4

� �
�

2

� �
:

Now the probability on the right-hand side may be bounded the same way as above.

Collecting terms, we obtain the lemma.

In the corollary below we summarize the results of this lemma together with theorem 1, and

lemmas 1 and 5 for the case when F is the class of all scaled translations of a fixed nominal

density f0. The corollary states that the test is consistent for all f0 and f and moreover provides

exponential estimates for the probability of acceptance under the only assumption of f that it is

strictly positive in a neighbourhood of its 25th and 75th percentiles. We remark here that this

assumption may easily be dropped at a price of a slightly more complicated bound but we do

not pursue this issue further.

Corollary 6

Let f0 be a fixed density and consider the test described in this section for deciding whether the

density of the data is of the form f(x) ¼ (1/c)f0((x � a)/c) for some a 2 R and c > 0.

Recall the definition of �bn in corollary 4. Then for any f0, limn!1 �bn ¼ 0 and the test is

consistent for all f.

Assume further that the kernel K is supported in the interval [�1/2, 1/2] and it is Lipschitz with

constant L and let f satisfy the assumption of lemma 8. Define

j2 ¼ min
1

18
;
q3=4 � q1=4
� �2

s2

72ðL=4þ 1Þ2

 !
:

Then for all a > 0, ca � �bn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=j2nÞ log ð14=aÞ

p
and for any d > 0, if

Ef

Z
jfn;h � f0j > �bn þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j2n
log

14

a

r
;

then

Pf ½H0 is accepted� � 14 e�j2nd
2

:

Remark. Note that, as expected, the factor (q3/4 � q1/4)
2 s2 is translation and scale-free in

the sense that its value does not change if the density f is changed to (1/c)f((Æ � a)/c) for any

c > 0 and a 2 R.

The corollary reveals that even though the problem of testing the composite hypothesis of a

translation/scale class is considerably more difficult than testing a simple hypothesis as in the

previous section, the main result we obtained above is comparable with corollary 4. In other

words, we do not pay a high price for having to use a data-dependent smoothing factor. Note
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that the bound for ca is almost identical in both cases and it is determined by the error of the

kernel estimator for f0. In the case of a simple hypothesis we could boost the performance of

the test by transforming the data such that the error of the kernel estimator was small. Here we

cannot do this directly. However, a similar trick may be adopted if one estimates the scale first

(similarly as in the selection of the smoothing factor) and use a data-dependent transformation

chosen from a class. We omit the straightforward but tedious analysis here.

4.3. Testing symmetry

In this section we investigate the testing procedure with the �minimum-distance� choice of the
smoothing factor proposed in the previous section, in the special case of testing symmetry of a

density.

Thus, we define F as the class of all symmetric densities on the real line. Unfortunately, in

this case the test based on the minimum-distance smoothing factor cannot work. The reason is

that the class of all symmetric densities is �too large� in the sense that in this case ca is bounded

from below by a positive constant independently of the sample size. However, by assuming

some additional regularity conditions on the density f, meaningful results may be obtained.

As a simple example, we may consider a situation in which the statistician has a reason to

assume that (say) the unknown density is Lipschitz, supported on [�a, a], with Lipschitz constant

C. Denote the class of such densities by L(�a, a, C). Then we let F be the class of all densities in

L(�a, a, C) which are symmetric around some point. In this case, as it is pointed out in section 3,

the complexity Cn(F) is bounded by a constant times (nC)�1/3, and corollary 2 is applicable.

Let us denote by S the class of all symmetric density functions and by Sm the subclass of

symmetric densities around m 2 R. The computational issue of calculating Tn is simple as

soon as one finds some device for finding the closest symmetric density to an arbitrary given

density f. The next lemma provides such a device.

Lemma 9

For any density f, the infimum infg2S0

R
|f � g| is attained at any symmetric density f s satisfying

f ‘ � f s � f u, with f ‘(x) ¼ minff(x), f(�x)g, f u(x) ¼ maxff(x), f(�x)g. In particular,

f s ¼ 1
2 ðf ‘ þ f uÞ is the closest (possibly among others) symmetric density in the sense of the L1

distance. Furthermore,

inf
g2S0

Z
jf � gj ¼

Z
jf s � f j ¼ 1

2

Z
ðf u � f ‘Þ

¼ 1

2

Z
jf ðxÞ � f ð�xÞj dx ¼

Z 1

0

jf ðxÞ � f ð�xÞj dx:

Proof. First of all, given a density f, consider any symmetric density function, f s, satisfying

f ‘ � f s � f u. Then standard algebra givesZ
jf s � f j ¼

Z
Rþ
ðf u � f ‘Þ ¼ 1

2

Z
ðf u � f ‘Þ:

Now, consider any g 2 S0 and defineA ¼ fx : g(x) < f ‘(x)g,B ¼ fx : f ‘(x) � g(x) � f u(x)g
and C ¼ fx : g(x) > f u(x)g, which are symmetric subsets of R. Then, tedious but straight-

forward calculations lead toZ
jg� f j ¼

Z
A
ðf ‘ � gÞ þ

Z
C
ðg� f uÞ þ

Z
Rþ

ðf u � f ‘Þ

�
Z
Rþ
ðf u � f ‘Þ ¼ 1

2

Z
ðf u � f ‘Þ ¼

Z
jf s � f j

and the proof is concluded.
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As a consequence of the previous lemma, it is straightforward to compute the closest

symmetric density, in the L1 sense, to a given non-parametric kernel density estimator, fn,h. A

numerical minimization in h solves the problem then.

