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Abstract

We consider the minimum-weight path between any pair of nodes of
the n-vertex complete graph in which the weights of the edges are i.i.d.
exponentially distributed random variables. We show that the longest of
these minimum-weight paths has about α? logn edges where α? ≈ 3.5911
is the unique solution of the equation α logα − α = 1. This answers a
question left open by Janson [8].

1 Introduction

We consider the complete graph Kn on n vertices [n] := {1, . . . , n}, augmented
with independent exponential mean n (or Exp(n) for short) edge weights {Xe :
e ∈ E(Kn)}. For any subgraph H = (V (H), E(H)) of Kn we write |H| for
|E(H)| and let

w(H) =
∑

e∈E(H)

Xe.

For i, j ∈ [n] we let Pij be the minimum-weight path from i to j and write
Wij = w(Pij) (adopting the convention Pii = ∅, wii = 0). For any fixed vertex i,
∪j 6=iPij is a tree, the shortest path tree SPTi rooted at i. For t ≥ 0 and k ∈ [n],
we let SPTi(t) be the subtree of SPTi induced by nodes j with Wij ≤ t.

Let tik be the first time for which SPTi(t) contains at least k+1 vertices, and
write ti0 = 0. Due to the memoryless property of the exponential distribution, for
each k ∈ [n], the location of attachment of the vertex added at time tik is uniform
among the vertices of SPTi(tik−1); in other words, SPTi(tik) is distributed like
a random recursive tree with k vertices. Random recursive trees have been
well-studied [13]; in particular, it is known that the depth (number of edges on
the path from a uniformly random node to the root) in a recursive tree with
n vertices is asymptotic to log n in probability, see Devroye [3], and the height
(greatest number of edges on any path starting from the root) is asymptotic to
e log n in probability, see Devroye [3] and Pittel [9].
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A variety of authors have studied the weighted structure of a single tree SPT1

(or SPTi for any i), and of the family of shortest paths {Pij : i, j ∈ [n]}. Van
der Hofstad, Hooghiemstra, and van Mieghem [14, 15] prove that, letting W be
the total weight of SPT1,

(W − ζ(2))√
n

−−−−→
n→∞

N (0, 4ζ(3))

in distribution. Here, ζ denotes the Riemann zeta function ζ(s) :=
∑
k≥1 k

−s.
Janson [8] proved the beautiful result that

W12

log n
−−−−→
n→∞

1,
max1≤j≤nW1j

log n
−−−−→
n→∞

2, and
max1≤i,j≤nWij

log n
−−−−→
n→∞

3

in probability, and provided more detailed information about the distribution of
W12 and of max1≤j≤nW1j . (Janson’s results in fact hold for some edge weight
distributions other than exponential, see Section 5.) On the other hand, the un-
weighted structure of shortest path trees has been studied by Hooghiemstra and
Van Mieghem [7] who derived the limiting distribution of the pair (W12, |P12|)
suitably rescaled.

It is immediate from the aforementioned results for the depth of nodes and
the height in random recursive trees that

|P12|
log n

−−−−→
n→∞

1 and
max1≤j≤n |P1j |

log n
−−−−→
n→∞

e

in probability. Furthermore, as noted by Janson [8], the tail bounds for the
height of random recursive trees established by Devroye [3] imply that

lim sup
n→∞

max1≤i,j≤n |Pij |
log n

≤ α? in probability, (1)

where α? ≈ 3.5911 is the unique solution of α logα − α = 1. Janson [8] asked
whether there is a constant c ∈ [e, α?] such that max1≤i,j≤n |Pij |/ log n → c in
probability. It is the purpose of this note to answer Janson’s question in the
affirmative:

Theorem 1. For any function ω(n) tending to +∞ with n, for some constant
L > 0, and for all δ ∈ (0, 1), for all n sufficiently large, with probability greater
than 1− δ,

α? log n− L log log n ≤ max
1≤i,j≤n

|Pij | ≤ α? log n+ ω(n) .

Furthermore,

α? log n− L log log n ≤ E
[

max
1≤i,j≤n

|Pij |
]
≤ α? log n+ L.
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Of course, it follows immediately from the first part of Theorem 1 that
max1≤i,j≤n |Pij |/ log n → α? in probability. The easy half of the result is the
upper bound as (1) and other results from Devroye [3] will make proving the
upper bounds of the theorem a routine exercise. The nontrivial part of the result
is the lower bound which we prove using the second moment method, applied to
a suitably defined set of shortest paths with special properties that make them
amenable to analysis. Before we get going, a brief remark is in order: we have to
work with exponential edge weights in order to exploit the memoryless property
of the exponential distribution. In the conclusion (Section 5) we explain how
to extend our results to a range of other edge weights that have a finite and
positive density at 0, including uniform edge weights.

2 A useful lemma and the upper bound

For i ∈ [n] and k ∈ [n− 1] let τ ik = tik+1 − tik denote the k-th interarrival time.
By the memoryless property of the exponential distribution, {τ ik, 1 ≤ k < n} are
independent. Furthermore, τ ik is the minimum of k(n − k) independent expo-
nential random variables with mean n, hence τ ik has an exponential distribution
with rate parameter k(n− k)/n. Using this fact, the following lemma provides
upper bounds on the size of SPTi(t).

Lemma 1. For all t ≥ 0 and integers m ∈ [n− 1] with m ≥ et,

P {|SPTi(t)| ≥ m} ≤ 3 ·
√
m/et · e−m/e

t

.

Proof. Observe that, for any c > 0,

P {|SPTi(t)| ≥ m} = P

{
m∑
k=1

τ ik ≤ t

}
= P

{
m∏
k=1

exp
(
−cτ ik

)
≥ e−ct

}
.

By Markov’s inequality and the independence of the interarrival times τ i1, . . . , τ
i
n−1,

we have

P {|SPTi(t)| ≥ m} ≤ ect
m∏
k=1

E
[
exp

(
−cτ ik

)]
≤ ect

m∏
k=1

k

k + c
≤ ect · Γ(c+ 1)

mc
,

where Γ is the Gamma function. Using the strengthening of Stirling’s formula
Γ(c+ 1) ≤

√
2πc(c/e)ce1/12 (see, e.g., [10]), and setting c = m/et, we obtain

P {|SPTi(t)| ≥ m} ≤
√

2πe1/12 ·
√
c · e−c ≤ 3 ·

√
c · e−c,

as claimed.

