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Abstract
We study a family online influence maximization problems where at each time t = 1, . . . , T , the
decision maker selects one from a large number of agents with the goal of maximizing influence.
Upon choosing an agent, the decision maker places a piece of information at the agent. The informa-
tion then spreads in an unobserved network over which the agents communicate. The edges of the
network are generated according to some fixed but unknown distribution. The set of influenced nodes
is the connected component of the random graph containing the vertex corresponding to the selected
agent. The goal of the decision maker is to reach as many nodes as possible. However, the decision
maker cannot observe the entire network. The available feedback is only some informartion about
a small neighborhood of the selected vertex. Our results show that such partial local observations
can be sufficient for maximizing global influence. We model the underlying random graph as a
sparse inhomogeneous Erdős-Rényi graph. We study in detail three specific families of random
graph models: stochastic block models, Chung–Lu models and Kronecker random graphs. We show
that in these cases one may learn to maximize influence by merely observing the degree of the
selected vertex in the generated random graph. We propose sequential learning algorithms that aim at
maximizing influence, and provide their theoretical analysis in both the subcritical and supercritical
regimes of all considered models.
Keywords: Influence maximization, sequential prediction, multi-armed bandits, stochastic block
models

1. Introduction

Finding influential nodes in networks has a long history of study. The problem has been cast in
a variety of different ways according to the notion of influence and the information available to a
decision maker. We refer the reader to Kempe, Kleinberg, and Tardos (2003); Chen, Wang, and
Wang (2010); Chen, Lakshmanan, and Castillo (2013a); Vaswani, Lakshmanan, and Schmidt (2015);
Carpentier and Valko (2016); Wen, Kveton, Valko, and Vaswani (2017); Wang and Chen (2017);
Khim, Jog, and Loh (2019); Perrault, Healey, Wen, and Valko (2020) and the references therein for
recent progress in various directions.

* A part of the matarial of the paper appeared in the Proceedings of ALT 2019

© G. Lugosi, G. Neu & J. Olkhovskaya.



LUGOSI NEU OLKHOVSKAYA

The most studied influence maximization setup is an offline discrete optimization problem of
finding the set of the most influential nodes in a network. This setup assumes that the probability
of influencing is known, or at least data is available that allows one to estimate these probabilities.
However, such information is often not available or is difficult to obtain. Also, the network over
which information spreads is rarely fixed. To avoid such assumptions, we introduce a novel model of
influence maximization in a sequential setup, where the underlying network changes every time and
the learner has only partial information about the set of influenced nodes.

Specifically, we define and explore a sequential decision-making model in which the goal of a
decision maker is to find one among a set of n agents with maximal (expected) influence.

We parametrize the information spreading mechanism by a symmetric n× n matrix P , whose
entries pi,j ∈ [0, 1] express “affinity” or “probability of communication” between agents i and j.
We assume that pi,i = 0 for all i ∈ [n]. The matrix P defines an inhomogeneous random graph G
in a natural way: an (undirected) edge is present between nodes i < j with probability pi,j and all
edges are independent. When two nodes are connected by an edge, information flows between the
corresponding agents. Hence, a piece of information placed at a node i spreads to the nodes of the
entire connected component of i in G.

In the sequential decision-making process we study, an independent random graph is formed at
each time instance t = 1, . . . , T on the vertex set [n]. The random graph formed at time t is denoted
by Gt. Hence, G1, . . . , GT is an independent, identically distributed sequence of random graphs on
the vertex set [n], whose distribution is determined by the matrix P .

If the decision maker selects a node a ∈ [n] at time t, then the information placed at the node
spreads to every node of the connected component of a in the graph Gt.

The goal of the decision maker is to spread information as much as possible, that is, to reach as
many agents as possible. The reward of the decision maker at time t is the number of nodes in the
connected component containing the selected node in Gt.

In this paper, we study a setting where the decision maker has no prior knowledge of the
distribution P , so she has to learn about this distribution on the fly, while simultaneously attempting
to maximize the total reward. This gives rise to a dilemma of exploration versus exploitation,
commonly studied within the framework of multi-armed bandit problems (for a survey, see Bubeck
and Cesa-Bianchi (2012)). Indeed, if the decision maker could observe the size of the set of all
influenced nodes in every round, the sequential influence maximization problem outlined above could
be naturally formulated as a stochastic multi-armed bandit problem Lai and Robbins (1985); Auer,
Cesa-Bianchi, and Fischer (2002a). However, this direct approach has multiple drawbacks. First of
all, in many applications, the number n of nodes is so large that one cannot even hope to maintain
individual statistics about each of them, let alone expect any algorithm to identify the most influential
node in any reasonable time. More importantly, in most cases of interest, tracking down the set of
all influenced agents may be difficult or downright impossible due to privacy and computational
considerations. This motivates the study of a more restrictive setting where the decision maker has to
manage with only partial observations of the set of influenced nodes.

We address this latter challenge by considering a more realistic observation model, where after
selecting an agent At to be influenced, the learner only observes a local neighbourhood of At in
the realized random graph Gt , or even only the number of immediate neighbours of At (i.e., the
degree of vertex At in Gt). This model raises the following question: is it possible to maximize
global influence while only having access to such local measurements? Our key technical result is
answering this question in the positive for some broadly studied random graph models.
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The rest of the paper is structured as follows. In Section 1.1 we formalize the sequential influence
maximization problem. In Section 1.2 a general model of inhomogeneous random graphs is described
and the crucial notions of sub-, and super-criticality are formally introduced. Section 2 is dedicated
to the general case when the underlying random graph is an arbitrary inhomogenous random graph
and the learner only knows whether it is in the subcritical or supercritical regime. We show that in
both cases online influence maximization is possible by only observing a small “local” neighborhood
of the selected node. We provide two separate algorithms and regret bounds for the subcritical and
supercritical cases, respectively. In Section 8, we consider the situation when the learner has even
less information about the underlying random graph. In particular, we assume that the learner only
observes the degree of the selected node in the realized random graph. We study three well-known
special cases of inhomogeneous random graphs that are commonly used to model large social
networks, namely stochastic block models, the Chung-Lu model, and Kronecker random graphs. We
prove that in these three random graph models, degree observations are sufficient to maximize global
influence both in the subcritical and supercritical regimes. In Section 4 we provide some discussion
and comparison to the previous work. In sections 5, 6, 7, and 8 we present all proofs.

1.1. Problem setup

We now describe our problem and model assumptions formally. We consider the problem of
sequential influence maximization on the set of nodes V = [n], formalized as a repeated interaction
scheme between a learner and its environment. We assume that node i influences node j with
(unknown) probability pi,j(= pj,i). At each iteration, a new graphGt is generated on the vertex set V
by independent draws of the edges such that edge (i, j) is present with probability pi,j and all edges
are independent. The set of nodes influenced by the chosen node At is the connected component of
Gt that contains At. Ci,t denotes the connected component containing vertex i:

Ci,t = {v ∈ V : v is connected to i by a path in Gt} .

The feedback that the decision maker receives after choosing a node is some “local” information
around the chosen vertex At in Gt. We consider several feedback models. In the simplest case, the
feedback is the degree of vertex At in Gt. In another model, the information might consist of the
vertices found after a few steps of depth-first exploration of Gt started from vertex At. In a general
framework, we may define a “local neighborhood" of At, denoted by ĈAt,t, where ĈAt,t ⊂ CAt,t.
For each model considered below, we specify later what exactly ĈAt,t is. In the general setup, the
following steps are repeated for each round t = 1, 2, . . . :

1. the learner picks a vertex At ∈ V ,

2. the environment generates a random graph Gt,

3. the learner observes the local neighborhood ĈAt,t,

4. the learner earns the reward rt,At = |CAt,t|.

We stress that the learner does not observe the reward, only the local neighborhood ĈAt,t. Define ci
as the expected size of the connected component associated with the node i: ci = E [|Ci,1|]. Ideally,
one would like to minimize the expected regret defined as

RT = E

[
T∑
t=1

(
max
i∈V

ci − cAt
)]

. (1)
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Since we are interested in settings where the total number of nodes n is very large, even with a
fully known random graph model, finding the optimal node maximizing ci is infeasible. Such
computational issues have lead to alternative definitions of the regret such as the approximation regret
Kakade, Kalai, and Ligett (2009); Chen, Wang, and Yuan (2013b); Streeter and Golovin (2009) or
the quantile regret Chaudhuri, Freund, and Hsu (2009); Chernov and Vovk (2010); Luo and Schapire
(2014); Koolen and Van Erven (2015).

In the present paper, we consider the α-quantile regret as our performance measure, which,
instead of measuring the learner’s performance against the single best decision, uses a near-optimal
action as a baseline. For a more technical definition, let i1, i2, . . . , in be an ordering of the nodes
satisfying ci1 ≤ ci2 ≤ · · · ≤ cin , and denote the α-quantile over the mean rewards as c∗α = cid(1−α)ne .
Then, defining the set V ∗α = {id(1−α)ne, . . . , in} as the set of α-near-optimal nodes, we define the
α-quantile regret as

RαT = E

[
T∑
t=1

(
min
i∈V ∗α

ci − cAt
)]

= E

[
T∑
t=1

(c∗α − cAt)

]
. (2)

1.2. Inhomogeneous Erdős-Rényi random graphs

Next we discuss the random graph models considered in this paper. All belong to the inhomogeneous
Erdős-Rényi model, that is, edges are present independently of each other, with possibly different
probabilities. Moreover, the graphs we consider are sparse graphs, that is, the average degree is
bounded.

Since we consider large values of n, it is advantageous to formulate this model as in Bollobás,
Janson, and Riordan (2007). To this end, let κ be a bounded symmetric non-negative measurable
function on [0, 1] × [0, 1]. Each edge (i, j) for 1 ≤ i < j ≤ n is present with probability pi,j =
min(κ(i/n, j/n)/n, 1), independently of all other edges. We are interested in random graphs where
the average degree is O(1) (as n → ∞). This assumption makes the problem both more realistic
and challenging: denser graphs are connected with high probability, making the problem essentially
vacuous. A random graph drawn from the above distribution is denoted by G(n, κ).

We consider two fundamentally different regimes of the parameters G(n, κ): the subcritical case
in which the size of the largest connected component is sublinear in n (with high probability), and
the supercritical case where the largest connected component is at least of size cn for some constant
c > 0, with high probability. (We say that an event holds with high probability if its probability
converges to one as n→∞.) Such a connected component of linear size is called a giant component.
These regimes can be formally characterized with the help of the integral operator Tκ, defined by

(Tκf) (x) =

∫
(0,1]

κ(x, y)f(y)dµ(y) ,

for any measurable bounded function f , where µ is the Lebesgue measure. We call κ subcritical
if ||Tκ||2 < 1 and supercritical if ||Tκ||2 > 1. We use the same expressions for a random graph
G(n, κ).

It follows from Bollobás, Janson, and Riordan (2007, Theorem 3.1) that, with high probability,
G(n, κ) has a giant component if it is supercritical, while the number of vertices in the largest
component is o(n) with high probability if it is subcritical.
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In the analysis for a fixed number of nodes we denote Ai,j = κ(i/n, j/n) so that pi,j =
min(Ai,j/n, 1). This model is sometimes called the binomial random graph and was first considered
by Kovalenko (1971).

2. Observations of censored component size

First we study a natural feedback model in which the decision maker, unable to explore the entire
connected component Ci,t of the influenced node i in Gt, resorts to exploring the connected com-
ponent up to a certain (small) number of nodes. More precisely, we define feedback as the result
of counting the number of nodes in Ci,t by (say, depth-first search) exploration of the connected
component, which stops after revealing K nodes, or before, if |Ci,t| < K. Here K is a fixed positive
integer, independent of the number of nodes n.

The main results of this section show that this type of feedback is sufficient for sequential
influence maximization. However, the subcritical and supercritical cases need to be treated separately
as they are quite different. In the subcritical case, the expected size of the connected component of
any vertex is of constant order while in the supercritical case there exist vertices whose connected
component is linear in n. This also means that the rewards – and therefore the per-round regrets –
are of different order of magnitude (as a function of n) in the subcritical and supercritical cases.

