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Abstract

A regularized risk minimization procedure for regression function estimation is intro-
duced that achieves near optimal accuracy and confidence under general conditions, in-
cluding heavy-tailed predictor and response variables. The procedure is based on median-
of-means tournaments, introduced by the authors in [8]. It is shown that the new pro-
cedure outperforms standard regularized empirical risk minimization procedures such as
lasso or slope in heavy-tailed problems.
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1 Introduction

1.1 Empirical risk minimization, regularization

Regression function estimation is a fundamental problem in statistics and machine learning.
In the most standard formulation of the problem, (X,Y ) is a pair of random variables in
which X, taking values in some general measurable space X , represents the observation (or
feature vector) and one would like to approximate the unknown real value Y by a function
of X. In other words, one is interested in finding a function f : X → R such that f(X) is
“close” to Y . As the vast majority of the literature, we measure the quality of f by the risk

R(f) = E(f(X)− Y )2 ,

which is well defined whenever f(X) and Y are square integrable, assumed throughout the
paper. Clearly, the best possible function is the regression function m(X) = E(Y |X).

However, in statistical problems, the joint distribution of (X,Y ) is unknown and the re-
gression function is impossible to compute. Instead, a sample DN = ((X1, Y1), . . . , (XN , YN ))
of independent copies of the pair (X,Y ) is available.
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A popular and thoroughly studied approach is to select a function f̂N from a fixed class
F of functions. Formally, a learning procedure is a map Φ : (X × R)N → F that assigns to
each sample DN = (Xi, Yi)

N
i=1 a (random) function Φ(DN ) = f̂N .

If the class F is sufficiently “large,” then it is reasonable to expect that the best function
in the class

f∗ = argmin
f∈F

E(f(X)− Y )2

has an acceptable performance. We assume throughout that the minimum is attained and
f∗ ∈ F is unique. In fact, we assume that F is a closed and convex subset of L2(µ)—where
µ denotes the distribution of X—, guaranteeing the existence and uniqueness of f∗.

The quality of a learning procedure is typically measured by the mean squared error

‖f̂N − f∗‖2L2
= E

(
(f̂N (X)− f∗(X))2|DN

)
,

where, for q ≥ 1, we use the notation

‖f − g‖Lq = (E |f(X)− g(X)|q)1/q and also ‖f − Y ‖Lq = (E |f(X)− Y |q)1/q .

A closely related, though not equivalent, measure of performance is the excess risk, defined
by the conditional expectation

R(f̂N )−R(f∗) = E
(
(f̂N (X)− Y )2|DN

)
− E(f∗(X)− Y )2 .

The goal of the statistical learning problem is to find a learning procedure that achieves a
good accuracy with a high confidence. In particular, for r > 0 and δ ∈ (0, 1), we say that a
procedure achieves accuracy r with confidence 1− δ (e.g., for the mean squared error) if

P
(
‖f̂N − f∗‖L2 ≤ r

)
≥ 1− δ .

High accuracy and high confidence (i.e., small r and small δ) are obviously conflicting require-
ments. The achievable tradeoff has been thoroughly studied and it is fairly well understood.
We refer the reader to Lecué and Mendelson [4], Lugosi and Mendelson [8] for recent accounts.

The most standard approach for a learning procedure is empirical risk minimization
(erm), also known as least squares regression in which

f̂N ∈ argmin
f∈F

N∑
i=1

(f(Xi)− Yi)2

(where we assume that the minimum is achieved). It is now well understood (see, e.g., Lecué
and Mendelson [4]) that if the distribution of Y , f(X) and (f − h)(X) for f, h ∈ F all have
well-behaved tails (sub-Gaussian in a certain, strong, sense), then empirical risk minimization
achieves nearly optimal accuracy and the best possible confidence for that level of accuracy.
On the other hand, when either Y or (f − h)(X) for f, h ∈ F ∪ {0} may have heavier tails,
empirical risk minimization suffers, as atypical values in the sample distort the empirical
means. Indeed, in such cases significantly better learning procedures exist, as it was recently
pointed out by Lugosi and Mendelson [8].

Even for well-behaved distributions, the accuracy achievable by empirical risk minimiza-
tion is only acceptable if the class F is small, otherwise overfitting becomes inevitable. A
common way of avoiding overfitting is by regularization.
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In regularized risk minimization one gives priority to functions in F according to some
prior belief of “simplicity”. More precisely, let Ψ be a norm defined on a vector space E
containing F . A small value of Ψ(f) is interpreted as simplicity and simple functions are
given priority by way of adding a penalty term to the empirical risk that is proportional to
Ψ(f). In particular, for some regularization parameter λ > 0, a regularized risk minimizer
selects

f̂N ∈ argmin
f∈F

(
1

N

N∑
i=1

(f(Xi)− Yi)2 + λΨ(f)

)
.

The term Ψ(f) is sometimes called the penalty. In some applications, notably in ridge re-
gression, the penalty is not a norm but rather a squared norm. However, in this paper we
focus on norm penalties that encompass various notions of sparsity, for example, the lasso
and slope, discussed in detail below.

1.2 Why run tournaments?

The problem that motivated this work is the better understanding of the tradeoff between
accuracy and confidence in regularized learning procedures. Since regularized procedures
require the minimization of a functional that has the empirical mean as a component, they
suffer from the same disadvantages as empirical risk minimization. These are highly visible
when either class members f(X) or the target Y are heavy tailed in some sense. Thus,
the application of regularized erm in heavy-tailed problems results in a suboptimal tradeoff
between the accuracy with which the procedure performs and the confidence with which that
accuracy can be guaranteed. A typical sample contains a large subset of atypical points and
misleads the empirical minimization procedure.

The idea of a median-of-means tournament was introduced in [8] to address the issue of
samples that may contain many atypical points. It turns out that this learning procedure
attains the optimal accuracy/confidence tradeoff under rather minimal conditions and, in
particular, in heavy-tailed problems.

In what follows we study the optimal tradeoff for problems usually addressed using regu-
larization procedures.