We will also use the following result from Devroye [3], providing an upper
bound on the heights of random recursive trees. In the following, h(T ) denotes
the height of a rooted tree T .
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Theorem 2 ([3], Theorem 9). Let Tm be a random recursive tree with m ≥ 2
nodes. Then, for x > 1,

P {h(Tm) ≥ x logm} ≤ ex−1mx−x log x.

The upper bounds in Theorem 1 follow immediately from Theorem 2.

Proof of Theorem 1, upper bounds. For any t ≥ 0, by a union bound we have,
for n > 2,

P
{

max
1≤i,j≤n

|Pij | ≥ α? log n+ t

}
≤ nP

{
max

1≤j≤n
|P1j | ≥ α? log n+ t

}
.

The event in the right-hand side above holds if SPT1 has height at least α? log n+
t. Since SPT1 is distributed like a random recursive tree on n nodes, to further
bound the probability on the right-hand side, we may use Theorem 2 with m
replaced by n and x = α?+t/ log n. In order to simplify the obtained expression,
observe also that, by the definition of α? ≥ e, for t ≥ 0,

x log x− x =
(
α? +

t

log n

)
log
(
α? +

t

log n

)
−
(
α? +

t

log n

)
≥ 1 +

t

log n
.

We obtain that

P
{

max
1≤j≤n

|P1j | ≥ α? log n+ t

}
≤ exnx−x log x ≤ eα

?+t/ lognn−1+t/ logn

and therefore

P
{

max
1≤i,j≤n

|Pij | ≥ α? log n+ t

}
≤ eα

?+t/ logne−t . (2)

Choosing t = t(n)→∞ proves the upper bound in probability. Now, using the
bound (2), we have, for n ≥ 8,

E
[

max
1≤i,j≤n

|Pij |
]
≤ α? log n+ 1 +

∞∑
`=1

2`P
{

max
1≤i,j≤n

|Pij | ≥ α? log n+ 2`−1

}

≤ α? log n+ 1 + eα
?

·
∞∑
`=1

2` exp(−2`−2)

= α? log n+O(1),

proving the upper bound in expectation.
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3 Towards the lower bound

Fix a path P = v1, . . . , vk+1, k ≤ 12 log n (where 12 is somewhat arbitrary, the
key point being that it’s bigger than 3α?). It is easily seen that for w > 0,
letting Po(w) denote a Poisson mean w random variable, we have

P {w(P ) ≤ wn} = P {Po(w) ≥ k} =
∞∑
i=k

wke−w

k!
.

When w = o(1), the above sum is dominated by its first term and e−w = 1−o(1),
so we have

P {w(P ) ≤ wn} = (1 + o(1))
wk

k!
. (3)

We next show that given that P has small weight, it is very likely to be the
minimum-weight path between its endpoints. More precisely, let P ?(v, w) be
the minimum-weight path in Kn between two vertices v and w. Then we have
the following.

Lemma 2. Fix c > 2. For all n sufficiently large, for all ε > c log log n/ log n
and any path P = v1, . . . , vk+1 in Kn with 1 ≤ k ≤ 12 log n, we have

P {P 6= P ?(v1, vk+1) | w(P ) ≤ (1− ε) log n} ≤ 13k2

nε
.

The restriction c > 2 is not necessary in the above lemma, but the upper
bound becomes trivial when ε ≤ 2 log log n/ log n.

Proof. Let SPTv(t) denote the shortest path tree started from a vertex v and
stopped at time t. For k ≥ 2, if P 6= P ?(v1, vk+1) then it must be the case
that for some i = 1, . . . , k, in Kn \ E(P ), SPTvi((1 − ε) log n) contains one of
vi+1, . . . , vk+1.

Allowing connections using the edges along the path P only increases the
probability of this event. Let KP

n be Kn where the edge weights Xe, e ∈ E(P ),
along the path P have been replaced by independent copies. Let Ai be the
event that, in KP

n , SPTvi((1− ε) log n) contains one of vi+1, . . . , vk+1 for some
i = 1, . . . , k. The remark above then implies by the union bound that

P {P 6= P ?(v1, vk+1) | w(P ) ≤ (1− ε) log n} ≤
k∑
i=1

P {Ai} . (4)

Let Ni denote the number of nodes in SPTvi((1− ε) log n) in KP
n . Observe

that, conditioning on Ni, the probability that Ai does not occur is

1−P {Ai | Ni} =

 Ni∏
j=1

(
1− k − i+ 1

n− j

) · 1[n−Ni > k − i+ 1]

≥ max
(

1− (k − i+ 1)Ni
n−Ni

, 0
)
, (5)
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where 1[ · ] denotes the indicator function. Let Ei(0) be the event that Ni ≤
2n1−ε, for j = 1, . . . , blog2(nε/2k)c−1, let Ei(j) be the event that 2jn1−ε < Ni ≤
2j+1n1−ε, and let Ei(blog2(nε/2k)c) be the event that Ni > 2blog2(n

ε/2k)cn1−ε.
Expressing P {Ai} as a sum of conditional probabilities, we have

P {Ai} =
blog2(n

ε/2k)c∑
j=0

P {Ai | Ei(j)} ·P {Ei(j)} (6)

≤
blog2(n

ε/2k)c∑
j=0

P {Ai | Ei(j)} · 3
√

2je−2j ,

by Lemma 1. Using (5) to bound P {Ai | Ei(j)},

P {Ai} ≤
blog2(n

ε/2k)c−1∑
j=0

(k − i+ 1)2j+1n1−ε

n− 2j+1n1−ε · 3
√

2j

e2j
+

3
√

2blog2(n
ε/2k)c

e2
blog2(nε/2k)c

≤ 6(k − i+ 1)
nε(1− 1/2k)

∞∑
j=0

23j/2

e2j
+

3
√

2blog2(n
ε/2k)c

e2
blog2(nε/2k)c

≤ 12(k − i+ 1)
nε

+ n−ε, (7)

where we have used the fact that
∑
j≥0 23j/2e−2j ≤ 1 and the last inequality

holds for all k ≤ 12 log n and n sufficiently large. It follows that, since k ≥ 1,

k∑
i=1

P {Ai} ≤
1
nε

(
12
(
k + 1

2

)
+ k

)
≤ 13k2

nε
,

which, together with (4), completes the proof.

The following fact follows immediately from the proof of Lemma 2 (there
are just fewer terms in the sum (6)); it will be useful later.

Corollary 1. Fix c > 2. For all n sufficiently large, for all ε > c log log n/ log n
and any path P = v1, . . . , vk+1 in Kn with 1 ≤ k ≤ 12 log n, we have

P {P 6= P ?(v1, vk+1) | (1− 2ε) log n ≤ w(P ) ≤ (1− ε) log n} ≤ 13k2

nε
.