For simplicity, we assume that the decision maker knows in advance whether the function κ
defining the inhomogeneous random graph is subcritical or supercritical, as we propose different
algorithms for both cases. We believe that this is a mild assumption. (We also assume that ||Tκ||2 6= 1,
that is, the random graph is not exactly critical.)

2.1. Subcritical case

First we study the subcritical case, that is, we assume that ||Tκ||2 < 1. In this case the proposed
influence-maximization algorithm uses the censored size of the connected component of the selected
node. That is, for a node i ∈ [n], we define ui,t(K) as the result of counting the number of nodes in
Ci,t by exploration of the connected component, which stops after revealing K nodes or before, if
|Ci,t| < K. Hence, the feedback is ui,t(K) = min (|Ci,t|,K).

A key ingredient in our analysis in the subcritical case is an estimate for the lower tail of the size
of the connected component containing a fixed vertex. We state it in the following lemma:

Lemma 1 For any subcritical κ, there exist positive constants λ(κ), g(κ) and n0(κ), such that for
any n ≥ n0, for any node i in G(n, κ), the size of the connected component Ci of a vertex i satisfies

P [|Ci| > u] ≤ e−λ(κ)ug(κ) . (3)

Unfortunately, there is no closed-form expression for the dependence λ(κ) and g(κ) on κ. The idea
of the proof of this lemma relies on the analysis of Theorem 12.5 in Bollobás, Janson, and Riordan
(2007). To obtain this concentration result, we show that the size of the connected component in
G(n, κ) is stochastically dominated by the total progeny of the multitype Poisson branching process
with carefully chosen parameters. We introduce branching processes in Section 5 and prove Lemma 1
in Section 6.

Now we are ready to define an estimate of ci = E|Ci| in the sequential decision game. For
a fixed a constant K, we define the estimate ûi,t(K) = (1/t)

∑t
s=1 ui,s(K)I{As=i}. Using the
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concentration inequality (3), with the choice of the threshold parameter K = log(T )
λ with λ > λ(κ),

we get that the bias of ûi,t(K) is at most g(κ)
T . We state this result more formally in Lemma 8.

The censored observations are bounded, since ui,t(K) ∈ [1,K]. We use those observations
as rewards in our bandit problem and we feed them to an instance of the UCB algorithm (Auer,
Cesa-Bianchi, Freund, and Schapire, 2002b). We call the resulting algorithm Local UCB(V0), defined
in Algorithm 1 below.

A minor challenge is that, since we are interested in very large values of n, it is infeasible to
use all nodes as separate actions in our bandit algorithm. To address this challenge, we propose
to subsample a set of representative nodes for UCB to play on. The size of the subsampled nodes
depends on the quantile α targeted in the regret definition (2) and the time horizon T . Our algorithm
uniformly samples a subset V0 of size

|V0| =
⌈

log T

log(1/(1− α))

⌉
(4)

and plays Local UCB(V0) for the corresponding regime on the resulting set. Note that the size of
V0 is chosen such that the probability that V0 does not contain any of the αn notes with the largest
values of ci is at most 1/T .

To simplify the presentation, we introduce some more notation. Analogously to the α-optimal
reward c∗α, we define the α-optimal censored component size u∗,α(K) = mini∈V ∗α ui(K) and we
define the corresponding gap parameters ∆α,i = (c∗α − ci)+, δsubα,i (K) = (u∗,α(K)− ui(K))+ and
∆α,max = maxi ∆α,i. Ni,t =

∑t
s=1 I{As=i} denotes the number of times node i is selected up to

time t.

Algorithm 1 Local UCB(V0) for subcritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , K > 0.
Initialization: Select each node in V0 once. For each i ∈ V0, set Ni,|V0| = 1 and ûi,|V0| = ui,i(K).
For t = |V0|, . . . T , repeat

1. Select any node At+1 ∈ arg maxi ûi,t(K) +K
√

log t
Ni,t

.

2. Observe uAt+1,t+1(K) , update ûi,t+1 and Ni,t+1 for all i ∈ [n].

For the subcritical case, Local UCB(V0) has the following performance guarantee:

Theorem 2 (Subcritical inhomogeneous random graph) Assume that κ is subcritical. Let V0 be
a uniform subsample of V with size given in (4) and define the event E = {V0 ∩ V ∗α 6= ∅}. Then for
G(n, κ) with n > n0(κ), the expected α-quantile regret of Local UCB(V0) satisfies

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4K2 log T

(δsubα,i (K))2
+ 8

)∣∣∣∣∣∣ E
 ,
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where the expectation is taken over the random choice of V0. If κ is such that λ(κ) > λ, g(κ) < g,
then, taking K = log T

λ , we have

RαT ≤
4 log T

λ

√
T

log(1/(1− α))
+ 8∆α,max

⌈
log T

log(1/(1− α))

⌉
+ 2g.

We prove Theorem 2 in Section 6. Observe that one may choose the value of K as a constant,
regardless of the number n of the nodes. This means that the feedback information is truly “local” in
the sense that only a constant number of vertices of the connected component of the selected node
need to be explored. How large K needs to be depends on the parameter λ. An undesirable feature
of Local UCB(V0) is that the learner needs to know the parameter λ that depends on the unknown
function κ. To resolve this problem we propose a version of a "doubling trick" (see, e.g., Section
2.3 Cesa-Bianchi and Lugosi (2006)). While in our problem it is not possible to control the range
of λ(κ) explicitly, we still can control the frequency with which |Ci| is censored by choosing the
range of K. In order to do this, we propose a variation of Local UCB(V0), such that we split time
T into episodes q = 1, 2 . . . in the following way. At the beginning of each episode q, the learner
starts a new instance of Local UCB(V0) with a threshold parameter Kq = 2q log T and starts a new
time counter tq. Then, at each time step of the current episode, the learner computes the empirical
probability p̂q = 1

tq

∑tq
τ=tq−1+1 I{|CAτ ,τ |>Kq}, that is updated each time when the size of connected

component of the chosen node exceeds Kq. Once p̂q gets larger than 1
T +

√
lnT

2(tq+1) , the episode q
finishes and the next episode begins. In this way, the length of each episode and the total number of
episodes Qmax are random. We call this algorithm UCB(V0)-DOUBLE , and show that it has the
following performance guarantee:

Algorithm 2 UCB(V0)-DOUBLE for subcritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , T > 0.
Initialization: K0 = log T , t = 1, q = 0, tq = 0, p̂q = 0.
While t ≤ T , repeat:

• Select each node in V0 once. For each i ∈ V0, set Ni,t = 1, ûi,t = ui,t(Kq) and p̂q =
1
|V0|
∑tq−1+1+|V0|

τ=tq−1+1 I{|CAτ ,τ |>Kq}.

While p̂q ≤ 1
T +

√
lnT

2(tq+1) , repeat:

1. Select any node Atq+1 ∈ arg maxi ûi,tq(Kq) +Kq

√
log T
Ni,tq

.

2. Observe uAtq+1,t+1,

3. Update ûAtq+1,tq+1 = 1
tq

∑tq
τ=tq−1+1 ui,τ (Kq)I{Aτ=Atq+1}, NAtq+1,tq+1 = NAtq ,tq + 1,

p̂q = 1
tq

∑tq
τ=tq−1+1 I{|CAτ ,τ |>Kq},

4. Update tq = tq + 1 and t = t+ 1.

• Set tq+1 = 0, p̂q+1 = 0, Kq+1 = 2Kq and q = q + 1.
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Theorem 3 Assume that κ is subcritical and n > n0(κ). Let V0 be a uniform subsample of V with
size given in (4) and define the event E = {V0 ∩ V ∗α 6= ∅}. Then for G(n, κ) with n > n0(κ), the
expected α-quantile regret of UCB(V0)-DOUBLE satisfies

RαT ≤ ∆α,max +
64

3
E

∑
i∈V0

∆α,i

(
log3 T

(λ(κ) ·minq∈[Qmax]{δsubα,i (2q log T )})2
+ 8

)∣∣∣∣∣∣ E
 ,

where the expectation is taken over the random choice of V0, and

RαT = O

(√
T (log(1/λ(κ)) + 1)

λ(κ)
√

ln(1/(1− α))
log2 T

)
.

The proof of Theorem 3 may be found in Section 6. In Theorem 2 and Theorem 3 we present
two types of regret bounds. The first set of these bounds are polylogarithmic1 in the time horizon T ,
but show strong dependence on the parameters of the distribution of the graphs Gt. Such bounds
are usually called instance-dependent, and they are typically interesting in the regime where T
grows large. However, these bounds become vacuous for finite T as the gap parameters δsupα,i (·)
and δsubα,i (·) approach zero. This issue is addressed by our second set of guarantees, which offers
a bound of Õ

(√
|U |T

)
for some set U ⊆ V that holds simultaneously for all problem instances

without becoming vacuous in any regime. Such bounds are commonly called worst-case, and they
are typically more valuable when optimizing performance over a fixed horizon T .

A notable feature of our bounds is that they show no explicit dependence on the number of nodes
n. This is enabled by our notion of α-quantile regret, which allows us to work with a small subset
of the total nodes as our action set. Instead of n, our bounds depend on the size of some suitably
chosen set of nodes U , which is of the order polylogT/ log(1/(1− α)). Notice that this gives rise
to an interesting tradeoff: choosing smaller values of α inflates the regret bounds, but, in exchange,
makes the baseline of the regret definition stronger (thus strengthening the regret notion itself).

2.2. Supercritical case

Next we address the supercritical case, that is, when ||Tκ||2 > 1. Here the proposed algorithm uses
vi,t(K) defined as the indicator whether |Ci| is larger than K, that is, vi,t(K) = I{|Ci(Gt)|>K}.

Since the observation is an indicator function, vi,t(K) ∈ {0, 1}. Similarly to the subcritical
case, we propose a variant of UCB algorithm, Local UCB(V0), played over a random subsample of
nodes of size defined in (4). We define vi(K) = E [vi,t(K)] and v∗(K) = maxi vi(K). Analogously
to the notation introduced for the subcritical regime, we denote v∗,α(K) = mini∈V ∗α vi(K) and
δsupα,i (K) = (vi(K)− v∗,α(K))+.

In the supercritical case, the learner receives vi,t(K) as a reward and we design a bandit algorithm
based on this form of indicator observations. Note, that vi,t(K) is a Bernoulli random variable with
parameter P [|Ci(Gt)| > K]. The following algorithm is a variant of the UCB algorithm of Auer,
Cesa-Bianchi, Freund, and Schapire (2002b). Just like before, Ni,t denotes the number of times node
i is selected up to time t by the algorithm.

1. Upon first glance, the bound of Theorem 2 may appear to be logarithmic, however, notice that the sum involved in the
bound has Θ(log T ) elements, thus technically resulting in a bound of order log2 T .
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Algorithm 3 Local UCB(V0) for supercritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , k(n).
Initialization: Select each node in V0 once. For each i ∈ V0, set Ni,|V0| = 1 and v̂i,|V0|(k(n)) =
vi,i(k(n)).
For t = |V0|, . . . T , repeat

1. Select any node At+1 ∈ arg maxi v̂i,t(k(n)) +
√

log t
Ni,t

.

2. Observe the feedback vi,t(k(n)) , update v̂i,t+1(k(n)) and Ni,t+1 for all i ∈ [n].

Local UCB(V0) for supercritical G(n, κ) satisfies the following regret bound:

Theorem 4 Let V0 be a uniform subsample of V with size given in (4) and define the event
E = {V0 ∩ V ∗α 6= ∅}. For any G(n, κ) with supercritical κ and n > n0(κ), for any function
k : N→ N such that limn→∞ k(n) =∞, we get

RαT
n
≤ 1

n
∆α,max +

1

n
E

∑
i∈V0

∆α,i

(
4 log T

(δsupα,i (k(n)))2
+ 8

)∣∣∣∣∣∣ E
 ,

where the expectation is taken over the random choice of V0, and

RαT
n
≤ 9

(
E [|C1|]
n

+ 1

)⌈
log T

log(1/(1− α))

⌉√
T log T .