Example: sparse recovery

It is instructive to keep in mind the important example of sparse-recovery in Rd. Consider
the following standard setup: Let X be an isotropic random vector in Rd (that is, for every
t ∈ Rd, E 〈t,X〉2 = ‖t‖22, where ‖ · ‖2 denotes the Euclidean norm in Rn). Let Y be the
unknown target random variable and set t∗ to be the minimizer in Rd of the risk functional
t → E(〈X, t〉 − Y )2. Thus, F contains all linear functions f(x) = 〈x, t〉 for t ∈ Rd. In sparse
recovery problems one believes that t∗ is supported on at most s coordinates with respect to
the standard basis in Rd—or at least it is well approximated by an s-sparse vector—, but one
does not know that for certain. The lasso procedure (introduced in [15]) selects t̂ ∈ Rd that
minimizes the regularized empirical squared-loss functional

t→ 1

N

N∑
i=1

(〈t,Xi〉 − Yi)2 + λ‖t‖1

for a well chosen regularization parameter λ, and ‖t‖1 =
∑d

i=1 |ti| is the `1-norm of t.
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It turns out (see Lecué and Mendelson [5]) that if X is sufficiently sub-Gaussian then one
may obtain nontrivial estimates on the performance of the lasso. The quantities ci(·) denote
positive constants that depend on the argument only.

Theorem 1.1. (Lecué and Mendelson [5].) Let (X,Y ) be as described above and set 0 < δ <
1. Assume that there is some v ∈ Rd supported on at most s coordinates for which

‖t∗ − v‖1 ≤ c1(δ)‖ξ‖Lqs
√

log(ed)

N
.

If λ = c2(L, δ)‖ξ‖Lq
√

log(ed)/N and N ≥ c3(L)s log(ed/s) then, with probability at least 1−δ,
the lasso estimator with regularization parameter λ satisfies that

‖t̂− t∗‖2 ≤ c4(L, δ)‖ξ‖Lq
√
s ·
√

log(ed)

N

and

‖t̂− t∗‖1 ≤ c4(L, δ)‖ξ‖Lqs
√

log(ed)

N
.

Note that the results of Theorem 1.1 hold even when t∗ is not s-sparse, but rather, when
t∗ is only approximated by an s-sparse vector.

Thus, the lasso can identify the degree of sparsity of t∗ and perform (almost) as if it had
been given the information of the degree of sparsity of t∗. However, if 〈t∗, X〉−Y happens to
be heavy-tailed then the confidence with which the above accuracy can be attained is rather
weak: c(δ) and c(δ, L) depend polynomially on 1/δ.

The purpose of this paper is to introduce a learning procedure — a regularized median of
means tournament — that performs as well as regularized empirical risk minimization but
under much more general conditions on the distribution. In fact, its performance corresponds
to that of regularized empirical risk minimization in sub-Gaussian problems, even though
the problem at hand may be heavy tailed. For example, it is not surprising that the accu-
racy/confidence tradeoff of the lasso deteriorates when the problem is heavy-tailed, because
the lasso is based on minimization of the empirical risk. In contrast, the regularized proce-
dure we introduce performs well even it we drop the sub-Gaussian assumptions and replace
them by considerably weaker ones.

Our benchmark is a general estimate due to Lecué and Mendelson [5] on the performance
of regularized empirical risk minimization, and the main result of this paper (Theorem 4.3
below) parallels the main finding of [5]. The proof of Theorem 4.3 combines the techniques
of [5] with those of [8]. We then use the lasso as a proof of concept and show that the
procedure we propose matches the performance of the lasso in the well-behaved case even
when the problem is heavy tailed. We also work out a procedure analogous to slope and
present similar findings.

1.3 Two examples

Before we turn to a presentation of the regularized tournament procedure and the technical
machinery we require, let us describe in more detail the two applications mentioned previously,
both of which originating in sparse recovery: lasso, and slope (see, [1, 3, 14, 15]). The two
are regularized empirical risk minimization procedures in Rd, and we would like to compare
their performance with that of the regularized tournament procedure we introduce below.
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As we mentioned, the lasso is a regularized empirical risk minimization procedure that
uses the regularization function Ψ(t) = ‖t‖1, while the regularization function of slope is
defined using a set of non-increasing weights (βi)

d
i=1. The corresponding norm is

Ψ(t) =

d∑
i=1

βit
∗
i ,

where (t∗i )
d
i=1 denotes the non-increasing rearrangement of (|ti|)di=1. Clearly, slope is a gen-

eralized version of lasso, as the latter is given by the choice βi = 1 for 1 ≤ i ≤ d. lasso and
slope exhibit an almost miraculous feature: although the regularization functions have little
to do with sparsity, regularized empirical risk minimization preforms extremely well when the
true minimizer t∗ is sparse, or if it is at least well-approximated by a sparse vector.

Many results are known on the performance of lasso and slope, and almost all of them
hold only when both the random vector X and the target Y have well behaved tails. One
exception is [5] that studies the case of a potentially heavy-tailed Y , with the resulting estimate
outlined in Theorem 1.1. It shows that while a high degree of accuracy is possible—the same
as if the problem were purely Gaussian, the confidence is rather weak. That weak confidence
is caused by the heavy tail of ξ, the insufficient sub-Gaussian moments of linear forms, and the
fact that empirical minimization procedures are highly sensitive to atypical sample points.
It turns out that a similar performance bound holds for slope with the choice of weights
βi ≤ C

√
log(ed/i).

Theorem 1.2. (Lecué and Mendelson [5].) There exist constants c1, c2 and c3 that depend
only on L, δ and C for which the following holds.

Let Ψ(t) denote the slope norm for the weights (βi)
d
i=1. If there is v ∈ Rd that satisfies

|supp(v)| ≤ s and

Ψ(t∗ − v) ≤ c1‖ξ‖Lq
s√
N

log

(
ed

s

)
,

then for N ≥ c2s log(ed/s) and with the choice of λ = c2‖ξ‖Lq/
√
N , one has

Ψ(t̂− t∗) ≤ c3‖ξ‖Lq
s√
N

log

(
ed

s

)
and ‖t̂− t∗‖2 ≤ c3‖ξ‖Lq

√
s

N
log

(
ed

s

)
with probability at least 1− δ.

We show that median-of-means versions tournament versions of lasso and slope per-
form better than their regulatized empirical risk minimization counterparts, simply because
median-of-means is far more robust to atypical sample points than empirical minimization.
This leads to the ‘Gaussian’ accuracy, but with the optimal confidence, under the same as-
sumptions.