It follows from Lemma 2, at least intuitively, that to get a lower bound of k
on the length of the longest minimum-weight path, we can instead bound from
below the probability that there is some path with k edges of weight (1−ε) log n.
Given a positive integer k and real ε > 0, let Pk,ε = Pk,ε(n) be the set of paths
with k edges and weight at most (1− ε) log n in Kn. As a first step, we remark
that by (3),

E|Pk,ε| ∼ nk+1

(
(1− ε) log n

n

)k 1
k!
∼ n√

2πk

(
e log n
k

)k
(1− ε)k. (8)
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Let αε be the solution of

α logα− α(1 + log(1− ε)) = 1, (9)

so αε < α? and αε → α? > e as ε → 0. When t = k − αε log n = o(
√

log n), we
then have

E|Pk,ε| =
(1 + o(1))√
2παε log n

(
e

αε

)t
(1− ε)t.

Letting

kε = αε log n− βε log log n where βε =
1

2 (1 + logαε − log(1− ε))
, (10)

the following estimate for E|Pk,ε|, for k close to kε.

Lemma 3. Let αε, βε and kε be defined as in (9) and (10) above. Given ε with
0 < ε < 1/2, there is a positive constant cε such that E|Pkε,ε| = (1 + o(1))cε
and, for |t| = o(

√
log n),

E|Pkε+t,ε| = (1 + o(1))cε ·
(
e

αε

)t
(1− ε)t.

In particular, it follows that if t = t(n)→ −∞ then E|Pkε+t,ε(n)| → ∞. To
derive a lower bound on the probability that there exists such a path, we use the
second moment method, and now introduce the version of it we require. Given
any random set S of paths in Kn and two paths P and Q, let qS(P,Q) be the
probability that P and Q are both in S, and let

∆(S) =
∑
P,Q

qS(P,Q), (11)

where the sum is over pairs P,Q of distinct but intersecting paths in Kn. By
Corollary 4.3.4 of Alon et al. [1], we then have

P {|S| = 0} ≤ 1
E|S|

+
∆(S)

(E|S|)2
. (12)

Given the preceding discussion, a natural choice for the set S would be Pkε+t,ε,
for some t = t(n) tending to −∞ with n. Unfortunately, for this choice of S and
for the values of t we wish to consider, the quantity ∆(S) is too large for (12)
to yield a useful bound. However, it is both useful and instructive to proceed
as though this was our choice of S, and see how far we can get.

Given paths P and Q in Kn, let

qε(P,Q) = P {w(P ) ≤ (1− ε) log n,w(Q) ≤ (1− ε) log n} .

Also, for t ∈ R, let
∆t = ∆t(n, ε) =

∑
P,Q

qε(P,Q) (13)

where the sum is over pairs P,Q of distinct but intersecting paths with dkε + te
edges in Kn. (So, ∆t is just ∆(S) when S is the set of paths in Pdkε+te,ε.)
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3.1 Light intersecting paths

In order to bound ∆t, we first decompose the sum in (13). For a given real
number t and integers i, j with 1 ≤ j ≤ i < dkε + te, let ∆t,i,j be the sum of
qε(P,Q) over paths P,Q with dkε + te edges, such that P and Q share i edges,
and these i edges form precisely j connected components. Then, we have

∆t =
∑

1≤j≤i<dkε+te

∆t,i,j . (14)

We now need to consider (a) the probability that two paths of k edges (for
k near to kε) sharing i edges both have weight at most (1 − ε) log n, and (b)
the number of such pairs of paths. The following lemma bounds the former
probability. Counting the number of terms of a given sum ∆t,i,j is the subject
of Section 3.2.

Lemma 4. Given two paths P,Q in Kn, each consisting of k edges, i of which
are common to P and Q, and any s ≥ 0, we have,

P {w(P ) ≤ sn,w(Q) ≤ sn} ≤ 4k−i · s2k−i

(2k − i)!
.

Proof. To make the formulas easier to read, introduce w′(P ) = w(P )/n and
w′(Q) = w(Q)/n. This corresponds to the case of exponential edge weights
with mean 1 instead of the exponential mean n for the individual edge weights.
Thus, we need to evaluate P {w′(P ) ≤ s, w′(Q) ≤ s}. Observe that the sum of
` exponential random variables is has a Gamma(1, `) distribution, with density
function f`(t) = t`−1e−t/(`− 1)! and distribution function F`(t). So, condition-
ing on the aggregated weight of the i shared edges, we see that

P {w′(P ) ≤ s, w′(Q) ≤ s} =
∫ s

0

fi(t)Fk−i(t)2dt.

However, for t ≥ 0, f`(t) ≤ t`−1/(`− 1)! and F`(t) ≤ t`/`!, which implies that

P {w′(P ) ≤ s, w′(Q) ≤ s} ≤
∫ s

0

ti−1

(i− 1)!
(s− t)2(k−i)

(k − i)!2
dt =

s2k−i

(2k − i)!

(
2(k − i)
k − i

)
.

Using the classical bound for the central binomial coefficients
(
2n
n

)
≤ 4n com-

pletes the proof.

3.2 The number of intersecting pairs

What is actually needed is to count the number of pairs (P,Q), where P and
Q are two paths containing k edges such that P ∩Q has i edges in j connected
components. More precisely, P ∩Q is a graph composed of j disjoint paths, with
i edges in total. Our aim is to analyze shortest paths in the graph, and hence
it suffices to consider self-avoiding paths (that do not intersect themselves even
at vertices). Let Nk,i,j denote the number of such pairs.
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Lemma 5. The number of pairs of self-avoiding paths (P,Q) of length k such
that P ∩Q contains i edges in j connected components satisfies

Nk,i,j ≤ n2k+2−i−j(2k3)j .

Proof. Observe first that if k < i+ 2j− 2 then Nk,i,j = 0, since for a given path
P , if Q shares i edges in j connected components with P then Q has at least
i+ 2j − 2 edges. We now assume that k ≥ i+ 2j − 2.