For the proof of Theorem 4, see Section 7. Note that for a supercritical κ, E [C1] = Θn(n).
Therefore, RαT scales linearly with n and hence it is natural to normalize the regret by the number of
nodes. Both in the subcritical and supercritical regimes, our bounds scale linearly with the maximal
expected reward c∗, which is of Θn(1) in the subcritical case, but is Θn(n) in the supercritical case.
The dependence of the obtained bounds on the time horizon T is similar in both regimes. Note that
unlike in the subcritical case, the censoring level K is not a constant anymore as we choose it to be
K = k(n) for some function k. Hence, strictly speaking, the feedback is not local as the number
of vertices that need to be explored is not independent of the number of nodes even if k(n) can
grow arbitrarily slowly. Similarly to the subcritical case, a sufficiently large constant value of K
would suffice. The value of the constant should be so large that for any vertex i, the conditional
probability – conditioned on the event that i is not in the giant component – that the component of i
has size larger than K is sufficiently small. Such a constant exists, see (10) below. However, this
value depends on the unknown distribution of the underlying random graph. In the subcritical case
we solved this problem by applying a doubling trick. This is made possible by the fact that in the
subcritical case one observes the “bad” event that a component has size larger than K and therefore
censoring occurs. By “trying” increasingly large values of K one eventually finds a value such that
the probability of censoring is sufficiently small. However, in the supercritical case, the “bad” event
is that even though the selected vertex is not in the giant component, the size of the component is
larger than K. Unfortunately, one cannot decide whether the bad event occurs or simply the vertex
lies in the giant component. For this reason, we have been unable to apply an analogous doubling
trick in the supercritical case. To circumvent this difficulty, we choose K to be growing with n. This
guarantees that the bad event occurs with small probability. The price to pay is that the observation is
not entirely local in the strict sense.

9
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3. Degree observations

The results of the previous section show that it is possible to learn to maximize influence under very
general conditions if the learner has access to the censored size of the connected component, where
the size of censoring may be kept much smaller than the size of the entire network. In this section
we consider the case when the learner has access to significantly less information. In particular, we
study the case when the learner only observes the degree of the selected vertex At (i.e., the number
of edges adjacent to At) in the graph Gt. Under such a restricted feedback, one cannot hope to learn
to maximize influence in the full generality of sparse inhomogeneous random graphs as in Section 2.
However, we show that in several well-known models of real networks, degree information suffices
for influence maximization. In particular, we study three random graph models that have been
introduced to replicate properties of large (social) networks appearing in a variety of applications.
These are (1) stochastic block models; (2) the Chung-Lu model; and (3) Kronecker random graphs.

3.1. Three random graph models

We start by introducing the three models we study. All of them are special cases of inhomogeneous
Erdős-Rényi graphs.

STOCHASTIC BLOCK MODEL.

In the stochastic block model, the probabilities pi,j are defined through the notion of communities,
defined as elements of a partition H1, . . . ,HS of the set of vertices V . We refer to the index m
of community Hm as the type of a vertex belonging to Hm. Each community Hm contains αmn
nodes (assuming without loss of generality that αmn is an integer). With the help of the community
structure, the probabilities pi,j are constructed as follows: if i ∈ H` and j ∈ Hm, the probability of i
and j being connected is given by pi,j =

K`,m
n , where K is a symmetric matrix of size S × S, with

positive elements. The random graph from the above distribution is denoted as G(n, α,K).
In the stochastic block model, identifying a node with maximal reward amounts to finding a

node from the most influential community. Consequently, it is easy to see that choosing α such that
α > minm αm, the near-optimal set V ∗α exactly corresponds to the set of optimal nodes, and thus the
quantile regret (2) coincides with the regret (1). We consider the stochastic block models satisfying
the following simplifying assumptions:

Assumption 1 Kl,m = k > 0 for all l 6= m.

This assumption requires that nodes i, j belonging to different communities are connected with the
same probability. Additionally, in our analysis in the supercritical case we make the following natural
assumptions:

Assumption 2 For all l, Kl,l > k.

In plain words, this assumption requires that the density of edges within communities is larger than
the density of edges between communities.

CHUNG–LU MODEL

Another thoroughly studied special case of the inhomogeneous Erdős-Rényi model is the so-called
Chung–Lu model (sometimes referred to as rank-1 model) as first defined by Chung and Lu (2002)

10
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(see also Chung and Lu (2006); Bollobás, Janson, and Riordan (2007)). In this model the edge
probabilities are defined by a vector w ∈ Rn with positive components, representing the “weight” of
each vertex. Then the matrix defining the edge probabilities has entries Aij = wiwj . We assume that
the vector w is such that wiwj/n < 1 for all i, j. In other words, the Chung–Lu model considers
rank-1 matrices of the form A = wwT. The random graph from the Chung–Lu model is denoted
by G(n,w). Chung-Lu random graphs replicate some key properties of certain real networks. For
instance, if w is a sequence satisfying a power law, then G(n,w) is a power law model, which allows
one to model social networks, see Chung and Lu (2006).

KRONECKER GRAPHS

Kronecker random graphs were introduced by Leskovec, Chakrabarti, Kleinberg, and Faloutsos
(2005); Leskovec (2008); Leskovec, Chakrabarti, Kleinberg, Faloutsos, and Ghahramani (2010) as
models of large networks appearing in various applications, including social networks. The matrix P
of the edge probabilities of a Kronecker random graph Gn,P [k] is defined recursively. The model is
parametrized by the constants ζ, β, γ ∈ [0, 1]. Here one assumes that the number of vertices n is a
power of 2. Starting from a 2× 2 seed matrix,

P [1] =

[
ζ β
β γ

]
,

we define the matrices P [2], . . . , P [k] such that for each i = 2, . . . , k, P [i] is a 2i×2i matrix obtained
from P [i−1] by

P [i] =

[
ζP [i−1] βP [i−1]

βP [i−1] γP [i−1]

]
.

Finally P = P [k]. Hence, the Kronecker random graphGn,P [k]has n = 2k vertices, where each vertex
i is characterised by a binary string si ∈ {0, 1}k, such that the probability of an edge between nodes
i and j is equal to pi,j = ζ〈si,sj〉γ〈1̄−si,1̄−sj〉βk−〈si,sj〉−〈1̄−si,1̄−sj〉, where 1̄ = (1, . . . , 1) ∈ {0, 1}k
denotes the all-one vector and 〈·, ·〉 is the usual inner product. Leskovec, Chakrabarti, Kleinberg,
and Faloutsos (2005) show that a Kronecker graph with properly tuned values of ζ, β, γ replicates
properties of real world networks, such as small diameter, clustering, and heavy-tailed degree
distribution.

3.2. Learning with degree feedback: stochastic block models and Chung–Lu graphs

In this section we introduce an online influence maximization algorithm that only uses the degree
of the selected node as feedback information. The algorithm is a variant of the kl-UCB algorithm,
that was proposed and analyzed by Garivier and Cappé (2011); Maillard, Munos, and Stoltz (2011);
Cappé, Garivier, Maillard, Munos, and Stoltz (2013); Lai (1987). The main reason why learning
is possible based on degree observations only is that nodes with the largest expected degrees µ∗

are exactly the ones with the largest influence c∗. This (nontrivial) fact holds in both the stochastic
block model (under Assumptions 1 and 2) and the Chung–Lu model, across both the subcritical and
supercritical regimes. These facts are proven in Sections 8.1 and 8.2.

We define Xt,i as the degree of node i in the realized graph Gt, and define µi = E [X1,i] as the
expected degree of node i. We also define c∗ = maxi ci and µ∗ = maxi µi.

11
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Algorithm 4 d-UCB(V0)

Parameters: A set of nodes V0 ⊆ V.
Initialization: Select each node in V0 once. Observe the degree Xi,i of vertex i in the graph Gi for
i = 1, . . . , |V0|. For each i ∈ V0, set Ni(|V0|) = 1 and µ̂i(|V0|) = Xi,i.
For t = |V0|, . . . T , repeat

1. For each node, compute

Ui(t) = sup

{
µ : µ− µ̂i(t) + µ̂i(t) log

(
µ̂i(t)

µ

)
≤ 3 log(t)

Ni(t)

}
.

2. Select any node At+1 ∈ arg maxi Ui(t).

3. Observe degree Xt+1,At+1 of node At+1 in Gt+1 and update

µ̂At+1(t+ 1) =
NAt+1(t)µ̂At+1(t+ 1) +Xt+1,At+1

NAt+1(t) + 1
.

Update NAt+1(t+ 1) = NAt+1(t) + 1.

The learner uses the observed degrees as rewards, and feeds them to an instance of kl-UCB
originally designed for Poisson-distributed rewards. A key technical challenge arising in the analysis
is that the degree distributions do not actually belong to the Poisson family for finite n. We overcome
this difficulty by showing that the degree distributions have a moment generating function bounded
by those of Poisson distributions, and that this fact is sufficient for most of the kl-UCB analysis to
carry through without changes.

As in the case of the inhomogeneous Erdős-Rényi model, we subsample a set of size (4) of
representative nodes for kl-UCB to play on. For clarity of presentation, we first propose a simple
algorithm that assumes prior knowledge of T , and then move on to construct a more involved variant
that adds new actions on the fly.

We first present our kl-UCB variant for a fixed set of nodes V0 as Algorithm 4. We refer to this
algorithm as d-UCB(V0) (short for “degree-UCB on V0”). Our two algorithms mentioned above use
d-UCB(V0) as a subroutine: they are both based on uniformly sampling a large enough set V0 of
nodes so that the subsample includes at least one node from the top α-quantile, with high probability.

We define the α-optimal degree µ∗α = mini∈V ∗α µi and the gap parameter δα,i = (µi − µ∗α)+.
We first present a performance guarantee of our simpler algorithm that assumes knowledge of T , so
the learner plays d-UCB(V0) on the uniformly sampled a subset of size (4). This algorithm satisfies
the following performance guarantee:

Theorem 5 Assume that the underlying random graph is either (a) a subcritical stochastic block
model satisfying Assumption 1; (b) a supercritical stochastic block model satisfying Assumptions 1
and 2; (c) a subcritical Chung-Lu random graph; or (d) a supercritical Chung-Lu random graph.

Let V0 be a uniform subsample of V with size given in Equation (4) and define the event
E = {V0 ∩ V ∗α 6= ∅}. If the number of vertices n is sufficiently large, then the expected α-quantile
regret of d-UCB(V0) simultaneously satisfies

12
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Algorithm 5 d-UCB-DOUBLE(β)

Parameters: β ≥ 2.
Initialization: V0 = ∅.
For k = 1, 2 . . . , repeat

1. Sample subset of nodes Uk uniformly such that |Uk| =
⌈

log β
log(1/(1−α))

⌉
.

2. Update action set Vk = Vk−1 ∪ Uk.

3. For rounds t = βk−1, βk−1 + 1, . . . , βk − 1, run a new instance of d-UCB (Vk).

RαT ≤ E

∑
i∈V0

∆α,i

(
µ∗α (18 + 27 log T )

δ2
α,i

+ 3

)∣∣∣∣∣∣ E
+ ∆α,max,

where the expectation is taken over the random choice of V0, and

RαT ≤ 18c∗

√
Tµ∗ (2 + 3 log T )2

log(1/(1− α))
+

(
3 log T

log(1/(1− α))
+ 4

)
∆α,max.

In contrast to the results obtained in the general setting of Section 2, where we have to run
different algorithms in the subcritical and supercritical cases, for the models considered in this
section the learner can run the Algorithm 5 without prior knowledge of the regime.

For unknown values of T , we propose the d-UCB-DOUBLE(β) algorithm (presented as Algo-
rithm 5) that uses a doubling trick to estimate T . The following theorem gives a performance
guarantee for this algorithm:

Theorem 6 Assume that the underlying random graph is either (a) a subcritical stochastic block
model satisfying Assumption 1; (b) a supercritical stochastic block model satisfying Assumptions 1
and 2; (c) a subcritical Chung-Lu random graph; or (d) a supercritical Chung-Lu random graph.