The tournament lasso

The tournament lasso is just a regularized tournament procedure (defined accurately below)
for Ψ(t) = ‖t‖1. As the next result shows, it significantly outperforms the lasso in heavy-
tailed problems.
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Theorem 1.3. Assume that X is an isotopic random vector and that for every t ∈ Rd and
any 1 ≤ p ≤ c log d, ‖ 〈t,X〉 ‖Lp ≤ L

√
p‖ 〈t,X〉 ‖L2. Let t∗ = argmint∈RdE(Y − 〈t,X〉)2 and

assume that ‖Y − 〈t∗, X〉 ‖L4 ≤ σ.
If there is v that is s-sparse such that

‖t∗ − v‖1 ≤ c1(L)σ · s
√

log(ed/s)

N
,

N ≥ c2(L)s log(ed/s), and

r̂ ≥ c3(L)σ

√
s

N
log

(
ed

s

)
,

then, with probability at least

1− 2 exp

(
−c4(L)N min

{
1,

(
r̂

σ

)2
})

,

the tournament lasso produces t̂ that satisfies

‖t̂− t∗‖2 ≤ c5(L)r̂ and ‖t̂− t∗‖1 ≤ c5(L)σs

√
log(ed/s)

N
.

It follows that the tournament lasso yields the same accuracy as the standard lasso,
but with a much better confidence. Moreover, the confidence improves when we require a
weaker accuracy. The crucial point is that the tournament lasso attains the optimal accu-
racy/confidence tradeoff even though the problem is very far from being sub-Gaussian. Linear
functionals 〈X, t〉 exhibit a sub-Gaussian moment growth only up to p ∼ log d rather than for
any p ≥ 1, and the noise ξ = 〈t∗, X〉 − Y is only assumed to belong to L4. There is no hope
that regulatized empirical risk minimization would come close to this accuracy/confidence
tradeoff under such assumptions, but the tournament lasso does just that.

The tournament slope

The tournament slope is simply a regularized tournament procedure in Rd for the norm
Ψ(t) =

∑d
i=1 βit

∗
i , where βi ≤ C

√
log(ed/i). We obtain the following performance bound,

proved in Section 6.

Theorem 1.4. Assume that X is an isotopic random vector and that for every t ∈ Rd and
any 1 ≤ p ≤ c log d, ‖ 〈t,X〉 ‖Lp ≤ L

√
p‖ 〈t,X〉 ‖L2. Let t∗ = argmint∈RdE(Y − 〈t,X〉)2 and

assume that ‖Y − 〈t∗, X〉 ‖L4 ≤ σ. If there is v that is s-sparse such that

‖t∗ − v‖1 ≤ c1(L)σ · s log(ed/s)√
N

,

N ≥ c2(L)s log(ed/s), and

r̂ ≥ c3(L)σ

√
s

N
log

(
ed

s

)
,

then, with probability at least

1− 2 exp

(
−c4(L)N min

{
1,

(
r̂

σ

)2
})

,
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the tournament slope produces t̂ that satisfies

‖t̂− t∗‖2 ≤ c5(L)σ

√
s

N
log

(
ed

s

)
and

Ψ(t̂− t∗) =
d∑
i=1

(t̂− t∗)∗i
√

log(ed/i) ≤ c5(L)σ
s√
N

log

(
ed

s

)
.

Therefore, one can obtain the same accuracy as the standard slope, but with a much
better confidence. The confidence improves for a weaker accuracy, and just like the tourna-
ment lasso, the tournament slope displays the optimal accuracy/confidence tradeoff, but
allowing heavy-tailed distributions.

2 Assumptions, background

In the general setup we study, we merely assume a rather weak fourth-moment assumption.
More precisely, we work under the following conditions.

Assumption 2.1. Let F ⊂ L2(µ) be a locally compact, convex class of functions. Let Y ∈ L2

and assume that, for some constant L > 0,

• for every f, h ∈ F , ‖f − h‖L4 ≤ L‖f − h‖L2;

• ‖f∗ − Y ‖L4 ≤ σ4 for a known value σ4.

Remark 2.1. The second condition may easily be replaced by a combination of two assump-
tions: that for every f ∈ F , ‖f − Y ‖L4 ≤ L‖f − Y ‖L2; and that ‖f∗ − Y ‖L2 ≤ σ for
some know constant σ > 0. Also, in the case of independent additive noise, that is, when
Y = f0(X) +W , the assumption that ‖f∗ − Y ‖L4 ≤ σ4 may be replaced by the minimal one,
that ‖W‖L2 ≤ σ. The necessary modifications to the proofs are straightforward and we do not
explore this observation further.

2.1 Complexity parameters of a class

Before describing the regularized median of mean tournament, we introduce four parameters of
“complexity” depending both on the class F and the distribution of (X,Y ). These complexity
parameters are essential in describing the optimal performance of learning procedures. For
detailed discussion on the meaning and role of these parameters, we refer to Mendelson [9, 10]
and Lugosi and Mendelson [8]. As explained in those papers, the relevant complexity of a
class F has four components, reflected in four parameters λQ, λM, rE , r̃M that we define next.

First we need some notation. Denote the unit ball in L2(µ) by D = {f : ‖f‖L2 ≤ 1}
and let S = {f : ‖f‖L2 = 1} be the unit sphere. For h ∈ L2(µ) and r > 0, we write
Dh(r) = {f : ‖f − h‖L2 ≤ r}. In a similar fashion for the norm Ψ used as a regularization
function, let B = {f : Ψ(f) ≤ 1}, set ρB = {f : Ψ(f) ≤ ρ} and Bh(ρ) = {f : Ψ(f − h) ≤ ρ}.

Define the star-shaped hull of the class F centred in h by

star(F , h) = {λf + (1− λ)h : 0 ≤ λ ≤ 1, f ∈ F} .
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In what follows we make two important modifications to the definitions of the complexity
parameters used in [9, 10, 8]. First, just like in the above-mentioned articles, we are inter-
ested in “localized” classes. However, because regularized procedures are affected by two
norms, Ψ and L2(µ), the localization has to be with respect to both of them. Therefore, the
“localization” of F , centred in h and of radii ρ, r > 0 is defined by

Fh,ρ,r = star(F − h, 0) ∩ (ρB ∩ rD) .

Clearly, if F is convex then for any h ∈ F , star(F − h, 0) = F − h and

Fh,ρ,r = {f − h : f ∈ F , Ψ(f − h) ≤ ρ, ‖f − h‖L2 ≤ r} = (F − h) ∩ (ρB ∩ rD) .

The second minor modification is that each complexity parameter is associated with the ‘worse
case’ centre h ∈ F ′ for some fixed F ′ ⊂ F , and not necessarily with the whole of F .

Two of the four parameters are defined using the notion of packing numbers.