In the general case, as S ¼ [m2RSm, standard manipulations can be used to show that

Tn ¼ inf
m2R;h>0

Z 1

m
jfn;hðxÞ � fn;hð2m� xÞj dx

and the computation of the test statistic only needs the numerical minimization of a function

of two real variables.

5. Simulations

A small simulation study has been carried out for the standard goodness-of-fit problem of

testing normality. Thus, F is the class of all normal densities. As F is a translation/scale

family we may compute a Monte-Carlo approximation of ca by just drawing B samples

from a standard normal distribution as described in section 4.1. The smoothing factor was

selected by minimum L1-distance as detailed in section 3. To do this, we restricted F to

normal densities with mean and variance within compact intervals in order for the class to

be totally bounded, as required by corollary 3. Of course this is also the case from the

practical implementation viewpoint. In order for the kernel estimator to be sufficiently far

from the class of densities (and to avoid degenerate minimum distance bandwidths) we

used the Epanechnikov kernel for the test statistic Tn. In our simulation study we have

chosen B ¼ 10,000.

To examine the size and the power of the test, we selected either f 2 F or f j2 F. The final

results offer the rejection percentages along the 10,000 trials used in the simulation. The

nominal significance level selected was a ¼ 0.05.

For the null hypothesis scenario we used a standard normal distribution (model L0),

while we considered models L1–L6, six distributions of the lambda family (cases 1–5 and 7

already used in the simulation study by Fan, 1994) for the alternative. This family pro-

vides a wide range of distributions that are easily generated as the quantile function is

given by

F �1ðuÞ ¼ k1 þ ½uk3 � ð1� uÞk3 �=k2:

The particular choices for this four parameters used in models L1�L6 are listed in Table 1.

This study was carried out in order to compare our minimum L1-distance approach with

Fan’s L2-distance test based on the kernel method too. Fan’s procedure is based on the test

statistic

Table 1. Parameter choices for models L1–L6

Model k1 k2 k3 k4

L1 0 2 1 1

L2 0 �0.397012 �0.16 �0.16

L3 0 �1 �0.24 �0.24

L4 0 1 1.4 0.25

L5 3.586508 0.04306 0.025213 0.094029

L6 �0.116734 �0.351663 �0.13 �0.16
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Z
fn;hn � f̂
	 
2

;

where f̂ is the maximum likelihood estimator of f under the hypothesized parametric

model. As Fan did not give any automatic method for selecting the smoothing factor, she

used several values in a range to explore the behaviour of her test statistic. Table 2

contains the range of rejection percentages obtained by Fan for different bandwidths in a

reasonable interval (see Fan, 1994 for details). The Kolmogorov–Smirnov test was also

included in the simulation as a standard competitor. It is based on the test statistic

supx2R jFnðxÞ � F̂ ðxÞj, where F̂ is the maximum likelihood estimator of the underlying

distribution function F under the parametric model. The results for the three tests are

summarized in Tables 2–4.

It is clearly seen that, in general, the minimum L1-distance method performs better than

Fan’s test. The new method slightly outperforms Kolmogorov–Smirnov test in terms of

power. However, it seems that the Kolmogorov–Smirnov test is a little closer to the nominal

size of the test.

Similar conclusions have been drawn from other simulation results (not reported here) for

testing normality under some normal mixture models already used by Marron &Wand (1992).

Table 2. Rejection percentages of Fan’s test

Model n ¼ 100 n ¼ 200 n ¼ 400 n ¼ 800

L0 0.3–3.4 1.7–5.8 3.2–6.1 2.6–4.6

L1 95.2–99.6

L2 0.1–0.9 3.1–8.6 48.8–62.1 87.4–93.4

L3 1.6–5.7 20.8–38.9 90.3–95.6

L4 94.2–98.6

L5 9.9–16.3 63.1–66-7 99.3-99.4

L6 0.0–1.0 4.5–11.8 52.7-66.3 89.4–93.8

Table 3. Rejection percentages of the minimum L1-distance test

Model n ¼ 100 n ¼ 200

L0 5.08 6.72

L1 75.72 100

L2 100

L3 100

L4 91.80 99.78

L5 100

L6 100

Table 4. Rejection percentages of the Kolmogorov–Smirnov test

Model n ¼ 100 n ¼ 200

L0 4.65 4.94

L1 59.07 95.08

L2 100

L3 100

L4 40.17 78.91

L5 99.97 100

L6 100
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