Fix T , let kmax be the value of k on which d-UCB-DOUBLE(β) terminates, and define the event
E = {Vkmax ∩ V ∗α = ∅}. If the number of vertices n is sufficiently large, then the α-quantile regret of
d-UCB-DOUBLE(β) simultaneously satisfies

RαT ≤ E

 ∑
i∈Vkmax

∆i

((
18µ∗

δ2
α,i

+ 3

)
(logβ T + 1) +

27 log β(logβ T + 1)2

2δ2
α,i

)∣∣∣∣∣∣ E
+ ∆α,max logβ T,

where the expectation is taken over the random choice of the sets V1, V2, . . . , and

RαT ≤ 36c∗

√
T (µ∗ + log (βT )) log2 T

log(1/(1− α))
+

(
3 log2 T

log(1/(1− α))
+ 4

)
∆α,max.
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3.3. Learning with degree feedback in Kronecker random graphs

In this section we study influence maximization when the underlying random network is a Kronecker
random graph. We set this model apart as the properties of Kronecker random graphs differ signif-
icantly from those of the stochastic block model and the Chung-Lu model. At the same time, we
show that observing the degree of the selected nodes is enough to maximize the total influence in
this graph model as well. In particular, the same algorithm d-UCB(V0) introduced above achieves a
small regret.

We consider only supercritical regime with parameters are such that (ζ + β)(β + γ) > 1. The
reason is that subcritical Kronecker random graphs contain only o(n) non-isolated vertices with high
probability, and therefore minimizing the α-quantile regret is essentially trivial in this case.

Denote by H the subgraph of Gn,P [k] , induced by the vertices of weight l ≥ k/2. We exploit
the property that for the graph Gn,P [k]with parameters (ζ + β)(β + γ) > 1, there exists a constant
b(P ) such that a subgraph of Gn,P [k] , induced by the vertices of H , is connected with probability at
least 1− n−b(P ), see Frieze and Karonski (2015, Theorem 9.10). This means that on this event, the
connected components Ci are the same for all i ∈ H . This allows us to prove the following:

Theorem 7 Let V0 be a uniform subsample of V of size
⌈

log(nT )
log(2)

⌉
. Let Gn,P [k]be such that (ζ +

β)(β + γ) > 1 and ζ > γ > β. Then there exists a constant b(P ) such that the quantile regret of
d-UCB(V0) satisfies

RαT
n
≤
⌈

log(nT )

log(2)

⌉µ∗(2 + 6 log T )(
1− β+γ

ζ+β

)2 + 3 + n−b(P )µ
∗(2 + 6 log T )(ζ + β)2

(ζ − γ)2
+ 3n−b(P )

+ 1 .

4. Discussion

In this section we highlight some features of our results and discuss directions for future work. Our
main results show that online influence maximization is possible with only local feedback information.
We establish bounds for the quantile regret that are polylogarithmic in T for all considered random
graph models. Notably, our bounds hold for both the subcritical and supercritical regimes of the
random-graph models considered, and show no explicit dependence on the number of nodes n.

Previous work. Related online influence maximization algorithms consider more general classes of
networks, but make more restrictive assumptions about the interplay between rewards and feedback.
The line of work explored by Wen, Kveton, Valko, and Vaswani (2017); Wang and Chen (2017)
assumes that the algorithm receives full feedback on where the information reached in the previous
trials (i.e., not only the number of influenced nodes, but their exact identities and influence paths,
too). Clearly, such detailed measurements are nearly impossible to obtain in practice, as opposed to
the local observations considered in this paper.

Another related setup was considered by Carpentier and Valko (2016), whose algorithm only
receives feedback about the nodes that were directly influenced by the chosen node, but the model
does not assume that neighbors in the graph share the information to further neighbors and counts the
reward only by the nodes directly connected to the selected one. That is, in contrast to our work, this
work does not attempt to show any relation between local and global influence maximization. One
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downside to all the above works is that they all provide rather conservative performance guarantees:
On the one hand, Wen, Kveton, Valko, and Vaswani (2017) and Carpentier and Valko (2016) are
concerned with worst-case regret bounds that uniformly hold for all problem instances for a fixed
time horizon T . On the other hand, the bounds of Wang and Chen (2017) depend on topological
(rather than probabilistic) characteristics of the underlying graph structure, which inevitably leads
to conservative results. For example, their bounds instantiated in our graph model lead to a regret
bound of order n3 log T , which is virtually void of meaning in our regime of interest where n is very
large (e.g, much larger than T ). In contrast, our bounds do not show any explicit dependence on n.
In this light, our work can be seen as the first attempt that takes advantage of specific probabilistic
characteristics of the mechanism of information spreading to obtain strong instance-dependent global
performance guarantees, all while having access to only local observations.

Other related framework is stochastic online learning under partial monitoring Agarwal, Bartlett,
and Dama (2010); Bartók, Zolghadr, and Szepesvári (2012); Komiyama, Honda, and Nakagawa
(2015). In this setting the loss is not directly observed by the learner, which makes this setting
applicable to a wider range of problems. However, the partial monitoring setup is too general to
capture the specific relationship of feedback and influenced component size, resulting to regret
bounds that scale with n2.

Tightness of the regret bounds. In terms of dependence on T , both our instance-dependent and
worst-case bounds are near-optimal in their respective settings: even in the simpler stochastic multi-
armed bandit problem, the best possible regret bounds are ΩT (log T ) and ΩT (

√
T ) in the respective

settings Auer, Cesa-Bianchi, and Fischer (2002a); Auer, Cesa-Bianchi, Freund, and Schapire (2002b);
Bubeck and Cesa-Bianchi (2012). The optimality of our bounds with respect to other parameters
such as c∗, µ∗ and n is less clear, but we believe that these factors cannot be improved substantially
for the models that we studied in this paper. As for the subproblem of identifying nodes with the
highest degrees, we believe that our bounds on the number of suboptimal draws is essentially tight,
closely matching the classical lower bounds by Lai and Robbins (1985).

Our assumptions. One may wonder how far our argument connecting local and global influence
maximization can be stretched. Clearly, not every random graph model enables establishing such a
strong connection.

5. Multi-type branching processes

One of the most important technical tools for analyzing the component structure of random graphs
is the theory of branching processes, see Bollobás, Janson, and Riordan (2007); van der Hofstad
(2016). Indeed, while the connected components of an inhomogenous random graph G(n, κ) have
a complicated structure, many of their key properties may be analyzed through the concept of
multi-type Galton–Watson processes.

Recall the notation introduced in Section 1.2. Consider a Galton–Watson process, where an
individual x ∈ (0, 1] is replaced in the next generation by a set of particles distributed as a Poisson
process on (0, 1] with intensity κ(x, y)dµ(y) and the number of children has a Poisson distribution
with mean

∫
(0,1] κ(x, y)dµ(y). We denote this branching process, started with a single particle x by

Wκ(x).
Bollobás, Janson, and Riordan (2007) establishes a connection between the sizes of connected

components of G(n, κ), the survival probability of a branching process Wκ(x), and the function
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κ. As shown in Bollobás, Janson, and Riordan (2007), the operator Φκ can be directly used for
characterizing the probability ρ(x) of survival of the process Wκ(x) for all x ∈ (0, 1]. By their
Theorem 6.2, the function ρ is the maximum fixed point of the non-linear equation Φκ(f) = f .
Furthermore, as was shown in Bollobás, Janson, and Riordan (2007, Lemma 5.8.), if ||Tκ||2 < 1,
then ρ(x) = 0 for all x and when ||Tκ||2 > 1, ρ(x) > 0 for all x.

To analyze the random graph G(n, κ), we use Poisson multi-type Galton–Watson branching
processes with n types, parametrized by an n× n matrix A with positive elements. Therefore, each
node corresponds to its own type.

The branching process tracks the evolution of a set of individuals of various types. Starting
in round n = 0 from a single individual of type i, each further generation in the Galton–Watson
process Wκ(i) is generated by each individual of each type i producing Xi,j ∼ Poisson(Ai,j/n)
new individuals of each type j. Therefore, the number of offsprings of the individual of type i is∑n

j=1Xi,j ∼ Poisson(
∑n

j=1Ai,j/n).
Our analysis below makes use of the following quantities associated with the multi-type branching

process:

1. Zn(i) is the number of individuals in generation n of Wκ(i) (where Z0(i) = 1);

2. B(i) is the total progeny, that is, the total number of individuals generated by Wκ(i) and its
expectation is denoted by xi = E [B(i)];

3. ρ(i) is the probability of survival, that is, the probability that B(i) is infinite.

6. Proofs of Theorem 2 and 3.

The connected componentsCi of an individual i have a complicated structure, but many key properties
can be analyzed through the concept of multi-type Galton-Watson branching processes with n types.
Fix an arbitrary node i and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random variables with
respective parameters Ai,j/n for i, j ∈ [n]. Consider a multitype binomial branching process where
an individual of type i produces an individual j with probability Ai,j/n, and let BBer(i) denote
its total progeny when started from an individual i. In the same way, consider a multitype Poisson
branching process where an individual of type i produces Xi,j ∼ Poisson(Ai,j/n) individuals, and
let B(i) denote its total progeny when started from an individual i.

We use the concept of stochastic dominance between random variables. The random variableX is
stochastically dominated by the random variable Y when, for every x ∈ R, P [X ≤ x] ≥ P [Y ≤ x].
We denote this by X � Y .

Proof of Lemma 1. First, we define an upper approximation to κ. We choose an integer m and
we partition the interval (0, 1] into m sets A1, . . . ,Am, where Ak = ((k − 1)/m, k/m], k ∈ [1,m].
Also we denote by Am(x) the set Ak for which x ∈ Ak. Then we bound κ from above by

κ+
m(x, y) = sup{κ(x′, y′) : x′ ∈ Am(x), y′ ∈ Am(y)} .

As κ is bounded, there exists a sufficiently large m such that ||Tκ+m || < 1:

||Tκ+m || ≤ ||Tκ||+ ||Tκ+m − Tκ|| ≤ ||Tκ||+

(∫
(0,1]×(0,1]

(κ+
m(x, y)− κ(x, y))2dxdy

)1/2

.
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Then for any node i in G(n, κ), we define a type ki = k if (k − 1)/m < i/n ≤ k/m holds.
Then, by our definition of κ+

m, we have

P [|Ci| > u] ≤ P [BBer(ki) > u] .

For k, ` ∈ [m] we define pk,` = 1
mκ

+
m(k/m, `/m). Notice, that for random variables Y ∼ Ber(p)

andX ∼ Poisson(p′) with p′ = − log(1−p) > p, Y � X holds. This follows from the observation
that P [Y > 0] = p and P [X > 0] = p. It follows that Ber(pk,`) � Poisson((1 + ε)pk,`). Then
there exists ε > 0 such that the multitype Poisson branching process B̃(k) with parameters (1+ε)pk,`

is such that P [BBer(k) > u] < P
[
B̃(k) > u

]
and it is subcritical. We also define a random variable

X̃k,` ∼ Poisson ((1 + ε)pk,`).
Since the total number of descendants of individuals in the first generation are independent, we

can write the following recursive equation on the number of descendants of type k:

|B̃(k)| = 1 +
m∑
`=1

X̃k,`|B̃(`)|.

For any type k, for zk > 1, the probability generating function of |B̃(k)| is g(k) = E
[
z
|B̃(k)|
k

]
and

we denote g = (g(1), . . . , g(m))T . Using that for X ∼ Poisson(γ) for some γ > 0, y > 1 the
probability generating function is E

[
yX
]

= eγ(y−1), we have

g(k) = E
[
z
|B̃(k)|
k

]
= zkE

[
z
X̃k,1|B̃(1)|
k . . . z

X̃k,M|B̃(m)|
k

]
= zk

∏
`

E
[
z
X̃k,`|B̃(`)|
k

]
= zk

∏
`

E
[(
E
[
z
|B̃(`)|
k

] )X̃k,`] = zk exp

(
(1 + ε)

∑
`

pk,`(g(`)− 1)

)
.

Recall that P denotes the m×m matrix with entries pk,`. Our next aim is to study the fixed point of
the operator GP , defined as

g = GP g := z exp

(
(1 + ε)P (g − 1̄)

)
. (5)

Define the function F (z, g) = z exp

(
(1+ε)P (g− 1̄)

)
−g. This function is smooth and the entries

of the Jacobian matrix are

Jk,`(z, g) :=
∂Fk
∂g`

= zk(1 + ε)pk,` exp

(
(1 + ε)

∑
`

pk,`(g` − 1)

)
− I{k=`}.