Definition 2.2. Given a set H ⊂ L2(µ) and ε > 0, denote the ε-packing number of H by
M(H, εD). In other words, M(H, εD) is the maximal cardinality of a subset {h1, . . . , hm} ⊂
H, for which ‖hi − hj‖L2 ≥ ε for every i 6= j.

The first relevant parameter λQ is defined as follows with appropriate numerical constants
κ and η:

Definition 2.3. Fix ρ > 0 and h ∈ F . For κ, η > 0, set

λQ(κ, η, h, ρ) = inf{r : logM(Fh,ρ,r, ηrD) ≤ κ2N} . (2.1)

For F ′ ⊂ F let
λQ(κ, η, ρ) = sup

h∈F ′
λQ(κ, η, h, ρ) .

While κ and η are adjustable parameters, we are mainly interested in the behaviour of λQ
as a function of ρ. The way one selects ρ is clarified later.

The next parameter, denoted by λM, is also defined in terms of the packing numbers of
the localization Fh,ρ,r, though at a different scaling than λQ.

Definition 2.4. Fix h ∈ F and ρ > 0. Let κ > 0, 0 < η < 1, and define

λM(κ, η, h, ρ) = inf{r : logM(Fh,ρ,r, ηrD) ≤ κ2Nr2} . (2.2)

Also, for F ′ ⊂ F let
λM(κ, η, ρ) = sup

h∈F ′
λM(κ, η, h, ρ) .

For the remaining two complexity parameters, let (εi)
N
i=1 be independent, symmetric

{−1, 1}-valued random variables that are independent of (Xi, Yi)
N
i=1.

Definition 2.5. Fix h ∈ F and ρ > 0. For κ > 0 let

rE(κ, h, ρ) = inf

{
r : E sup

u∈Fh,ρ,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi)

∣∣∣∣∣ ≤ κ√Nr
}
, (2.3)

and for F ′ ⊂ F set rE(κ, ρ) = suph∈F ′ rE(κ, h, ρ).
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Definition 2.6. Fix h ∈ F and ρ > 0. For κ > 0, set rM(κ, h, ρ) to be

rM(κ, h, ρ) = inf

{
r : E sup

u∈Fh,ρ,r

∣∣∣∣∣ 1√
N

N∑
i=1

εiu(Xi) · (h(Xi)− Yi)

∣∣∣∣∣ ≤ κ√Nr2

}
. (2.4)

For σ > 0 put F (σ)
Y = {f ∈ F ′ : ‖f(X)−Y ‖L2 ≤ σ} and let r̃M(κ, σ, ρ) = sup

h∈F(σ)
Y

rM(κ, h, ρ).

Finally, suppose that the distribution of (X,Y ) is such that ‖Y − f∗(X)‖L4 ≤ σ4 for a
known constant σ > 0. The “complexity” of F relative to centres in F ′ and radius ρ is

r∗(F ,F ′, ρ) = max{λQ(c1, c2, ρ), λM(c1/σ4, c2, ρ), rE(c1, ρ), r̃M(c1, σ4, ρ)} . (2.5)

Here c1, c2 are appropriate positive numerical constants. (“Appropriate” means that r∗(F ,F ′, ρ)
satisfies Propositions 5.1, 5.5 and 5.7 below). The existence of such constants is proved in
[8] when F ′ = F , i.e., when any function in F is a ‘legal choice’ of a centre, and under
Assumption 2.1. In that case, the constants depend only on the value of L.

When F and F ′ are clear from the context, we simply write r∗(ρ) for r∗(F ,F ′, ρ).

Example: linear regression with `1 regularization

To give the reader some feeling of the nature of r∗(ρ) and the type of estimates that are
needed for its identification, let F be a vector space. Hence, for any h ∈ F , F − h = F and
thus

Fh,ρ,r = F ∩ ρB ∩ rD.

In particular, Fh,ρ,r is independent of the choice of centre h and there is no ‘diversity’ in the
localized sets one encounters. Also, if F is convex and centrally symmetric (i.e., if f ∈ F then
−f ∈ F), the richest localized set is essentially when the centre is h = 0. Indeed, in such a
case,

Fh,ρ,r = (F − h) ∩ (ρB ∩ rD) ⊂ 2F ∩ (ρB ∩ rD) ,

which is a localization of 2F for h = 0. Thus, when F is centrally symmetric, it suffices to
study its localizations associated with a single centre – h = 0.

In the case of the lasso F = {〈t, ·〉 : t ∈ Rd} and therefore F is a vector space consisting
of linear functionals. From here on we identify the linear functional 〈t, ·〉 with t ∈ Rd, and
thus identify F with Rd. The regularization function used in the lasso is Ψ(t) = ‖t‖1 and
t∗ = argmint∈RdE(〈t,X〉 − Y )2.

Using our notation, D = {t ∈ Rd : E 〈X, t〉2 ≤ 1}, and if X is isotropic, then D = Bd
2 ,

the Euclidean unit ball in Rd (though, in general, D is an ellipsoid in Rd). Hence, all the
localizations associated with the lasso are

Ft,ρ,r = ρBd
1 ∩ rD ,

where Bd
1 = {t ∈ Rd : ‖t‖1 ≤ 1}. Moreover, if X is isotropic then

Ft,ρ,r = ρBd
1 ∩ rBd

2 .

It follows that if one is to identify λQ and λM, it suffices to obtain estimates on the Euclidean
packing numbers

logM(ρBd
1 ∩ rBd

2 , ηrB
d
2)

9



and, in order to bound rE and rM it suffices to control the expectations of the empirical
processes

E sup
u∈ρBd1∩rBd2

∣∣∣∣∣ 1√
N

N∑
i=1

εi 〈u,Xi〉

∣∣∣∣∣
and

E sup
u∈ρBd1∩rBd2

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi 〈u,Xi〉

∣∣∣∣∣
respectively, where in the latter, the multipliers are ξi = 〈t∗, Xi〉 − Yi.

The question of obtaining sharp bounds on these complexity parameters, even for the
lasso, is nontrivial, and a rich mathematical theory has been developed just for that goal
(see, e.g., the books [7, 16, 2], and for more recent results, [13]). We study the parameters
in question for `1-regularized linear regression (lasso) and also for the more general well-
studied procedure slope. However, since it is not the focus of this article we do not explore
the issue of bounding the complexity parameters involved beyond those two cases. Let us just
mention that the question of finding data-dependent bounds on these quantities, or better
still, computationally feasible data dependent bounds, is wide open.