We first focus on the choice of P with the edges of P ∩ Q distinguished.
First fix a path P , self-avoiding, as an ordered sequence of k+ 1 vertices. There
are

(
n
k+1

)
· (k + 1)! such choices. (In fact, we are double counting here, as the

reversed sequence would yield the same path P ; we can afford to ignore this fact
in obtaining our upper bound.) We next choose the sequence of sizes of the j
parts of P ∩Q as they appear along P . Since P ∩Q contains i edges, it suffices to
split i into j ordered parts; there are

(
i+j
j

)
possibilities for this partition. Now

that we have the sequence of sizes of the parts of P ∩ Q, it remains to choose
the positions in P where these edges appear. We can count the number of such
choices as follows: once we have removed P ∩ Q, there remains a sequence of
k − i edges of P . The portions of P ∩Q can be inserted at any of the k − i+ 1
separating positions (the extremities are included), and hence there are

(
k−i+1
j

)
choices. So in the end, fixing the path P together with the edges of P ∩Q can
be done in (

n

k + 1

)
(k + 1)! ·

(
i+ j

j

)
·
(
k − i+ 1

j

)
(15)

distinct ways.
It now remains to choose the second path Q, also self-avoiding, so that it

intersects P at the distinguished edges. We first choose the order in which the j
parts of P ∩Q appear in Q: there are j! possible choices. The intersection P ∩Q
contains i+j vertices and we need k+1−i+j other vertices to complete Q. It is
possible that some vertices of Q\ (P ∩Q) are in P , so we can choose an ordered
sequence of these vertices in

(
n−i−j
k+1−i−j

)
(k + 1 − i − j)! different ways. (In fact,

not all such sequences yield valid choices for Q \ P . For example, Q \ P should
not contain two consecutive vertices from P in the same part, or Q∩P will not
be what we claimed. However, we only seek an upper bound, and so can afford
to ignore this issue.) Finally, we need to choose how the j (now ordered) parts
of P ∩Q interlace with these (k + 1 − i − j) extra vertices. The extra vertices
define k − i − j + 1 intervals (with the extremities): there are

(
k−i−j+1

j

)
ways

to choose j of them (and insert the parts of P ∩Q at these spots). It follows by
this argument that for a fixed path P with distinguished edges forming j parts,
there are at most

j! ·
(

n− i− j
k + 1− i− j

)
(k + 1− i− j)! ·

(
k − i− j + 1

j

)
(16)

possible choices for the path Q.
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Now, the desired number Nk,i,j of pairs (P,Q) of paths of length k such
that P ∩ Q contains i edges in j connected parts is at most the product of
the numbers appearing in (15) and (16). The desired bound follows by routine
bounding using the inequality

(
n
k

)
≤ nk/k!.

3.3 Paths intersecting at least twice

Lemmas 4 and 5 yield more than sufficient control over all ∆t,i,j with j ≥ 2,
which we quantify in the following lemma.

Lemma 6. There is an ε0 > 0 such that for all 0 < ε ≤ ε0, if k = αε log n +
o(
√

log n), then for all n sufficiently large∑
2≤j≤i<k ∆t,i,j

E [|Pk,ε|]2
≤ n−0.95.

Proof. Combining the bound on the number of intersecting paths (Lemma 5)
with Lemma 4 with s = (1− ε) log n/n, we obtain

∆t,i,j := Nk,i,j ·P {w(P ) ≤ sn,w(Q) ≤ sn}

≤ n2−j(2k3)j((1− ε) log n)2k−i
4k−i

(2k − i)!

≤ n2−j(2k3)j
(

(1− ε)e log n
2k − i

)2k−i

4k−i,

since, for ` ≥ 1, we have `! ≥ (`/e)`. We have assumed that j ≥ 2, so for n large
enough, (2k3)jn2−j ≤ 4k6. It follows that

∑
2≤j≤i<k

∆t,i,j ≤ 4k8 max
2≤i<k

{
4k−i

(
e(1− ε) log n

(2k − i)

)2k−i
}
.

Using the estimate (8) for E|Pk,ε|, it follows that, for n large enough,∑
2≤j≤i<k ∆t,i,j

E [|Pk,ε|]2
≤ 7πk9

n2
max
2≤i<k

{(
4e(1− ε) log n

2k − i

)−i( 2k
2k − i

)2k
}
.(17)

We bound the right-hand side of (17) by allowing i to take real values. We write
k = γ log n and x = β log n (so 0 ≤ β ≤ γ); we then see that(

4e(1− ε) log n
2k − x

)−x( 2k
2k − x

)2k

= eg(β) logn,

where

g(β) := β log
(

2γ − β
4e(1− ε)

)
+ 2γ log

(
2γ

2γ − β

)
.
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For γ close to α?, the function g is suitably approximated by g? defined by

g?(β) := β log
(

2α? − β
4e

)
+ 2α? log

(
2α?

2α? − β

)
.

By differentiation, we see that g?(β) is maximized on [0, α?] by taking β =
2α?−4, at which point g?(β) ≈ 1.02. For any δ, we may ensure that |γ−α?| ≤ δ
for n large by choosing ε sufficiently small. Since g(β) = gγ(β) is bounded and
continuous in both γ and β away from β ∈ [2γ,∞), for all ε sufficiently small
and all n sufficiently large we have

|g(β)− g?(β)| ≤ 0.01

for all k = αε log n+ o(
√

log n) and all β ∈ [0, γ]. It follows that g(β) ≤ 1.04 for
all β ∈ [0, γ], which, combined with (17), yields that∑

2≤j≤i<k ∆t,i,j

E [|Pk,ε|]2
≤ 7πk9

n0.96
= O

(
log9 n

n0.96

)
.

This proves the lemma.

4 Dealing with paths intersecting only once

Unfortunately, for paths intersecting only once (i.e., when j = 1), for some
values of i the quantity ∆t,i,1 is too large for us to apply the straightforward
approach used above. (Note that this is not an artefact of our upper bounds:
Lemmas 4 and 5 are essentially tight up to logarithmic factors. Also, two short-
est paths between two pairs of vertices typically have one connected component
in common, so this class of paths is the main problem.) The most natural and
naive way to deal with this complication is to simply throw away all pairs of
shortest paths P and Q whose intersection is connected, and try to bound the
probability that one of the remaining minimum-weight paths is “long” (in the
same sense as above). This is essentially our approach. However, in order to
keep a handle on the conditioning imposed in doing so, it is useful to proceed
“from the other direction”: building a set of shortest paths with special proper-
ties that guarantee that (a) no pair of such paths has an intersection which is
connected, yet (b) the set contains a minimum-weight path with about α? log n
edges.