Let P ′(g, z) be the matrix with elements zk(1 + ε)pk,` exp ((1 + ε)
∑

` pk,`(g` − 1)). Then, at
point (1̄, 1̄), P ′k,`(1̄, 1̄) = (1 + ε)pk,`. Since ε is chosen such that the branching process B̃(k) is
subcritical, P ′(1̄, 1̄) is smaller than one. This means, that we can find z′ = 1 + δ, g′ > 0, such that
the largest eigenvalue of P ′(g′, z′) is smaller than one as well, and therefore J(z′, g′) is invertible.
Then, by the implicit function theorem there exists an open set Uz ⊂ (1,+∞)m and a function
q : Uz → (0,+∞)m such that F (z, q(z)) = 0̄.
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Finally, the statement of the lemma is obtained by applying the Chernoff bound:

P
[
B̃(k) > u

]
= P

[
z
B̃(k)
k > zuk

]
≤

E
[
z
B̃(k)
k

]
zuk

.

Denote λk = ln(zk) > 0. Then,

E
[
z
B̃(k)
k

]
zuk

=
gk
zuk

= exp(−λku)gk.

Then taking any λ(κ) = mink λk, g(κ) = maxk gk, we get the statement of the lemma. �

Armed with this concentration result, we can see that the typical size |Ci| of the connected
component of any vertex i is O(1). Recall that the learning algorithm has only access to a censored
value of |Ci|, truncated by a constant K. Our main technical result shows that nodes with the largest
expected censored observations u∗(K) are exactly the ones with the largest influence c∗. We formally
state this result next:

Lemma 8 ForG(n, κ) with subcritical κ, and n > n0(κ), for any node iwe have c∗−ci ≤ u∗(K)−
ui(K) + e−λ(κ)Kg. Then, for K = log T

λ , with λ < λ(κ) we have c∗ − ci ≤ u∗(K)− ui(K) + g(κ)
T .

Proof
The expected bias of ui(K) is, using the result of Lemma 1:

ci − ui(K) = E [|Ci(Gt)| − ui(K)] = E [(|Ci| −K)+]

≤
∫ ∞

0
P [|Ci| −K > u] du ≤

∫ n

0
e−λ(u+K)du ≤ e−λKg(κ).

Set K = log T
λ . Then,

c∗ − ci ≤ u∗(log T/λ)− ui(log T/λ) +
g(κ)

T
.

Proof of Theorem 2. In order not to overload notation we write δsubα,i for δsubα,i (K). We first note
that, with high probability, the size of V0 guarantees that the subset contains at least one node from
the set V ∗α : P [E ] ≥ 1− 1/T . Then, the regret can be bounded as

RαT ≤ P [Ec]T∆α,max + E

 T∑
t=1

∑
i∈V0

I[At = i]∆α,i

∣∣∣∣∣∣ E
P [E ] (6)

≤ ∆α,max + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 . (7)
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By Hoeffding’s inequality,

P

[
At+1 = i|Ni,t ≥

4K2 log t

(δsubα,i )2

]
≤ 4

t2
.

Then,

E [Ni,T ] ≤ 4K2 log T

(δsubα,i )2
+

T∑
t=|V0|

P

[
At+1 = i|Ni,t ≥

4K2 log t

(δsubα,i )2

]

≤ 4K2 log T

(δsubα,i )2
+

T∑
t=|V0|

4

t2
≤ 4K2 log T

(δsubα,i )2
+ 8.

Now, observing that δsubα,i ≤ maxj∈V0 uj(K)− ui(K) holds under event E , we obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4K2 log T

(δsubα,i )2
+ 8

)∣∣∣∣∣∣ E
 , (8)

thus proving the first statement.
Next, we turn to proving the second statement regarding worst-case guarantees. To do this,

we appeal to Proposition 8 and take K = log T
λ , where λ is any number, satisfying conditions

of Lemma 1. To proceed, let us fix an arbitrary ε > 0 and split the set V0 into two subsets:
U(ε) =

{
a ∈ V0 : δsubα,i ≤ ε

}
and W (ε) = V0 \ U(ε). Then, under event E , we have∑

i∈V0

∆α,iE [Ni,T ] =
∑
i∈U(ε)

∆α,iE [Ni,T ] +
∑

i∈W (ε)

∆α,iE [Ni,T ]

≤ ε
∑
i∈U(ε)

E [Ni,T ] +
g

T

∑
i∈U(ε)

E [Ni,T ]

+
∑

i∈W (ε)

δsubα,i

4
(

log T
λ

)2
log T

(δsubα,i )2

+
g

T

∑
i∈W (ε)

4
(

log T
λ

)2
log T

(δsubα,i )2

+ 8|W (ε)|∆α,max

≤ εT + g +
∑

i∈W (ε)

4
(

log T
λ

)2
log T

δsubα,i

+
g

T

∑
i∈W (ε)

4
(

log T
λ

)2
log T

(δsubα,i )2

+ 8|W (ε)|∆α,max

≤ εT + g + |V0|
4
(

log T
λ

)2
log T

ε
+
g

T
|V0|

4
(

log T
λ

)2
log T

ε2
+ 8|V0|∆α,max

≤ 4

(
log T

λ

)√
|V0|T log T + 2g + 8|V0|∆α,max.

where the last step uses the choice ε = 2
(

log T
λ

)√
|V0| log T/T . Plugging in the choice of |V0|

concludes the proof. �
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Proof of Theorem 3. To simplify the notation, we use λ instead of λ(κ). Let Tq be the length of
the q-th iterate. The expected regret over each period q can be bounded as an expected regret of Local
UCB(V0) with parameters λq = 2−q and Tq time steps. Appealing to Theorem 2, we can bound the
expected regret as

RαT ≤ P [Ec]T∆α,max + E

 T∑
t=1

∑
i∈V0

I{At=i}∆α,i

∣∣∣∣∣∣ E


≤ ∆α,max + E

Qmax∑
q=1

∑
i∈V0

∆α,iE
[
Ni,Tq

]∣∣∣∣∣∣ E


Following the analysis of Theorem 2, by (8), we get

RαT ≤ ∆α,max + E

Qmax∑
q=1

∑
i∈V0

∆α,i

(
4K2

q log T

(δsubα,i (Kq))2
+ 8

)∣∣∣∣∣∣ E
 .

We have Qmax = dlog2(1/λ)e ≤ log2(1/λ) + 1, and

Qmax∑
q=0

K2
q = log2 T

Qmax∑
q=0

4q = log2 T
4Qmax+1 − 1

3
≤ 16

3

1

λ2
log2 T.

This gives us

RαT ≤ ∆α,max +
64

3
E

∑
i∈V0

∆α,i

(
log3 T

(λ ·minq∈[Qmax]{δsubα,i (Kq)})2
+ 8

)∣∣∣∣∣∣ E
 .

Next, we prove the second statement regarding worst-case guarantees. To proceed, let us take
εq = log T

λ

√
|V0| log T/Tq and split the set V0 into two subsets: U(εq) =

{
a ∈ V0 : δsubα,i (Kq) ≤ εq

}
and W (εq) = V0 \ U(εq). Then, under event E , we have

E

 T∑
t=1

∑
i∈V0

I{At=i}∆α,i


≤ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈V0

∆α,iI{|CAtq |≤Kq}
+ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈V0

∆α,iI{|CAtq |>Kq}


= E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |≤Kq}


︸ ︷︷ ︸
Term 1

+E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |>Kq}


︸ ︷︷ ︸
Term 2

+ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{|CAtq |≤Kq}


︸ ︷︷ ︸
Term 3

+E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{|CAtq |>Kq}


︸ ︷︷ ︸
Term 4

.
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Term 1:

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |≤Kq}
 ≤ |V0|

log T

λ
E

Qmax∑
q=1

√
|V0|Tq log T


≤ |V0|3/2

log T

λ

√
(log2(1/λ) + 1)T .

Term 2: The expected bias of µsubi,t (Kq) is, using the result of Lemma 1:

E [(|Ci| −Kq)+] ≤
∫ ∞

0
P [|Ci| −Kq > u] du ≤

∫ n

0
e−λ(u+Kq)du ≤ e−λKqg

=

(
1

T

)λ2q

g ≤
(

1

T

)2q−Qmax

g.

Then,

c∗ − ci ≤ µsub∗ (Kq)− µsubi (Kq) +

(
1

T

)2q−Qmax

g. (9)

According to the stopping rule, we get

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |>Kq}
 ≤ |V0|E

Qmax∑
q=1

(
εq + g

(
1

T

)2q−Qmax
)(

1

T
+

√
log T

2Tq

)
Tq


≤ |V0|E

Qmax∑
q=1

(
log T

λ

√
|V0| log T/Tq + g

)(
1

T
+

√
log T

2Tq

)
Tq


≤ |V0|

(
log T

λ

√
(log2(1/λ+ 1))|V0| log T

T
+
g

T

)
+ |V0|3/2(log2(1/λ) + 1)

log2 T

λ

+ |V0|g
(√

(log2(1/λ) + 1)T log T
log T

λ

)
.

Term 3: Following the analysis of Theorem 2 and by (9), we get

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{At=i,|CAt |≤Kq |}


≤ E

 ∑
i∈W (εq)

Qmax∑
q=0

δsubα,i (Kq)

4
(

log Tq
λ

)2
log T

(δsubα,i (Kq))2


+ 8|V0|∆α,max

≤ 4
√
|V0|E

Qmax∑
q=0

(√
Tq

log3/2 T

λ

)+ 8|V0|∆α,max

≤ 4
√
|V0|

(√
(log(1/λ) + 1)T

log3/2 T

λ

)
+ 8|V0|∆α,max.
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Term 4:

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{At=i,|CAt |>Kq |}


≤ E

 ∑
i∈W (εq)

Qmax∑
q=0

(
δsubα,i (Kq) + g

(
1

T

)2q−Qmax
)4

(
log Tq
λ

)2
log T

(δsubα,i (Kq))2

( 1

T
+

√
log T

2Tq

)
+ 8|W (εq)|∆α,max

≤ 4
√
|V0|(log2(1/λ) + 1)

log3/2 T√
Tλ

+ 4
√
|V0|(log2(1/λ) + 1)

log2 T

λ

+ 4g(log2(1/λ) + 1)
log T

λ
+ 4g

log3/2 T

λ

√
(log2(1/λ) + 1)T + 8|V0|∆α,max.

Putting everything together, we conclude that

Rαt ≤ 4
1√

ln(1/(1− α))

(√
(log(1/λ) + 1)T

log2 T

λ

)
+ 16∆α,max

log T√
ln(1/(1− α))

+ 4g(log2(1/λ) + 1)
log T

λ
+ 4g

log3/2 T

λ

√
(log2(1/λ) + 1)T

+ log T ·

√
log2(1/λ+ 1)

T ln(1/(1− α))
+

g
√

log T

T
√

ln(1/(1− α))
+

2(log2(1/λ) + 1) log5/2 T

(ln(1/(1− α)))3/2

+ g

√
T (log2(1/λ) + 1)

ln(1/(1− α))
log T.

7. Proof of Theorem 4.

The proof relies on some known properties of the largest connected component in G(n, κ) for
supercritical κ. We denote the largest and second-largest connected components of Gt by C1(Gt)
and C2(Gt), respectively. The survival probability of the branching process Wκ(x) is denoted as
ρ(x). The expected size of the connected component containing vertex i can be estimated in terms of
ρ(i/n) and E [|C1|] as

ci = ρ(i/n)E [|C1|] + on(n) ,

see Bollobás, Janson, and Riordan (2007, Chapter 9). The following properties are proved by
Bollobás, Janson, and Riordan (2007):

• If G(n, κ) is supercritical, then, with high probability, C1 = Θn(n);

• C1(Gn)→
∑

i∈V ρ(i/n) in probability;

• C2(Gn) = on(n) with high probability.

Recall from Section 2 that in the supercritical case the feedback vi,t(K) is the indicator whether
|Ci| is larger thanK. In the following lemma we show that takingK = k(n) for an arbitrary function
of n that diverges to infinity, it is enough to control the bias of the estimate of ci:
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Lemma 9 For any supercritical κ, for any node i satisfying ci < c∗ and for any K = k(n), where
k : N → N is an arbitrary positive function satisfying limn→∞ k(n) = ∞, there exist a positive
function fκ : N→ R, such that limn→∞ fκ(n) = 0 and

c∗ − ci
n

≤ (v∗(k(n))− vi(k(n)))
E [C1]

n
+ fκ(n).