3 Regularized risk minimization

Before we can properly describe the regularized tournament procedure, let us explain the path
one may take when studying the standard regularized empirical risk minimization (rerm),
which is the basis for the analysis of the regularized tournament procedure we introduce in
what follows.

rerm selects a minimizer f̂ of the regularized empirical risk functional

argminf∈F

(
1

N

N∑
i=1

(f(Xi)− Yi)2 + λΨ(f)

)
.

A typical bound on the performance of rerm for a well-chosen regularization parameter λ
involves two estimates: first on the L2 distance ‖f̂ − f∗‖L2 and second, on the Ψ-distance
Ψ(f − f∗). The two estimates one can guarantee depend on structure of F , the choice of Ψ
and the tail behaviour of the functions involved.

Clearly, a minimizer of the regularized empirical risk functional also minimizes

1

N

N∑
i=1

(f(Xi)− Yi)2 − (f∗(Xi)− Yi)2 + λ (Ψ(f)−Ψ(f∗))

=
1

N

N∑
i=1

(f − f∗)2(Xi) +
2

N

N∑
i=1

(f∗(Xi)− Yi)(f − f∗)(Xi) + λ (Ψ(f)−Ψ(f∗))

= Qf +Mf + λ (Ψ(f)−Ψ(f∗)) , (3.1)

where

Qf =
1

N

N∑
i=1

(f − f∗)2(Xi)

10



is the quadratic component of the empirical excess squared risk and

Mf =
2

N

N∑
i=1

(f∗(Xi)− Yi)(f − f∗)(Xi)

is the corresponding “multiplier” component.
The key to the analysis of rerm is that the empirical minimizer f̂ satisfies that

Q
f̂

+M
f̂

+ λ
(

Ψ(f̂)−Ψ(f∗)
)
≤ 0 ,

because f∗ is also a possible minimizer of (3.1). Hence, if one can show that for a large part
of F , (3.1) is positive, the empirical minimizer belongs to the complement of that set, which
hopefully contains only functions that are ‘close’ to f∗.

Clearly, the quadratic component is always nonnegative. However, all the information one
has on Mf is that EMf ≥ 0, and that does not exclude the possibility that Mf is negative.
Also, there is no off-hand reason why λ (Ψ(f)−Ψ(f∗)) should be positive.

A possible way of controlling the performance of rerm has been suggested in [5]. The
idea there is to find a wise choice of the radii ρ and r and a regularization parameter λ; show
that (3.1) is positive on the Ψ-sphere {f ∈ F : Ψ(f−f∗) = ρ}, and therefore, by homogeneity
properties of the estimates involved, that it is also positive outside the sphere. Finally, one
may study the behaviour of (3.1) in the Ψ-ball {f ∈ F : Ψ(f − f∗) ≤ ρ}, which depends
entirely on Qf and Mf . Indeed, if Ψ(f − f∗) ≤ ρ then

λ(Ψ(f)−Ψ(f∗)) ≥ −λΨ(f − f∗) ≥ −λρ

and the parameters r and λ are chosen in a way that ensures that if Ψ(f − f∗) ≤ ρ and
‖f − f∗‖L2 ≥ r, then Qf dominates both Mf and λρ. Thus, the empirical excess risk
functional is positive in

{f ∈ F : Ψ(f − f∗) ≤ ρ, ‖f − f∗‖L2 ≥ r} .

Combining all these observations, it follows that

‖f̂ − f∗‖L2 ≤ r and Ψ(f̂ − f∗) ≤ ρ .

The heart of the argument (and the main role of the regularization term) is the fact that (3.1)
is positive when Ψ(f − f∗) = ρ and ‖f − f∗‖L2 ≤ r. Unfortunately, it is impossible to obtain
a useful lower bound on Qf in that region, and the only hope to ensure that (3.1) is positive
is by showing that λ(Ψ(f) − Ψ(f∗)) is large enough to defeat the potentially negative Mf .
Indeed, in [5] the authors establish that for such functions, on the one hand, Mf ≥ −(C/2)r
and on the other, (non)-smoothness properties of Ψ imply that λ(Ψ(f)−Ψ(f∗)) & λρ.

To illustrate what we mean by “non-smoothness properties of Ψ”, let f ∈ F satisfy
Ψ(f − f∗) = ρ and ‖f − f∗‖L2 ≤ r. Assume that there is a norm one (relative to Ψ) linear
functional z that is norming for both f − f∗ and f∗, that is, if Ψ∗ is the dual norm to Ψ then

Ψ∗(z) = 1, z(f − f∗) = Ψ(f − f∗), and z(f∗) = Ψ(f∗) . (3.2)

Since f∗ and f − f∗ have a common norming functional, it follows that

Ψ(f)−Ψ(f∗) ≥ z(f)− z(f∗) = z(f − f∗) = Ψ(f − f∗) = ρ .

11



Hence,
Mf + λ(Ψ(f)−Ψ(f∗)) ≥ −(C/2)r + λρ > 0 ,

provided that r, ρ and λ and chosen accordingly.
Naturally, because all the functionals involved have to be norming for f∗, Ψ cannot be

smooth in f∗ if we want (3.2) to hold for many functions in F . Indeed, if it were smooth in
f∗, such a norming functional would be unique. Therefore, if this type of argument is to be
of any use, ∂Ψf∗ (the subdifferential of Ψ in f∗) has to be a large set.

To summarize, the results in [5] indicate that a good choice of ρ, r and λ satisfies the
following:

• f∗ has enough ‘almost norming’ functionals. Specifically, enough to ensure that for any
f ∈ F for which Ψ(f − f∗) = ρ and ‖f − f∗‖L2 ≤ r(ρ) there is a functional that
is simultaneously almost norming for f∗ and f − f∗. We make this somewhat vague
description more explicit later.

• With high probability, if f ∈ Bf∗(ρ) then

Mf ≥ −
C

2
max{r2, ‖f − f∗‖2L2

}

and
Qf ≥ C‖f − f∗‖2L2

if ‖f − f∗‖L2 ≥ r

for a suitable constant C.

• The choice of ρ and r(ρ) dictates the choice of λ. For example,

3C

8
· r

2(ρ)

ρ
≤ λ ≤ C

2
· r

2(ρ)

ρ

was shown in [5] to be a valid choice of λ.

The main observation in [5] is that if the above conditions are fulfilled, then rerm performed
with a regularization parameter λ produces f̂ that satisfies

Ψ(f̂ − f∗) ≤ ρ and ‖f̂ − f∗‖L2 ≤ r .