In order to describe this set, we first need to introduce a few concepts. We say
that paths P and P ′ intersect once if P ∩P ′ has only one connected component
containing at least one edge. (There may be other components of P ∩P ′ which
are isolated vertices.) We say that a path P is a local optimum if, for all paths
P ′ with |P | = |P ′| that intersect P once, we have w(P ′) > w(P ). From now
on, let Ok denote the set of paths with k edges that are local optima, let Ok,ε
denote the set of elements of Ok with weight at most (1 − ε) log n. Also, let
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P? = P(n) = {Pij : 1 ≤ i < j ≤ n} denote the set of shortest paths in Kn.
Note that Ok,ε ⊆ Pk,ε.

An instructive example. To motivate our next definitions, consider the
unlikely (impossible) but instructive event that we find a path P = (v1, . . . , vk+1),
all of whose edges have weight exactly 1, and consider a path Q of length k in-
tersecting P in exactly i < k consecutive edges —say Q ∩ P = (v1, . . . , vi+1),
for example. Let Q1 (respectively Q2) be the component of Q \P containing v1
(respectively vi+1). In order that w(Q) ≤ k, then certainly we must have both
w(Q1) ≤ k− i and w(Q2) ≤ k− i. On the other hand, one of Q1 and Q2 has at
least (k− i)/2 edges. It follows that if w(Q) ≤ k then in KP

n either SPTv1(k− i)
or SPTvi+1(k − i) has height at least (k − i)/2.

This observation is key to our approach. Roughly speaking, we wish to
consider long minimum-weight paths with the special property that none of the
shortest path trees leaving them are “too tall”. This property will guarantee
that the paths are local optima (Lemma 8), and we can then use the second
moment method to prove concentration for the number of such paths. However,
the idea suggested by the above sketch gives a little too much away in terms of
what “too tall” means; in particular, it is not careful enough about the interplay
between the contributions of Q1 and Q2 to the length of Q. When we formalize
our idea, we will have to deal with this interplay to make the details work out.

4.1 The fluctuations of conditioned partial sums

In the above example, there was a second simplification: the edge weights have
the extremely desirable property that for every subpath P ′ of P , w(P ′) is ex-
actly E [ w(P ′) | w(P ) = k ], which makes the conditions we need to impose on
the shortest path trees leaving P very easy to state. It is, of course, too much
to ask for paths whose edge weights are as well behaved as in the above exam-
ple. In general, the weights of subpaths will fluctuate considerably from their
conditional expected value given w(P ). Our tool for controlling the size of these
fluctuations is the law of the iterated logarithm; we will use the version found in
Rogers and Williams [11]. (These bounds are in fact stronger than we require;
however, we did not see a substantially simpler proof of a simpler but sufficient
result; furthermore, Corollary 3 is perhaps of interest independent of its role in
the current work.)

Theorem 3 ([11], Corollary 16.5). Let Y1, Y2, . . . be independent and identically
distributed random variables with finite variance, and let Sn =

∑j
j=1 Yj. Then

P

{
lim sup
n→∞

Sn − nEY1√
Var [Y1] 2n log log n

= 1

}
= 1.

We then immediately have the following finite statement, more useful for our
purposes.

12



Corollary 2. Let Y1, Y2, . . . be independent and identically distributed random
variables with finite variance, and let Sn =

∑j
j=1 Yj. For all δ > 0 there is a

constant C > 0 depending on δ and the distribution of Y1 (we write C(δ, Y1) for
short) such that

P

{
sup
n≥1

∣∣∣∣∣ Sn − nEY1√
Var [Y1] 2n log log n

∣∣∣∣∣ ≤ C
}
≥ 1− δ.

(To avoid annoying technicalities in our formulae, in Corollary 2 and here-
after when we write log log n we mean max(log log n, 1).) At this point, the fact
that we are considering exponential random variables comes in very handy, as it
allows us to apply Corollary 2 conditional upon the value of Sn. More precisely,
we have

Corollary 3. Suppose Y1 is an exponential random variable. Then for all δ > 0,
there is C ′ = C ′(δ) such that for all n sufficiently large,

P

{
∀k ∈ [n],

∣∣∣∣∣ Sk − Sn(k/n)√
Var [ Y1 | Sn ] 2k log log k

∣∣∣∣∣ ≤ C ′
∣∣∣∣∣ Sn

}
≥ 1− δ. (18)

We emphasize that the probability in (18) is a random variable, measurable
with respect to Sn; the content of the lemma is that this random variable is
deterministically at least 1 − δ. In particular, if we let E be the event in (18)
(so (18) bounds P {E | Sn }), then P {E} = ESn [ P {E | Sn } ] ≥ 1− δ and more
strongly, for any event E ′ which is measurable with respect to Sn,

P {E | E ′} = ESn [ P {E | Sn } | E ′ ] ≥ 1− δ.

Proof of Corollary 3. Fix δ > 0 and n. For i = 1, . . . , n, let Ei = Si/Sn. Then
the set {E1, . . . , En} is independent of Sn and distributed like n independent
[0, 1]-uniform random variables (for a proof, see Chapter 8 of [12]). It follows in
particular that E1, the minimum of n independent uniforms, has a Beta(1, n−1)
distribution and Var [ Y1 | Sn ] = (Sn/n)2(n−1)/(n+1) ≥ (Sn/n)2/3, for n ≥ 2.
Using this estimate of the conditional variance, (18) may be bounded as

P

{
∀k ∈ [n],

∣∣∣∣∣ Sk − Sn(k/n)√
Var [ Y1 | Sn ] 2k log log k

∣∣∣∣∣ ≤ C ′
∣∣∣∣∣ Sn

}

≥ P

{
∀k ∈ [n],

∣∣∣∣∣ nSkSn − k√
2k log log k

∣∣∣∣∣ ≤ √3C ′
∣∣∣∣∣ Sn

}

= P

{
∀k ∈ [n],

∣∣∣∣∣ nSkSn − k√
2k log log k

∣∣∣∣∣ ≤ √3C ′
}
,

13



where we used the independence of the Sk/Sn of Sn. Thus, proving (18) reduces
to finding C ′ such that the unconditioned statement

P
{

sup
1≤k≤n

∣∣∣∣ (n/Sn)Sk − k√
2k log log k

∣∣∣∣ ≤ C ′} ≥ 1− δ (19)

holds. By choosing C ′ large enough we can certainly ensure that this holds for
small n; shortly we will take advantage of this fact. By Corollary 2 we have that

P
{

sup
1≤k≤n

∣∣∣∣ Sk − k√
2k log log k

∣∣∣∣ ≤ C1

}
≥ 1− δ

2
, (20)

where C1 = C(δ/2, Y1) as in the statement of Corollary 2. If, on the other hand,
there is k ∈ {1, . . . , n} such that∣∣∣∣ (n/Sn)Sk − k√

2k log log k

∣∣∣∣ ≥ C1 + c,

for some c > 0, then either the event whose probability is bounded in (20) must
fail to hold, or by the triangle inequality we must have∣∣∣∣ (n/Sn − 1)Sk√

2k log log k

∣∣∣∣ ≥ c,
for some k, or more simply |Sn − n| ≥ c

√
2k log log k · Sn/Sk. For this to occur,

we must either have |Sn − n| ≥
√
cn or Sk ≥

√
c(2k log log k) · (

√
n −
√
c).