Proof
Define a kernel κ̄(x, y) = (1− ρ(y))κ(x, y), where ρ is defined in Section 5. By Theorem 6.7

in Bollobás et al. (2007), the branching process Wκ conditional on extinction is subcritical and has
the same distribution as the branching process with parameters Wκ̄. Then, by Lemma 1,

P [B(i) > K|B(i) <∞] ≤ e−λ(κ̄)k(n)g(κ̄) . (10)

We relate the size of the connected component to the total progeny of branching process.
Following the stochastic dominance Ci � B(i),

vi(k(n)) = P [|Ci| > k(n)] ≤ ρi + P [B(i) > k(n)|B(i) <∞] .

This implies, for n > n0(κ̄),

vi(k(n))E [|C1|]−ci < P [B(i) > k(n)|B(i) <∞]E [|C1|]+ρiE [|C1|]−ci ≤ e−λ(κ̄)k(n)g(κ̄)E [|C1|]+on(n).

Finally, using that ρ∗ ≤ v∗(k(n)), we get

c∗ − ci
n

≤ (v∗(k(n))− vi(k(n)))
E [|C1|]
n

+ e−λk(n)g(κ̄)
E [|C1|]
n

+ on(1) = δsupi (k(n))E [|C1|] + fκ(n).

Proof of Theorem 4. First, by (6),

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 .

As we mentioned before, with high probability, C2(Gn) = on(n), which means that if At /∈
C1(Gt), then |CAt(Gt)| = on(n). Since G(n, κ) is supercritical, arg maxa µa = arg maxa ρa.
Then, we can approximate distribution of rewards of arm a by a Bernoulli distribution with parameter
ρa. Using the result of Proposition 9, we reduce the initial problem to the analysis of a multi-armed
problem with arms Z1, . . . , Z|V0|, where Zi ∼ Ber(ui), for pi defined in Proposition 9.

By Hoeffding’s inequality,

P

[
At+1 = i|Ni,t ≥

4 log t

(δsupα,i (K)2

]
≤ 4

t2
.

Then

E [Ni,T ] ≤ 4 log T

(δsupα,i (k(n)))2
+

T∑
t=|V0|

P

[
At+1 = i|Ni,t ≥

4 log t

(δsupα,i (k(n)))2

]
≤ 4 log T

(δsupα,i (k(n)))2
+ 8.
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Now, observing that δsupα,i (k(n)) ≤ maxj∈V0 vj − vi holds under the event E , we obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4 log T

(δsupα,i (k(n)))2
+ 8

)∣∣∣∣∣∣ E
 , (11)

thus proving the first statement.
Now we fix an arbitrary ε > 0, we split the set V0 into two subsets: U(ε) =

{
a ∈ V0 : δsubα,i (k(n)) ≤ ε

}
and W (ε) = V0 \ U(ε), where we use the choice ε = 2

√
|V0|E [C1] log T/T . Lemma 9 shows that

c∗−ci
n ≤ v∗(k(n))−vi(k(n))

n E [|C1|] + fκ(n). Then there exists n0(κ), such that for any G(n, κ) with
n > n0(κ), fκ(n) ≤ ε holds. Then, under the event E , we have

1

n

∑
i∈V0

∆α,iE [Ni,T ] =
∑
i∈U(ε)

∆α,i

n
E [Ni,T ] +

∑
i∈W (ε)

∆α,i

n
E [Ni,T ]

≤
(
εE [|C1|]

n
+ ε

) ∑
i∈U(ε)

E [Ni,T ] +
∑

i∈W (ε)

∆α,i

n
E [Ni,T ]

≤
(
εE [|C1|]

n
+ ε

)
|V0|T +

∑
i∈W (ε)

δsubα,i (k(n))
E [C1]

n

(
4 log T

(δsubα,i (k(n)))2

)

+ ε
∑

i∈W (ε)

(
4 log T

(δsubα,i (k(n)))2

)

≤
(
εE [|C1|]

n
+ ε

)
|V0|T + |V0|

(
E [|C1|]
n

+ 1

)
8 log T

εn

≤ 9

(
E [|C1|]
n

+ 1

)
|V0|
√
T log T ,

where the last step uses the choice ε =
√

log T/T . Plugging in the choice of |V0| concludes the
proof. �

8. Degree observations.

8.1. Subcritical case

Our main technical result is proving that nodes with the largest expected degrees µ∗ are exactly the
ones with the largest influence c∗, in both the stochastic block model and the Chung–Lu model,
across both the subcritical and supercritical regimes. The following lemma states this result for the
subcritical case.

Lemma 10 Suppose that

1. G is generated from a subcritical G(n, α,K) satisfying Assumption 1, or

2. G is generated from a subcritical G(n,w).
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Then, for any i satisfying µi < µ∗, we have c∗ − ci ≤ 2c∗ (µ∗ − µi) +O(1/n).

Before stating and proving the lemma, we introduce some useful technical tools. Since we
suppose that G(n, κ) is subcritical, we have P [B(i) =∞] = 0 and xi = E [B(i)] is finite. First
observe that the vector x of expected total progenies satisfies the system of linear equations

x = e+
1

n
Ax ,

where e is the vector with ei = 1 for all i.
For the analysis of the stochastic block model we define the vector b ∈ RS with coordinates

bl = µl, l = 1, . . . , S, where by µl we define the expected degree of the node from community Hl.
Also we define vector x′ ∈ RS with coordinates x′l = E [B(l)], l = 1, . . . , S, where by B(l) we
define the total progeny of the individual of type l. We define x∗ = maxi∈[n] xi. Armed with this
notation, we begin the proof Lemma 10, which consists of the following steps:

• proving that for any i, j ∈ V , xi − xj ≤ 2x∗ (µi − µj), (Lemma 11, 12),

• proving that for any i, j ∈ V , ci − cj = xi − xj +O(1/n) (Lemmas 13, 14).

These facts together lead to Lemma 10, given that n is large enough to suppress the effects of the
residual terms. We begin with analysing the relation between bl and x′l in a straightforward way:

Lemma 11 (Coordinate order for mean of the total progeny in the SBM) Assume thatG(n, α,K)
is subcritical and that Km` = k > 0 holds for all m 6= `. If two coordinates of b are such that
bl > bm, then we have x′l > x′m, and x′l − x′m ≤ 2x∗ (bl − bm).

Proof For the stochastic block model with S blocks, the system of equations x = e+ Ax can be
equivalently written as x′ = e + Mx′, for M = Kdiag(α) ∈ RS×S , and x′ ∈ RS , with x′m now
standing for the expected total progeny associated with any node of type m. Similarly, we define b′m
as the expected degree of any node of type m. Notice that the system of equations x′ = e+Mx′

satisfied by x′ can be rewritten as (I−M)x′ = e, where I is the S×S identity matrix. By exploiting
our assumption on the matrix K and defining γm = Km,m − k, this can be further rewritten as

1− α1γ1

. . .
1− αSγS

− k

α1 α2 · · · αS
α1 α2 · · · αS
...

...
. . .

...
α1 α2 · · · αS


x′ = e,

which means that for any m, x′m satisfies

x′m =
1 + k(αTx′)

1− αmγm
.

Also observe that
b′m = k(αT 1̄) + αmγm,

so, for any pair of types m and `, we have

x′m − x′` =
(1 + k(αTx′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
,
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which proves the first statement.
To prove the second statement, observe that for any pair ` and m of communities, we have either

αm ≤ 1
2 or α` ≤ 1

2 (otherwise we would have αm + α` > 1). To proceed, let ` and m be such that
x′m ≥ x′`, and let us study the case α` ≤ 1

2 first. Here, we get

x′m − x′` =
(1 + k(αTx′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
=

(αmγm − α`γ`)
(1− α`γ`)

x′m

≤ (αmγm − α`γ`)
(1− γ`/2)

x′m ≤ 2x′m(b′m − b′`).

In the other case where αm ≤ 1
2 , we can similarly obtain

x′m − x′` ≤ 2x′`(b
′
m − b′`) ≤ 2x′m(b′m − b′`).

This concludes the proof.

For the analysis of the Chung–Lu model, we define µ ∈ Rn as the vector of mean degrees. Then we
may prove the following.

Lemma 12 (Coordinate order for mean of the total progeny in the Chung–Lu model) Assume
that G(n,w) is subcritical. If two nodes are such that µi > µj , then we have xi > xj and
xi − xj ≤ x∗(µi − µj).

Proof From the system of equations x = e+ 1
nAx, the coordinates xi have the form

xi = 1 +
1

n
· wi

 n∑
j=1

wjxj

 ,

which implies that wi ≥ wj holds if and only if xi ≥ xj . This observation implies for x∗ = maxi xi

xi − xj ≤
1

n
· (wi − wj)

 n∑
j=1

wj

x∗ = (µi − µj)x∗,

thus concluding the proof.

The next two lemmas establish the relationship between the expected component size ci of vertex i
and the expected total progeny xi of the multi-type branching process seeded at vertex i.

Lemma 13 For any i, the mean of the connected component associated with type i is bounded by
the mean of the total progeny: ci ≤ xi.

Proof Now fix an arbitrary i ∈ [n] and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random
variables with respective parameters (Ai,1/n,Ai,2/n, . . . , Ai,i/n, . . . , Ai,n/n). Consider a multitype
binomial branching process where the individual of type i produces Yi,j individuals of type j,
and let BBer(i) denote its total progeny when started from an individual of type i. Recalling the
Poisson branching process defined in Appendix 5 with offspring-distributions Xi,j , we can show
BBer(i) � B(i) using the relation Yi,j � Xi,j .
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Considering a node a of type i, we can use Theorem 4.2 of van der Hofstad (2016) to bound the
size of the the connected component Ca as |Ca| � BBer(i), which implies by transitivity of � that
|Cai | � B(i). The proof is concluded by appealing to Theorem 2.15 of van der Hofstad (2016) that
shows that stochastic domination implies an ordering of the means.

Next we upper bound the excess that appears in the domination by the branching process:

Lemma 14 xi − ci = O( 1
n) .

Proof As in Lemma 13, BBer(i) denotes the total progeny of a Bernoulli branching process whose
set of parameters corresponds to G(n, κ). Then we may decompose the difference as

xi − ci = xi − E [BBer(i)] + E [BBer(i)]− ci.

Denote the set of edges in the connected component Ca as E(Ca) and the set of edges containing
a vertex v as E(v). We call |S| the surplus, which is the number of edges to be deleted from E(Ca)
such that the graph Ca becomes a tree. Then, we have E [BBer(i)]− ci ≤ E [|S|]. The expectation
of the surplus may be written as

E [|S|] = E

 ∑
e∈E(Ca)

I{e ∈ S}

 =

∞∑
k=1

P [|Ca| = k]
∑

e∈E(Ca)

E [I{e ∈ S}| |Ca| = k]

=
1

2

∑
v∈Ca

∑
e∈E(v)

E [I{e ∈ S}| |Ca| = k] .

DefineAmax = maxi,j Ai,j as the maximal element of the matrix A. Then for an arbitrary vertex,
the probability of an edge e ∈ E(v) being in the surplus can be upper bounded as∑

e∈E(v)

E [I{e ∈ S}| |Ca| = k] ≤ Amaxk

n
.

Then we may upper bound the sum as

1

2

∑
v∈Ca

∑
e∈E(v)

E [I{e ∈ S}| |Ca| = k] ≤ Amaxk
2

n
.

Using our expression for E [|S|], we get

E [|S|] ≤
∞∑
k=1

P [|Ca| = k]
Amaxk

2

n
=
AmaxE|Ca|2

n
.

Now we notice that, by Le Cam’s theorem, the total variation distance between the sum of
independent Bernoulli random variables with parameters (Ai,1/n, . . . , Ai,n/n) and the Poisson dis-
tribution Poi(

∑n
j=1Ai,j/n) is at most 2(

∑n
j=1A

2
i,j)/n. Using this fact and that the moments of the

total progeny of a subcritical branching process do not scale with n (cf. Theorem 1 of Huaming,
2012), we have xi − E [BBer(i)] = O

(
1
n

)
, thus proving the lemma.
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8.2. Supercritical case

Lemma 15 Suppose that

1. G is generated from a supercritical G(n, α,K) satisfying Assumptions 1 and 2, or

2. G is generated from a supercritical G(n,w).

Then, for any node i satisfying µi < µ∗, we have c∗ − ci ≤ c∗ (µ∗ − µi) + on(n).