Note that out of ρ, r and λ, only the latter is actually involved in the definition of the
rerm procedure, while the other two serve as purely analytical instruments. Although there
is no need to specify the ‘right’ values of ρ and r, these can be made explicit and are derived
in [5]. In contrast, and unlike rerm, the regularized tournament procedure we introduce here
requires the values of parameters like ρ and r as input, and the fact that these parameters
may be specified is vital to its success. In return, what we gain over rerm is a procedure that
is not damaged by the presence of heavy tails and performs well under considerably more
general conditions.
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4 The main result

Our main interest is in situations where the class F is large. It is therefore natural to split
it according to some notion of ‘simplicity’. The desired simplicity is expressed in form of
a nested finite hierarchy of subsets of F . More precisely, let F1, . . . ,FK ⊂ F be such that
F = F1 ⊃ F2 ⊃ · · · ⊃ FK . A function belonging to F` for a large value of ` is considered as
“simple”. For example, when dealing with sparse recovery problems in Rn, a natural hierarchy
in Rd is determined according to the degree of sparsity of each element: the class F` consists
of elements that are d/2`−1-sparse relative to the standard basis.

Let ρ1 > ρ2 > · · · > ρK > 0, which serve a similar goal to that of ρ in rerm: ρ` is used
to identify the ‘right set’

{f ∈ F : Ψ(f − f∗) ≤ ρ`} = F ∩ Bf∗(ρ`)

which is the set one should examine carefully if one believes that f∗ ∈ F` (though obviously
one does not have any knowledge of the identity of f∗).

Given ρ`, we consider the complexity of the localized class F ∩ Bf∗(ρ`). More precisely,
in order to make r` independent of the unknown function f∗, we define

r` = r∗(F ,F`, ρ`) ,

and note that the belief behind each r` is that f∗ ∈ F`, hence the interest in centres that
belong to F`.

The choice of r` implies that it depends on ρ`, and in a monotone fashion. However, we
do not have total freedom in the choice of pairs (ρ`, r`). As it happens, the correct choice
of a pair ρ`, r` depends on the interplay between the hierarchy (F`)K`=1 and the norm Ψ as
we describe next. The core issue has been outlined in the previous section: if f∗ ∈ F` then
it must have enough norming functionals, and by “enough” we mean that for f ∈ F that
satisfies Ψ(f − f∗) = ρ` and ‖f − f∗‖L2 ≤ r`, there is an almost norming functional of f∗

that is also almost norming for f − f∗.

4.1 Properties of the hierarchy

Recall that F is a subset of a normed space (E,Ψ); E is also a subspace of L2(µ), though Ψ
and ‖ · ‖L2(µ) may have nothing to do with each other. Let BΨ∗ and SΨ∗ denote the unit ball
and unit sphere in the dual space to (E,Ψ), respectively. Therefore, BΨ∗ consists of all the
linear functionals z ∈ E∗ for which sup{x∈E:Ψ(x)=1} |z(x)| ≤ 1. A linear functional z∗ ∈ SΨ∗

is a norming functional for f ∈ E if z∗(f) = Ψ(f).

Definition 4.1. Let Γf (ρ) ⊂ SΨ∗ be the collection of functionals that are norming for some
v ∈ Bf (ρ/20). Set

∆`(ρ, r) = inf
f∈F`

inf
h

sup
z∈Γf (ρ)

z(h− f) ,

where the inner infimum is taken in the set

{h ∈ F : Ψ(h− f) = ρ and ‖h− f‖L2 ≤ r} . (4.1)
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The idea behind the definition of ∆`(ρ, r) is the same as the one outlined earlier. It turns
out that the main difficulty in the analysis of a regularized tournament is the behaviour of
the empirical regularized excess risk in the set

F ∩ {f : Ψ(f − f∗) = ρ`} .

Just like in the standard regularization framework, the regularization term λ(Ψ(h)−Ψ(f∗))
saves the day when trying to deal with functions in h ∈ F that satisfy Ψ(h − f∗) = ρ` and
‖h−f∗‖L2 ≤ r`. It does so by ensuring that f∗ (or functions close to f∗) have enough norming
functionals, and the ‘positive contribution’ of these norming functionals is measured by the
parameter ∆`(ρ`, r`).

Let us examine ∆`(ρ`, r`) and explain its meaning for some fixed values ρ, r > 0. Note
that ∆`(ρ, r) ≤ ρ. Indeed, Γf (ρ) ⊂ SΨ∗ and if z ∈ SΨ∗ and Ψ(h− f) ≤ ρ then

|z(h− f)| ≤ Ψ∗(z) ·Ψ(h− f) ≤ ρ .

The interesting situation is when one can ensure a reverse inequality, that is, that ∆`(ρ, r) is
proportional to ρ, say ∆`(ρ, r) ≥ (4/5)ρ. Such a lower estimate on ∆` implies the following.
Let f ∈ F` and h ∈ F for which Ψ(h − f) = ρ and ‖f − h‖L2 ≤ r. It follows that there is
some z ∈ SΨ∗ and v ∈ Bf (ρ/20) such that z is norming for v and z(h) − z(f) ≥ ∆`(ρ, r).
Therefore,

Ψ(h)−Ψ(f) = Ψ(h)−Ψ(v + (f − v)) ≥ Ψ(h)−Ψ(v)−Ψ(f − v)

≥ z(h)− z(v)−Ψ(f − v) ≥ z(h)− z(f)− 2Ψ(f − v)

≥ ∆`(ρ, r)− ρ/10 ≥ 3ρ/5 ,

which is precisely the type of lower bound we require for the regularized functional.
Obviously, ensuring that ∆`(ρ, r) ≥ (4/5)ρ becomes simpler when the set Γf (ρ) is large.

In the extreme case, when ρ > 30Ψ(f), it follows that Bf (ρ/20) contains a nontrivial Ψ-ball
around 0; thus, Γf (ρ) = SΨ∗ and ∆`(ρ, r) = ρ. The other extreme is if ρ is very small and
one is left only with the functionals that are norming for f itself.

Intuitively, the right choice of ρ` is the smallest one for which, for r` = r∗(F ,F`, ρ`), one
has ∆`(ρ`, r`) ≥ 4ρ`/5. With that in mind, let us define a ‘good hierarchy’ of F :

Definition 4.2. The sequence (F`, ρ`)K`=1 is compatible if

(1) F = F1 ⊃ F2 ⊃ · · · ⊃ FK is a finite hierarchy;

(2) (ρ`)
K
`=1 is decreasing and r` = r∗(F ,F`, ρ`);

(3) for every 1 ≤ ` ≤ K, ∆`(ρ`, r`) ≥ 4ρ`/5.