It follows that, for n large enough that
√
n −
√
c ≥

√
n/2 (and recalling that

log log k ≥ 1 for all k by convention), we have

P
{

sup
1≤k≤n

∣∣∣∣ (n/Sn − 1)Sk√
2k log log k

∣∣∣∣ ≥ c} ≤
n∑
k=1

P
{
Sk ≥ k

√
c
}

+ P
{
|Sn − n| ≥

√
cn
}

≤
n∑
k=1

e−kH(
√
c) +

1
c
, (21)

where we have bounded the first term using a large deviations bound for sums
of exponential random variables [2] with H(x) := x− 1− log x, and the second
term by Chebyshev’s inequality. We now choose c large enough that the right-
hand side of (21) above is at most δ/2 for all n. Combining (21) with (20) and
taking C ′ = C1 + c (or slightly larger if necessary, to deal with small n) then
establishes (19) and completes the proof.

Motivated by Corollary 3, we say that a path P = (v1, . . . , vk+1) in Kn is
C-legal (for a given C > 0), and write P ∈ LC = LC(n), if for all i = 1, . . . , k,∣∣∣∣∣∣ k

w(P )
·

i∑
j=1

Xvjvj+1 − i

∣∣∣∣∣∣ ≤ C√2i log log i, (22)
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and ∣∣∣∣∣∣ k

w(P )
·

k∑
j=k−i+1

Xvjvj+1 − i

∣∣∣∣∣∣ ≤ C√2i log log i. (23)

We need both conditions as we wish to ensure the path is well-behaved “from
both ends”. Though these conditions only restrict the weight of subpaths of P
starting from an end, they can be combined to control the behavior of other
subpaths. More precisely, let

m(i, k) = min{i− 1, k + 1− i} and s(i, j, k) = max{m(i, k),m(j, k)}. (24)

Intuitively, s(i, j, k) is the furthest distance from either i or j to one of the ends
of the path. We then have

Lemma 7. If P = (v1, . . . , vk+1) is C-legal then for all 1 ≤ i < j ≤ k + 1,∣∣∣∣∣ k

w(P )
·
j−1∑
m=i

Xvmvm+1 − (j − i)

∣∣∣∣∣ ≤ 2C ·
√

2s(i, j, k) log log(s(i, j, k)). (25)

Proof. Write P (i) (respectively P (i, j)) for the path (v1, . . . , vi) (respectively
(vi, . . . , vj)), then apply (22) and (23) to P (i) or P \ P (i) according as i ≤
(k + 1)/2 or i > (k + 1)/2 and to P (j) or P \ P (j), similarly. Finally, use one
of the equalities

P (i, j) = P (j)\P (i−1) = (P \P (i−1))\(P \P (j)) = P \(P (i−1)∪(P \P (j))),

together with the triangle inequality to prove the result.

4.2 Bounding the heights of shortest path trees

We have now introduced all the technical apparatus we will need to control the
path P itself. Returning to our example from page 12, we recall that our main
goal is to bound the heights of the shortest path trees leaving P ; Lemma 7 tells
us just how tall we can allow them to be. We say that P is C-bonsai if:

(?) for all i = 1, . . . , k + 1, and all integers ` with ` ≥ m(i, k)/40, in KP
n

SPTvi(`+ 2C
√

500` log log `) has height less than
(

9k
10w(P )

)
· `.

We denote the set of C-bonsai paths in Kn by BC = BC(n).

Lemma 8. For any C ≥ 0, if w(P ) ≤ k ≤ 4w(P ) and P is both C-legal and
C-bonsai, i.e., P ∈ LC ∩ BC , then P is a local optimum.
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Proof of Lemma 8. Let P = (v1, . . . , vk+1) ∈ LC ∩BC . Our aim is to show that
for any integers i, j with 1 ≤ i < j ≤ k + 1 and any path Q of length k whose
intersection with P is (vi, . . . , vj), we have w(Q) > w(P ). By symmetry we may
assume that i < (k + 1)/2 (so m(i, k) = i − 1) and that m(i, k) ≤ m(j, k) (so
s(i, j, k) = m(j, k)).

Let Qi (respectively Qj) be the component of Q \ P containing vi (respec-
tively vj). We must have |Qi| + |Qj | = k − (j − i) ≥ m(i, k) + m(j, k). Let
ki = (10/9)(w(P )/k)|Qi| and define kj similarly. If |Qi| ≥ km(i, k)/(40w(P ))
then since P is C-bonsai and w(P )/k ≥ 1/4,

w(Qi) ≥ ki + 2C
√

500ki log log ki ≥ ki + 2C
√
m(i, k) log logm(i, k).

(The constant 500 ensures that the second inequality holds.) Similarly, if |Qj | ≥
(m(j, k)/40)k/w(P ), then

w(Qj) ≥ kj + 2C
√

500kj log log kj ≥ kj + 2C
√
m(j, k) log logm(j, k).

If both these conditions occur then by the definitions of ki and kj we have

w(Qi) + w(Qj) ≥
w(P )
k

(|Qi|+ |Qj |) + 2C
√
s(i, j, k) log log s(i, j, k).

Since w(P ) ≤ k, combining the preceding equation with the lower bound on
w(P ∩Q) given by Lemma 7 completes the proof in this case.

On the other hand, if |Qj | ≤ km(j, k)/(40w(P )) ≤ m(j, k)/10 then |Qi| ≥
m(i, k) and

|Qi| ≥ (k − (j − i))− m(j, k)
10

≥ 9(k − (j − i))
10

≥ 9m(j, k)
10

.

Since P is C-bonsai we have w(Qi) ≥ ki+2C
√

500ki log log ki. Moreover, in this
case, ki ≥ (w(P )/k)(k− (j− i)) and ki ≥ m(j, k)/4 = s(i, j, k)/4, the preceding
equation implies that

w(Qi) ≥
w(P )
k

(k − (j − i)) + 2C
√
s(i, j, k) log log s(i, j, k),

which, combined with Lemma 7 and the fact that w(P ) ≤ k, completes the
proof in this case. The case |Qi| ≤ (m(i, k)/40)(k/w(P )) is similar to but easier
than the case |Qj | ≤ (m(i, k)/40)(k/w(P )).