The proof of Lemma 15 follows from the following lemmas for the stochastic block model and the
Chung–Lu model and from the following relation between ci and ρi:

ci = ρiE [|C1|] + on(n) ,

see Bollobás, Janson, and Riordan (2007, Chapter 9).

Lemma 16 (Coordinate order preserving in the stochastic block model.) Assume the conditions
of Lemma 15 and let l∗ = arg maxl bl. Let a ∈ RS be any vector such that al ∈ [0, al∗ ] for all l.
Then (ΦM (a))l∗ ≥ (ΦM (a))l.

Proof Let us fix two arbitrary indices l and l′. By the definition of ΦM , we have

(ΦM (a))l = 1− e−((
∑
m 6=l αmam)k+αlKl,lal) ,

(ΦM (a))l′ = 1− e−((
∑
m 6=l′ αmam)k+αl′Kl′,l′al′ ) .

Notice that if l and l′ satisfy∑
m 6=l

αmam

 k + αlKl,lal ≥

∑
m6=l′

αmam

 k + αl′Kl′,l′al′ ,

we have (ΦM (a))l ≥ (ΦM (a))l′ . Now, using the facts that

•
∑

m6=l αmam −
∑

m6=l′ αmam = αl′al′ − αlal,

• αlKl,l ≥ αlk,

• αlKl,l + αl′k ≥ αl′kl′,l′ + αlk and

• al − al′ ≥ 0,

we can verify that

αlKl,lal + αl′kal′ − αlkal − αl′Kl′,l′al′

= (αlKl,l + αl′k)al′ + (al − al′)αlKl,l − (αl′Kl′,l′ + αik)al′ − (al − al′)αlk ≥ 0,

thus proving the lemma.
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Lemma 17 (Order of coordinates of eigenvector in the SBM) Let a be the eigenvector corre-
sponding to the largest eigenvalue λ of the matrix M = Kdiag(α). Then if l∗ = arg maxl bl, we
have al∗ ≥ al for l 6= l∗.

Proof If a is an eigenvector of M , then for coordinates l, l′:
(∑

m 6=l αmam

)
k + αlkl,lal = λal,(∑

m 6=m′ αmam

)
k + αlKl′,l′al′ = λal′

By the Perron-Frobenius theorem and our conditions on matrix M , λ is a real number larger than one.
Denote C = k

∑
m 6=l,m6=l′ αmam, x = al, y = al′ , a = αlKl,l, b = αl′k, c = αlk, d = αl′kl′,l′ .

Then, {
C + ax+ by = λx,

C + cx+ dy = λy
(12)

Let r = 1 + ε be such that y = rx = (1 + ε)x. Then{
C
x + a+ b+ bε = λ,
C
x + c+ d+ dε = λ+ λε

and therefore
C

x
+ c+ d+ dε =

C

x
+ a+ b+ bε+ λε .

Rearranging the terms and using the fact that a+ b ≥ c+ d, we have

0 ≤ (a+ b)− (c+ d) = (d− b− λ)ε .

Since Kl,l ≥ k, we have αlkl,l ≥ αlk and a ≥ c.
We consider two cases separately: First, if b ≥ d, we have d− b− λ < 0, which implies ε < 0

and y < x, therefore proving al > al′ for this case. In the case when b < d, we have a+ b ≥ c+ d
and d−b

a−c ≤ 1. Subtracting the two equalities of the linear system 12, we get

λ(1− r) = (a− c)
(

1− d− b
a− c

r

)
.

Now, since d−b
a−c ≤ 1, we have λ ≥ a− c, which implies λ ≥ d− b and d− b− λ ≤ 0, thus leading

to ε ≤ 0 and y ≤ x, therefore proving al ≥ al′ for this case.

Lemma 18 (Order of coordinates of eigenvector in the Chung–Lu model) Let a be the eigen-
vector corresponding to the largest eigenvalue λ of the matrix A. Then if i∗ = arg maxm bm, we
have ai∗ ≥ aj for j 6= i∗.

Proof It is easy to see that the only eigenvector of A corresponding to a non-zero eigenvalue is
a = w with λmax = wTw/n:

1

n
Aw =

1

n
· (wwT)w =

wTw

n
· w.
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The proof is concluded by observing that the maximum coordinate of the vector b corresponds to the
maximum coordinate of w, due to the equality

bi =
1

n
· wi

n∑
j=1

wj .

Lemma 19 (Coordinate order preserving in the Chung–Lu model) Assume the conditions of
Lemma 15 and let i∗ = arg maxi bi. Let a = (a1, . . . , an) be such that aj ∈ [0, ai∗ ] for all j.
Then (ΦA(a))i∗ ≥ (ΦA(a))j .

Proof Let us fix two arbitrary indices i and i′. By the definition of ΦA, we have

(ΦA(a))i = 1− e−wi(
∑n
j=1 wjaj) .

Then, using the fact that w = a, we have (ΦA(a))i∗ ≥ (ΦA(a))j , thus proving the lemma.

We finally study the maximal fixed point of the operator ΦA, keeping in mind this fixed point
is exactly the survival-probability vector ρ of the multi-type Galton–Watson branching process
Bollobás, Janson, and Riordan (2007). By Lemma 5.9 of Bollobás, Janson, and Riordan (2007), this
is the unique fixed point satisfying ρi > 0 for all i. The following lemma shows that ρi takes its
maximum at i∗ = arg maxi bi, concluding the proof of Lemma 15.

Lemma 20 (Fixed point coordinate domination) Let ρ be the unique non-zero fixed point of ΦA,
and let i∗ = arg maxi bi. Then, ρi∗ ≥ ρj and ρi∗ − ρj ≤ ρ∗ (bi∗ − bj) holds for all j 6= i∗.

Proof Letting a be the eigenvector of A that corresponds to the largest eigenvalue λ, Lemma 18 and
17 guarantee ai∗ ≥ aj for j 6= i∗. Let ε > 0 be such that ε ≤ 1−1/λ

a∗ , where a∗ = maxi=1,...,S ai.
Then by Lemma 5.13 of Bollobás, Janson, and Riordan (2007), ΦM (εa) ≥ εa holds elementwise for
the two vectors.

Since the coordinates of the vector εa are positive, we can appeal to Lemma 5.12 of Bol-
lobás, Janson, and Riordan (2007) to show that iterative application of ΦA converges to the fixed
point ρ: letting Φm

A be the operator obtained by iterative application of ΦA for m times, we have
limm→∞Φm

A (εa) = ρ, where ρ satisfies ρ ≥ εa ≥ 0 and ΦA(ρ) = ρ > 0. By Lemmas 18 and 17 we
have ρi∗ ≥ ρj , for i∗ 6= j for both the SBM and the Chung–Lu models, proving the first statement.

The second statement can now be proven directly as

ρi∗ − ρi = e−( 1
n
Aρ)j − e−( 1

n
Aρ)i∗ = e−

1
n

∑n
j Ai∗jρj − e−

1
n

∑n
j Aijρj

= e−
1
n

∑n
j Ai∗jρj (1− e−

1
n

∑n
j Aijρj−Ai∗jρj ) ≤ e−

1
n

∑n
j Ai∗jρj

 1

n

n∑
j

(Ai∗j −Aij)ρi∗


≤ ρ∗(bi∗ − bi),

where the first inequality uses the relation 1 − e−z ≤ z that holds for all z ∈ R, and the last step
uses the fact that Aρ has positive elements.
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8.3. Proofs of Theorems 5, 6 and 7 .

Having established that, in order to minimize regret in our setting, it is sufficient to design an
algorithm that quickly identifies the nodes with the highest degree. It remains to show that our
algorithms indeed achieve this goal. We do this below by providing a bound on the expected number
of times E [NT,i] = E

[∑T
t=1 I{At=i}

]
that the algorithm picks a suboptimal node i such that ci < c∗,

and then using this guarantee to bound the regret.
Without loss of generality, we assume that V0 = {1, 2, . . . , |V0|}. The key to our regret bounds

is the following guarantee on the number of suboptimal actions taken by d-UCB(V0).

Theorem 21 (Number of suboptimal node plays in d-UCB) Define ηi = (maxj∈V0 µj − µi) /3.
The number of times that any node i ∈ {i : µi < maxj∈V0 µj} is chosen by d-UCB(V0) satisfies

ENT,i ≤
µ∗ (2 + 6 log T )

η2
i

+ 3 . (13)

The proof is largely based on the analysis of the kl-UCB algorithm due to Cappé, Garivier, Mail-
lard, Munos, and Stoltz (2013), with some additional tools borrowed from Ménard and Garivier
(2017), crucially using that the degree distribution of each node is stochastically dominated by an
appropriately chosen Poisson distribution. Specifically, letting Zi be a Poisson random variable with
mean E [Xt,i], we have E

[
esXt,i

]
≤ E

[
esZi

]
for all s. It turns out that this property is sufficient for

the kl-UCB analysis to go through in our case, which is an observation that may be of independent
interest.

Before delving into the proof, we introduce some useful notation. We start by defining
Yi,1, . . . , Yi,n as independent Bernoulli random variables with respective parameters B = (Ai,1/n,
Ai,2/n, . . . , Ai,n/n), and noticing that the degree Xt,i can be written as a sum Xi =

∑
j 6=i Yi,j . The

following lemma, used several times in our proofs, relates this quantity to a Poisson distribution with
the same mean.

Lemma 22 Let i ∈ [S] and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random variables with
respective parameters pi,1, pi,2, . . . , pi,n, and let Zi be a Poisson random variable with parameter
µi =

∑
j 6=i pi,j . Defining Xi =

∑
j 6=i Yi,j , we have E

[
esXi

]
≤ E

[
esZi

]
for all s ∈ R.

Proof Fix an arbitrary s ∈ R and i ∈ [n]. By direct calculations, we obtain

EesXi =

n∏
j=1

(
EesYi,j

)
≤

n∏
j=1

(1 + pi,j(e
s − 1)) ≤

n∏
j=1

exp (pi,j · (es − 1)) ,

where the last step follows from the elementary inequality 1 + x ≤ ex that holds for all x ∈ R. The
proof is concluded by observing that EesZi = exp (µ (es − 1)) and using the definition of µ.

For simplicity, we also introduce the notation ψB(s) = logE
[
esX
]

and φλ(s) = logEesZi =
λ(es − 1). The proof below repeatedly refers to the Fenchel conjugate of φλ defined as

φ∗λ(z) = sup
s∈R
{sz − φ(s)} = z log

( z
λ

)
+ λ− z

for all z ∈ R. Finally, we define d(µ, µ′) = µ′ − µ + µ log
(
µ
µ′

)
for all µ, µ′ > 0, noting that

φ∗λ(z) = d(z, λ).
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Proof of Theorem 21. The statement is proven in four steps. Within this proof, we refer to nodes
as arms and use K to denote the size of V0. We use the notation f(t) = 3 log t.

Step 1. We begin by rewriting the expected number of draws E [Ni] for any suboptimal arm i as

ENi = E

[
T−1∑
t=K

I{At+1 = i}

]
=

T−1∑
t=K

P{At+1 = i}.

By definition of our algorithm, at rounds t > K, we have At+1 = i only if Ui > Ui∗i. This leads to
the decomposition:

{At+1 = a} ⊆ {µ∗ ≥ Ui∗(t)} ∪ {µ∗ < Ui∗(t) and At+1 = a}
⊆ {µ∗ ≥ Ui∗(t)} ∪ {µ∗ < Ui(t) and At+1 = a}

Steps 2 and 3 are devoted to bounding the probability of the two events above.