We allow the choice of ρ` = r` =∞ for ` = 1, . . . , `0. In such cases the compatibility condition
is to be verified from `0 + 1 onward.

With all the definitions set in place, let us formulate the main result of this article.

Theorem 4.3. Let F and (X,Y ) satisfy Assumption 2.1. Consider a hierarchy (F`)K`=1

and set `∗ to be the largest ` for which f∗ ∈ F`. Assume that (F`, ρ`)K`=1 is compatible, set
r` = r∗(F ,F`, ρ`) and consider a decreasing sequence (r̂`)

K
`=1 that satisfies r̂` ≥ r`.

14



There is a regularized procedure that receives as input the values (ρ`)
K
`=1 and (r̂`)

K
`=1, and

a sample (Xi, Yi)
3N
i=1. It returns as output a function ĥ ∈ F , for which, with probability at

least 1− 2
∑`∗

`=1 exp(−c0(L)N min{1, σ−2r̂2
`}),

Ψ(ĥ− f∗) ≤ ρ`∗ , ‖ĥ− f∗‖L2 ≤ c1(L)r̂`∗ , and R(ĥ)−R(f∗) ≤ c2(L)r̂2
`∗ ,

for constants c0, c1 and c2 that depend only on L from Assumption 2.1.

In other words, the regularized procedure yields (almost) the optimal accuracy-confidence
tradeoff for any r ≥ r`∗ , and as such, it behaves as if it “saw” the location of f∗ in the hierarchy
without actually knowing it. Moreover, the best accuracy one can attain from Theorem 4.3,
namely, r`∗ , is essentially the best known error rate of any learning procedure taking values
only in F`∗ .

5 The components of the procedure

The main contribution of this paper is the novel learning procedure, announced in Theorem
4.3. This “regularized tournament procedure” is based on the median-of-means tournament,
introduced in [8], that was shown to achieve optimal accuracy/confidence tradeoff in a convex
class under general conditions. Just like the median-of-means tournament, the regularized
version has three components: the “distance oracle”; the “elimination phase”; and the “cham-
pions league”. The procedure is actually performed K times in F , with the `-th stage based
on the belief that f∗ ∈ F`. This belief results in K different distance oracles, elimination
phases and champions leagues. Still, all K tournaments use the same sample (Xi, Yi)

3N
i=1.

The `-distance oracle

In each stage ` = 1, . . . ,K of the procedure, one initially uses a modification of the distance
oracle from [8].

The `-distance oracle is a data-dependent procedure that provides information on the
distances between functions. It is used for any pair f, h ∈ F , and aims at determining if
Ψ(f − h) ≥ ρ`, or, if Ψ(f − h) ≤ ρ`, whether ‖f − h‖L2 ≥ r̂`. Note that Ψ is a known norm
and therefore, Ψ(f − h) is known for any pair f, h ∈ F but ‖f − h‖L2 needs to be (crudely)
estimated.

We work under Assumption 2.1. Fix a positive integer n ≤ N whose value is an appro-
priately chosen constant that only depends on L. Assume without loss of generality that
n divides N and partition {1, . . . , N} into n disjoint blocks (Ij)

n
j=1, each one of cardinality

m = N/n.
Given w ∈ RN , set

vj(w) =
1

m

∑
i∈Ij

wi

and let Medm(w) be a median of {v1, . . . , vn}. We call Medm(w) the median of means of the
vector w.

For a sample C1 = (Xi)
N
i=1 and functions f and h, let w = (|f(Xi)− h(Xi)|)Ni=1 and set

ΦC1(f, h) = Medm(w) .

The behaviour of Φ described below has been established in Mendelson [11] (see also
Lugosi and Mendelson [8]):
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Proposition 5.1. Let F satisfy Assumption 2.1. There exist constants κ, η, c > 0 and 0 <
α < 1 < β, all of them depending only on L for which the following holds. Set 1 ≤ ` ≤ K and
ρ > 0, let r > r∗(F ,F`, ρ) (r∗ is defined relative to the constants κ and η) and fix f ∈ F`.
Then, with probability at least 1− 2 exp(−cN), for any h ∈ F that satisfies Ψ(f, h) ≤ ρ,

• if ΦC1(f, h) ≥ βr then β−1ΦC1(f, h) ≤ ‖f − h‖L2 ≤ α−1ΦC1(f, h), and

• if ΦC1(f, h) < βr then ‖f − h‖L2 ≤ (β/α)r.

The proof of Proposition 5.1 is a direct outcome of Proposition 3.2 from [8], applied to
the set F ∩ Bf (ρ) for a fixed centre f ∈ F`.

Based on Proposition 5.1 we may introduce the `-distance oracle DO` as follows:

Definition 5.2. let r̂` > r` = r∗(F ,F`, ρ`). Let f1, f2 ∈ F . If Ψ(f1 − f2) > ρ` or if
Ψ(f1 − f2) ≤ ρ` and ΦCN (f1, f2) ≥ βr̂`, set DO`(f1, f2) = 1; otherwise set DO`(f1, f2) = 0.

Thanks to Proposition 5.1, it follows that for a fixed centre f ∈ F` (which is selected as
f∗ in what follows) with probability at least 1 − 2 exp(−cN) if h ∈ F , and DO`(f, h) = 0
then Ψ(h− f) ≤ ρ` and ‖f − h‖L2 ≤ r̂`.

Remark 5.3. Although Proposition 5.1 is formulated for a designated single centre f , it is
straightforward to extend it to any centre in F and obtain a uniform distance oracle that holds
for any pair f, h ∈ F .

After one obtains enough information of distances between functions in F , the rest of the
`-th stage of the tournament consists of two rounds: a regularized elimination phase—which
we describe first—, followed by a champions league round.

`-elimination phase

Fix 1 ≤ ` ≤ K and let f, h ∈ F . A regularized match between f and h is defined as follows.
First, the `-distance oracle defined above uses the first part of the sample C1 = (Xi, Yi)

N
i=1 to

determine the value of DO`(f, h). If DO`(f, h) = 0, the match is abandoned.
Each match that is allowed to take place by the `-distance oracle is played using the

second part of the sample, (Xi, Yi)
2N
i=N+1. The sub-sample is partitioned to n blocks (Ij)

n
j=1

of cardinality m = N/n where n is chosen as θ1(L)N min{1, r̂2
`/σ

2
4}. We set

λ` = θ2(L)
r̂2
`

ρ`
,

with the choices of both constants θ1 and θ2 specified below.