We are now in a position to fully define the special set of paths we wish to
consider. Given ε > 0 and a positive integer k, let Uε,k,C = Uε,k,C(n) be the set
of paths P of length k in Kn for which the following events hold

A1 := {(1− 2ε) log n ≤ w(P ) ≤ (1− ε) log n},
A2 := {P ∈ P?} (26)
A3 := {P ∈ LC ∩ BC}.
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We remark that if ε > 0 is small enough (in particular, any ε = o(1) suffices),
C > 0 is fixed, t = t(n) = o(

√
log n), and P ∈ Uε,dkε+te,C (where kε was defined

in (10)) then for n large enough, w(P ) ≤ k ≤ 4w(P ), so, by Lemma 8, P is a
local optimum. The following lemma bounds the expected size of Uε,k,C .

Lemma 9. There exist C > 0 and δ > 0 such that for any fixed c > 2 and any
ε with δ > ε > c log log n/ log n, for any function t(n) = o(

√
log n), and for all

n sufficiently large
E|Uε,dkε+te,C | ≥ δE|Pdkε+te,ε|.

Proof. Recall that h(T ) denotes the (unweighted) height of a rooted tree T . Fix
ε > 0 as above, and a path P of length k = dkε + te. It suffices to prove that
for any such path P , P

{
P ∈ Uε,dkε+te,C

}
≥ δP

{
P ∈ Pdkε+te,ε

}
for a suitable

δ. Define the following conditional probability

Pε { · } := P { · | (1− 2ε) log n ≤ w(P ) ≤ (1− ε) log n} .

Then, by the definition (26), we have

P
{
P ∈ Uε,dkε+te,C

}
= P {A1, A2, A3}
= Pε {A2, A3} ·P {(1− 2ε) log n ≤ w(P ) ≤ (1− ε) log n}
= Pε {A2, A3} · (1 + o(1))P {w(P ) ≤ (1− ε) log n}

(by (3)
= Pε {A2, A3} · (1 + o(1))P

{
P ∈ Pdkε+te,ε

}
.

So to prove the lemma it suffices to show that Pε {A2, A3} is bounded away
from zero. To do so we first write

Pε {A2, A3} = Pε {P ∈ P?, P ∈ LC , P ∈ BC}
≥ Pε {P ∈ BC , P ∈ LC} −Pε {P /∈ P?} .

For ε as above, Pε {P /∈ P?} → 0 as n → ∞ by Corollary 1, so we need only
prove that Pε {P ∈ BC , P ∈ LC} is bounded away from zero. To do so, rather
than considering the set BC we consider a slightly different collection, which
we denote BεC . We let P ∈ BεC if (?) page 15 holds with the term w(P ) re-
placed by (1 − ε) log n. Given that w(P ) ≤ (1 − ε) log n, we have BεC ⊆ BC ,
so Pε {P ∈ BC , P ∈ LC} ≥ Pε {P ∈ BεC , P ∈ LC}. But the event P ∈ BεC is
independent from the events P ∈ LC and

A1 = {(1− 2ε) log n ≤ w(P ) ≤ (1− ε) log n},

since they are determined by disjoint sets of edges. Thus, we have

Pε {P ∈ BC , P ∈ LC} ≥ P {P ∈ BεC}Pε {P ∈ LC} .
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Now choose C = C ′(1/2), where C ′(1/2) is as in Corollary 3. By that corollary
we then have Pε {P ∈ LC} ≥ 1/2, so

Pε {P ∈ BC , P ∈ LC} ≥
1
2
P {P ∈ BεC} .

To complete the proof, it thus suffices to prove that P {P ∈ BεC} is bounded
below by a constant.

We assume ε is small enough and n is large enough (say n ≥ n0 for some n0)
that

(1− ε) log n
dkε + te

≤ 1
3.5

. (27)

(Note that this is possible by the value of α?. We also remark that the preceding
equation is the only place we use the hypothesis that ε is “small”.) To further
simplify our lives, we now consider a subset of BεC that we denote

⋂k+1
i=1 BC,i,

where BC,i is the set of all paths Q = (v1, . . . , vk+1) in Kn for which, for all
integers ` with ` ≥ m(i, k)/40 (recall that m(i, k) is defined in (24)), in KQ

n

h
(

SPTvi
(
`+ 2C

√
500` log log `

))
< 3.15`. (28)

The set
⋂k+1
i=1 BC,i is indeed a subset of BεC , since 9k/(10(1 − ε) log n) ≥ 3.15

by (27). The events P ∈ BC,i, i = 1, . . . , k + 1 are all increasing in the weight
values, so by the FKG inequality [1, 4–6], we have

P {P ∈ BεC} ≥
k+1∏
i=1

P {P ∈ BC,i} ≥
b(k+1)/2c∏

i=1

P {P ∈ BC,i}2 , (29)

where the second inequality takes advantage of the symmetry. For small `, the
probability that (28) occurs is bounded away from zero: it is at least the prob-
ability that all n− 1 edges leaving vi have weight at least `+ 2C

√
500` log log `,

and every edge weight has an exponential distribution with mean n. Thus,
choose an integer `0 large enough that the following four conditions are satisfied
for ` ≥ `0,{
`+ 2C

√
500` log log ` ≤ 1.05`,

1− e−`/10/2 ≥ exp
(
−e−`/10

) and
{

e3−`/8 ≤ e−`/10/4
3e`/40 exp

(
−e`/20

)
≤ e−`/10/4.

Then there is α0 > 0 such that for ` ≤ `0, the event in (28) occurs with
probability at least α0. Furthermore, for each ` the event in (28) is increasing
in the weight values, so the FKG inequality yields

P {P ∈ BC,i} ≥
∞∏

`=dm(i,k)/40e

P
{
h
(

SPTi
(
`+ 2C

√
500` log log `

))
< 3.15`

}
≥ αξi0 ·

∏
`≥`0∨m(i,k)/40

P {h (SPTi (1.05`)) < 3.15`} , (30)
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where we have written ξi = max{`0 −m(i, k)/40, 0}. We now turn to bounding
these remaining probabilities for ` ≥ `0. By Lemma 1, and our choice for `0,

P
{
|SPTi (1.05`) | ≥ e1.1`

}
≤ 3e`/40 exp

(
−e`/40

)
≤ e−`/10

4
.