Step 2. Here we aim to upper bound
T−1∑
t=K

P [µ∗ ≥ Ui∗(t)] . (14)

Note, that {Ui∗(t) ≤ µ∗} = {µ̂i∗(t) ≤ Ui∗(t) ≤ µ∗} . Since d(µ, µ′) = µ′ − µ+ µ log( µµ′ ) is non-
decreasing in its second argument on [µ,+∞), and by definition of Ui∗ = sup{µ : d(µ̂i∗(t), µ) ≤
f(t)
Ni∗(t)

} we have

{µ∗ ≥ Ui∗(t)} ⊆
{
µ̂i∗(t) ≤ Ui∗(t) ≤ µ∗ and d(µ̂i∗(t), µ

∗) ≥ f(t)

Ni∗(t)

}
,

Taking a union bound over the possible values of Ni∗(t) yields

{µ∗ ≥ Ui∗(t)} ⊆
t−K+1⋃
n=1

{
µ∗ ≥ µ̂i∗,n and d(µ̂i∗,n, µ

∗) ≥ f(t)

n

}
=

t−K+1⋃
n=1

Dn(t),

where the event Dn(t) is defined through the last step. Since d(µ, µ∗) is decreasing and continuous
in its first argument on [0, µ∗), either d(µ̂i∗,n, µ

∗) < f(t)
n on this interval and Dn(t) is the empty set,

or there exists a unique zn ∈ [0, µ∗) such that d(zn, µ
∗) = f(t)

n . Thus, we have

t−K+1⋃
n=1

Dn(t) ⊆
t−K+1⋃
n=1

{µ̂i∗,n ≤ zn} .

For λ < 0, let us define ψ(λ) as the cumulant-generating function of the sum of binomials with
parameters B, and let φ(λ) be the cumulant-generating function of a Poisson random variable with
parameter µ∗. With this notation, we have for any λ < 0 that

P [µ̂i∗,n ≤ zn] = P [exp(λµ̂i∗,n) ≥ exp(λzn)]

= P

[
exp

(
λ

n∑
i=1

Xi∗,i − nψ(λ)

)
≥ exp(nλzn − nψ(λ))

]

≤
(
EeλXi∗,1
eψ(λ)

)n
e−n(λzn−ψ(λ)) ≤ e−n(λzn−ψ(λ)),
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where the last step uses the definition of ψ(λ). Now fixing λ∗ = arg maxλ{λzn − φ(λ)} =
log(zn/µ

∗) < 0, we get by Lemma 22 that

e−n(λ∗zn−ψ(λ∗)) ≤ e−n(λ∗zn−φ(λ∗)) = e
−nφ∗

µ∗ (zn)
= e−nd(zn,µ∗) .

In view of the definition of zn and f(t), this gives the bound

e−nd(zn,µ∗) = e−f(t) =
1

t3
,

which leads to

T−1∑
t=K

P [µ∗ ≥ Ui∗(t)] ≤
T−1∑
t=K

t−K+1∑
n=1

1

t3
< 2,

thus concluding this step.

Step 3. In this step, we borrow some ideas by Ménard and Garivier (2017, Proof of Theorem 2,
step 2) to upper bound the sum

B =

T−1∑
t=K

P [µ∗ < Ui(t) and At+1 = i] . (15)

Writing η = ηi = {µ∗ − µi}/3 for ease of notation, we have

{µ∗ < Ui(t) and At+1 = i} ⊆ {µ∗ − η < Ui(t) and At+1 = i}
⊆ {d(µ̂i(t), µ

∗ − η) ≤ f(t)/Ni(t) and At+1 = i} .

Thus, we have

B ≤
T−1∑
t=K

P [d(µ̂i(t), µ
∗ − η) ≤ f(t)/Ni(t) and At+1 = i]

≤
T∑
n=1

P [d(µ̂i,n, µ
∗ − η) ≤ f(T )/n]

Defining the integer n(η) as

n(η) =

⌈
f(T )

d(µi + η, µ∗ − η)

⌉
,

we have f(T )/n ≤ d(µi + η, µ∗ − η) for all n ≥ n(η). Thus, we may further upper bound B as

B ≤ n(η)− 1 +

T∑
n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ f(T )/n]

≤ f(T )

d(µi + η, µ∗ − η)
+

T∑
n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ d(µi + η, µ∗ − η)] .
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By definition of η, we have

{µ̂i,n, µ∗ − η) ≤ d(µi + η, µ∗ − η)} ⊆ {µ̂i,n ≥ µi + η} ,

which implies

T∑
n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ d(µi + η, µ∗ − η)] ≤

T∑
n=n(η)

P [µ̂i,n ≥ µi + η] .

By an argument analogous to the one used in the previous step, we get for a well-chosen λ that

T∑
n=n(η)

P [µ̂i,n ≥ µi + η] ≤ P [exp(λµ̂i,n) ≥ exp(λ(µi + η))]

=
T∑

n=n(η)

P

exp(λ
n∑
j=1

Xi,j − nψ(λ)) ≥ exp(nλ(µi + η)− nψ(λ))


≤

T∑
n=n(η)

(
E
[
eλXi,j

]
eψ(λ)

)n
e−n(λ(µi+η)−ψ(λ))

≤
T∑

n=n(η)

e−n(λ(µi+η)−φ(λ)) =
T∑

n=n(η)

e−nd(µi+η,µi)

≤
∞∑

n=n(η)

e−nd(µi+η,µi) ≤ 1

ed(µi+η,µi) − 1
≤ 1

d(µi + η, µi)
,

where the last step uses the elementary inequality 1 + x ≤ ex that holds for all x ∈ R.

Step 4. Putting together the results from the first three steps, we get

ENi ≤ 3 +
1

d(µi + η, µi)
+

3 log T

d(µi + η, µ∗ − η)
.

We conclude by taking a second-order Taylor-expansion of d(µi + η, µi) in η to obtain for some
η′ ∈ [0, η] that

d(µi + η, µi) =
η2

2(µi + η′)
≥ η2

2(µi + η)
.

Taking into account the definition of η, we get

1

d(µi + η, µi)
≤ 2µ∗

η2
.

An identical argument can be used to bound (d(µi + η, µ∗ − η))−1 ≤ 2µ∗/η2. �

The remainder of the section uses Theorem 21 to prove Theorem 5. The proof of Theorem 6
follows from similar ideas and some additional technical arguments.
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Proof of Theorem 5. First, by (6),

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,iE [NT,i]

∣∣∣∣∣∣ E
 .

Now, observing that δα,i ≤ 3ηi holds under event E , we appeal to Theorem 21 to obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
µ∗ (18 + 27 log T )

δ2
i,α

+ 3

)∣∣∣∣∣∣ E
 , (16)

thus proving the first statement.
Next, we turn to proving the second statement regarding worst-case guarantees. To do this, we

appeal to Propositions 10 and 15 that respectively show ∆i ≤ 2c∗δi +O(1/n) and ∆i ≤ c∗δi + o(n)
for the sub- and supercritical settings, and we use our assumption that n is large enough so that
we have ∆i ≤ 3c∗δi in both settings. Specifically, we observe that δi = Θn(1) by our sparsity
assumption and c∗ is Θn(1) in the subcritical and Θn(n) supercritical settings, so, for large enough
n, the superfluous O(1/n) and o(n) terms can be respectively bounded by c∗δi. To proceed, let
us fix an arbitrary ε > 0 and split the set V0 into two subsets: U(ε) = {i ∈ V0 : δα,i ≤ ε} and
W (ε) = V0 \ U(ε). Then, under event E , we have∑
i∈V0

∆α,iE [NT,i] =
∑
i∈U(ε)

∆α,iE [NT,i] +
∑

i∈W (ε)

∆α,iE [NT,i]

≤ 3c∗ε
∑
i∈U(ε)

E [NT,i] + 3c∗
∑

i∈W (ε)

δα,i

(
µ∗ (18 + 27 log T )

δ2
α,i

)
+ 3|W (ε)|∆α,max

(by Theorem 21)

≤ 3c∗εT + 3c∗
∑

i∈W (ε)

µ∗ (18 + 27 log T )

δα,i
+ 3|V0|∆α,max

≤ 3c∗
(
εT + |V0|

µ∗ (18 + 27 log T )

ε

)
+ 3|V0|∆α,max

≤ 6c∗
√
T |V0|µ∗ (18 + 27 log T ) + 3|V0|∆α,max,

where the last step uses the choice ε =
√
|V0|µ∗ (18 + 27 log T ) /T . Plugging in the choice of |V0|

concludes the proof. �

Proof of Theorem 6. We start by assuming that α < 1/2. Also notice that for a uniformly sampled
set of nodes U , the probability of U not containing a vertex from V ∗α is bounded as

P [U ∩ V ∗α = ∅] ≤ (1− α)|U |.

By the definition of Vk, this gives that the probability of not having sampled a node from V ∗α in
period k of the algorithm is bounded as

P [Vk ∩ V ∗α = ∅] ≤ (1− α)|Vk| ≤ β−k.
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For each period k, the expected regret can bounded as the weighted sum of two terms: the
expected regret of d-UCB (Vk) in period k whenever Vk ∩ V ∗α is not empty, and the trivial bound
∆α,maxβ

k in the complementary case. Using the above bound on the probability of this event and
appealing to Theorem 21 to bound the regret of d-UCB (Vk), we can bound the expected regret as

E [RαT ] ≤
kmax∑
k=1

βk 1

βk
∆α,max +

∑
i∈Vk

∆α,i

(
µ∗
(
2 + 3 log βk

)
δ2
α,i

+ 3

)
≤ kmax∆α,max +

kmax∑
k=1

∑
i∈Vk

∆α,i

(
µ∗ (2 + 3k log β)

δ2
α,i

+ 3

)
≤ kmax∆α,max +

∑
i∈V

∆α,i

((
3 +

2µ∗

δ2
α,i

)
(kmax + 1) +

3 log β(kmax + 1)2

2δ2
α,i

)
.

The proof of the first statement is concluded by upper bounding the number of restarts up to time T
as kmax ≤ log T

log β .
The second statement is proven by an argument analogous to the one used in the proof of

Theorem 5, and straightforward calculations. �

Proof of Theorem 7. For a node i, such that si contains li ones, the expected degree is

µi = (ζ + β)li(β + γ)k−li .

Since ζ > γ > β, we get that µi > µj if li > lj . By symmetry of the nodes in the Kronecker graph,
if two nodes i and j are such that li = lj , then ci = cj . This implies that for any node i, ci is a
function of li. Then we may choose nodes i and j such that si ≥ sj coordinate-wise. Then, using the
condition ζ > γ > β, it is straightforward to see that for any vertex k, the probability of the edge
(i, k) is greater than that of edge (j, k). This implies that the connected component is a monotone
function of the degree.

Theorem 9.10 in Frieze and Karonski (2015) shows that for a graph Gn,P [k] there exists b(P )
such that a subgraph of Gn,P [k] induced by the vertices i ∈ H of weight li ≥ k/2 is connected with
probability at least 1−n−b(P ). We denote byH the event that the subgraph of Gn,P [k] induced by the
vertices of H of weight l ≥ k/2 is connected. This implies that under event H, |Ci| = |maxj Cj |
for all i ∈ H and |Ci| ≤ |maxj Cj | for all i /∈ H . Then we get

c∗α − ci = E
[

max
j
|Cj |

∣∣∣∣H]P [H] + E [ |C∗α||Hc]P [Hc]− E
[

max
j
|Cj |

∣∣∣∣H]P [H]− E [ |Ci||Hc]P [Hc]

≤ E [ |C∗||Hc]P [Hc] ≤ n1−b(P ).

For all i ∈ V0\H , δα,i ≥ ((ζ + β)(β + γ))k/2−(ζ+β)k/2−1(β+γ)k/2+1 = ((ζ + β)(β + γ))k/2
(

1− β+γ
ζ+β

)
.

Since we consider the regime, where (ζ + β)(β + γ) > 1, we get that δα,i >
(

1− β+γ
ζ+β

)
. For all

i, j ∈ H , δα,i = (ζ + β)li(β+ γ)k−li ≥ (ζ + β)k/2−1(β+ γ)k/2(ζ − γ) ≥ (ζ − γ)/(ζ + β). In the
same way as we analysed the regret of the stochastic block model and Chung-Lu model, we can write

RαT ≤ nTP [Ec] + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 .
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Applying Theorem 21, we get

RαT
n
≤ E

 ∑
i∈V0\H

∆α,i

n

µ∗(2 + 6 log T )(
1− β+γ

ζ+β

)2 + 3


∣∣∣∣∣∣∣ E


+ n−b(P )

⌈
log(nT )

log(2)

⌉(
µ∗(2 + 6 log T )(ζ + β)2

(ζ − γ)2
+ 3

)
+ 1 .

Applying |V0 \H| ≤ |V0| and ∆α,i ≤ n, we get the final bound on the regret. �
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