Furthermore, with the following values and our choice for `0, the bound of
Theorem 2 yields

P
{
h (SPTi (1.05`)) ≥ 3.15`

∣∣ |SPTi (1.05`) | < e1.1`
}
≤ e−`/10

4
.

It follows from the two preceding equations that for ` ≥ `0

P {h (SPTi (1.05`)) < 3.15`} ≥
(

1− e−`/10

4

)2

≥ 1− e−`/10

2
≥ e−e

−`/10
.

Combining this inequality with (30) yields

P {P ∈ BC,i} ≥ αξi0 exp

− ∞∑
`=dm(i,k)/40e

e−`/10

 ≥ αξi0 exp
(
−26e−m(i,k)/400

)
.

Observe that the multiplicative factor αξi0 = 1 but for the values of i such that
m(i, k) ≤ 40`0. Observe also that for i ≤ (k + 1)/2, we have by definition (24)
m(i, k) = i− 1. So, together with (29) the preceding equation yields

P {P ∈ BεC} ≥ α
80`20
0 exp

−52
b(k+1)/2c∑

i=1

e−(i−1)/400

 ,

which completes the proof, since the series in the right-hand side converges.

With Lemma 9 under our belt, we can now complete our proof of Theorem 1

Proof of Theorem 1, lower bounds. Let C be as in Lemma 9, choose ε = ε(n) =
3 log log n/ log n, and choose a function t = t(n) = o(

√
log n) such that t(n) →

−∞ with n; we will make a more precise choice for t(n) shortly. As noted just
before the statement of Lemma 9, if ε = o(1), C > 0 is fixed, t = o(

√
log n), and

P ∈ Uε,dkε+te,C then for n large enough, w(P ) ≤ k ≤ 4w(P ), so, by Lemma 8,
P is a local optimum. Our choices of ε, C, and t satisfy these conditions, so for
n large enough we have

Udkε+te,ε,C ⊆ Odkε+te,ε ⊆ Pdkε+te,ε.

By Lemmas 3 and 9, and the definition of kε in (10), there is K > 0 such that
choosing t(n) = K log log n, for n large enough we have

E|Udkε+te,ε| ≥ log n.
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Recalling the definition (11) of ∆(Udkε+te,ε), we remark that since Udkε+te,ε,C ⊆
Odkε+te,ε, the contribution of pairs of paths who intersect once to ∆(Udkε+te,ε),
is zero. Also, since Udkε+te,ε,C ⊆ Pdkε+te,ε , we have

∆(Udkε+te,ε) ≤
∑

2≤j≤i<dkε+te

∆t,i,j ,

so by Lemma 6, for n large enough, we have ∆(Udkε+te,ε) ≤ n−0.95E
[
|Pdkε+te,ε|

]2
.

By our choice of ε there is K ′ > 0 such that kε + t ≥ α? log n−K ′ log log n. It
follows by the second moment method (12) and Lemma 9 that

P
{

max
1≤i,j≤n

|Pij | ≤ α? log n−K ′ log log n
}
≤ P

{
|Udkε+te,ε| = 0

}
<

1
E|Udkε+te,ε|

+
∆(Udkε+te,ε)

E
[
|Udkε+te,ε|

]2
≤ 1

log n
+
n−0.95

δ2
−−−−→
n→∞

0,

proving the lower bound in probability. We then have from the previous bound

E
[

max
1≤i,j≤n

|Pij |
]
≥ (α? log n−K ′ log log n)

(
1− 1

log n
− n−0.95

δ2

)
,

which proves the lower bound in expectation.

5 Conclusion

We have shown that the longest minimum-weight path in a complete graph
with i.i.d. exponentially distributed edge weights is asymptotically α? log n in
probability, where α? ≈ 3.5911 satisfies α? logα? = α? + 1. The difficult part of
the proof is the lower bound as the upper bound follows easily from Devroye’s
[3] results on the height of a random recursive tree and a simple union bound.
The fact that such a simple union bound leads to correct bounds means that
the n shortest path trees SPTi essentially behave as if they were independent.

The lower bound is proved by a second-moment argument for a carefully
chosen random set of minimum-weight paths, all of length about α? log n, that
satisfy certain regularity conditions. This careful choice allows us to control the
variance of the size of the set of such paths. The proof shows that, with high
probability, there exist minimum-weight paths of length about α? log n whose
total weight is close to log n. Thus, these extra-long paths have a total weight
just like a typical minimum-weight path.

Finally, just as Janson [8] did in proving his results discussed in the in-
troduction, we can use a standard coupling argument to extend Theorem 1 to
distributions other than exponential. To explain the coupling, it is useful to di-
vide the edge weights by n, so to consider the Exp(1) edge weights X ′e = Xe/n.
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Let Z be any non-negative random variable, with distribution function F (t) =
P {Z ≤ t}, and let F−1(t) = sup{x : F (x) ≤ t}. Let U be a random variable
uniform on [0, 1]. Then F−1(U) is distributed as Z. We may thus couple the ex-
ponential edge weights X ′e to uniform edge weights Ue by setting X ′e = F−1

E (Ue),
where FE(t) is the distribution function of an Exp(1) random variable. We have
FE(t) = 1− e−t = t− t2/2 +O(t3) as t→ 0, and it follows that for all edges e
of Kn, |X ′e − Ue| = O((X ′e)

2), uniformly when X ′e ≤ 1/2.
Of particular use for us is the following consequence: for all edges e with

X ′e ≤ 12 log n/n (say), we have |X ′e − Ue| = O(log2 n/n2), so for any path P
with O(log n) edges and with w′(P ) :=

∑
e∈E(P )X

′
e ≤ 12 log n/n, we have∣∣∣∣∣∣w′(P )−

∑
e∈E(P )

Ue

∣∣∣∣∣∣ = O

(
log3

n2

)
. (31)

It then follows easily that the conclusions of Theorem 1 hold for uniform [0, 1], as
well as exponential, edge weights. (Technically, one must redo all the arguments
of the paper keeping (31) in mind, and accordingly adjust some of the constants
very slightly; we omit this step.)

In fact all we really need is a bound of o(1/n) in (31) in order to extend
Theorem 1 to uniform [0, 1] edge weights. Thus, by another coupling as above,
we may extend Theorem 1 from uniforms to any other edge weights Y whose
distribution function FY satisfies FY (t) = ct + o(t/ log2 t) for some constant
c > 0, as t→ 0.
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