Definition 5.4. The function f defeats h if

1

m

∑
i∈Ij

(
(h(Xi)− Yi)2 − (f(Xi)− Yi)2

)
+ λ`(Ψ(h)−Ψ(f)) > 0

on a majority of the blocks Ij.
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The set of winners H′` of the `-th elimination round consists of all the functions in F that
have not lost a single match.

The role of the elimination round is to ‘exclude’ functions that are far from f∗ (without
knowing the identity of f∗, of course). To that end, it suffices to show that, with high
probability, f∗ wins all the matches it takes part in. Indeed, that implies that matches
between f∗ and any h ∈ H′` must have been abandoned, and therefore, DO`(f∗, h) = 0, that
is,

Ψ(f∗ − h) ≤ ρ` and ‖f∗ − h‖L2 ≤ (β/α)r̂` . (5.1)

The next theorem describes the outcome of the elimination phase. Its proof may be found in
Section 5.1.

Proposition 5.5. Using the notation above, if f∗ ∈ F` then, with probability at least

1− 2 exp
(
−c0N min{1, σ−2

4 r̂2
`}
)
,

f∗ wins all the matches is participates in. In particular, on that event, if h ∈ H′`, then (5.1)
holds.

`-champions league

Once Proposition 5.5 is established, the second part of `-th stage of the tournament is the
selection of a set of “winners”. In order to do that, we run the same champions league
tournament used in [8], performed in each one of the sets H′`. The crucial point is that if
f∗ ∈ F` then H′` satisfies the necessary conditions for a champions league tournament: that
f∗ ∈ H′` and all the functions h ∈ H′` have a mean-squared error at most ∼ r̂`. In what
follows we consider such sets H′`.

The `-champions league consists of matches that use a third part of the sample (Xi, Yi)
3N
i=2N+1.

Let (Ij)
n
j=1 be the partition of {2N + 1, ..., 3N} to n blocks, for the same value of n as in the

`-elimination phase.
The matches in the champions league consist of “home-and-away” legs.

Definition 5.6. Let α and β be as in Proposition 5.1, set c = β/α and for f, h ∈ H′`, let
Ψh,f = (h(X)− f(X))(f(X)− Y ). The function f wins its home match against h if

2

m

∑
i∈Ij

Ψh,f (Xi, Yi) ≥ −(2cr̂`)
2/10

on more than n/2 of the blocks Ij.
The set of winners H` as the set of all the “champions” in H′` that win all of their home

matches.

The outcome of the `-champions league is as follows:

Proposition 5.7. Let H′` as above. With probability at least

1− 2 exp
(
−c0N min{1, σ−2

4 r̂2
`}
)

with respect to (Xi, Yi)
3N
i=2N+1, the set of winners H` contains f∗, and if h ∈ H` then

R(h)−R(f∗) ≤ 16c2r̂2
` .
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Proposition 5.7 is an immediate outcome of Proposition 3.8 from [8] for H = H′` and using
the fact that f∗ ∈ H′` and that if h ∈ H′` then ‖h− f∗‖L2 ≤ (β/α)r̂`.

Combining all these observations, Corollary 5.8 describes the outcome of the `-tournament
procedure.

Corollary 5.8. Using the above notation, for any 1 ≤ ` ≤ K the following holds. If f∗ ∈ F`,
then with probability at least

1− 2 exp
(
−c1(L)N min{1, σ−2

4 r̂2
`}
)

with respect to (Xi, Yi)
3N
i=1, the set of winners H` satisfies:

• f∗ ∈ H`, and

• for any h ∈ H`,

Ψ(h− f∗) ≤ ρ`, ‖h− f∗‖L2 ≤ (β/α)r̂`, and R(h)−R(f∗) ≤ 16(β/α)2r̂2
` .

Selection of a final winner

Once the regularized elimination phase and the regularized champions league has been exe-
cuted for all ` = 1, . . . ,K stages, we have K sets H` consisting of stage winners. Some of these
sets may be empty but, as we have seen it above, for those indices ` for which f∗ ∈ F`, with
high probability the set H` contains f∗. In order to select the final “winner”, let `1 be the
largest integer 1 ≤ ` ≤ K for which

⋂
j≤`Hj 6= ∅. The procedure returns any ĥ ∈

⋂
j≤`1 Hj .

Clearly, on a high probability event, `1 ≥ `∗. Therefore, the selected function ĥ belongs
to H`∗ . Moreover, recalling that (r̂`)

K
`=1 is decreasing,

Ψ(ĥ− f∗) ≤ r̂`∗ , ‖ĥ− f∗‖L2 ≤ (β/α)r̂`∗ and R(ĥ)−R(f∗) ≤ c(β/α)2r̂2
`∗ ,

which completes the proof of Theorem 4.3.

5.1 Proof of Proposition 5.5—highlights

The main difference between the regularized tournament and the “unregularized” one from
[8] is the regularized elimination phase. To explain why this elimination phase preforms well
even when F is very large, define, for each block Ij (j = 1, . . . , n),

Bλ
h,f (j) =

1

m

∑
i∈Ij

(
(h(Xi)− Yi)2 − (f(Xi)− Yi)2

)
+ λ(Ψ(h)−Ψ(f)) . (5.2)

Note that the regularized empirical excess risk of h on block Ij is Bλ
h,f∗(j).

Consider the `-th stage of the regularized tournament. The assertion of Proposition 5.5
is that, if f∗ ∈ F`, then it is a winner of all the elimination phase matches it participates in.
Hence, Proposition 5.5 is proved once we ensure that for the right choice of λ = λ`, with high
probability, if h ∈ F and DO`(f∗, h) = 1 then Bλ

h,f∗(j) is positive for most of the blocks Ij .
To that end, observe that

1

m

∑
i∈Ij

(
(h(Xi)− Yi)2 − (f∗(Xi)− Yi)2

)
=

1

m

∑
i∈Ij

(h− f∗)2(Xi) +
2

m

∑
i∈Ij

(h− f∗)(Xi) · (f∗(Xi)− Yi) ,
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which is the natural decomposition of the empirical excess risk functional into its quadratic
and multiplier components. Setting

Qh,f (j) =
1

m

∑
i∈Ij

(h− f)2(Xi) and Mh,f (j) =
2

m

∑
i∈Ij

(h− f)(Xi) · (f(Xi)− Yi) ,

we have

Bλ
h,f∗(j) =

1

m

∑
i∈Ij

(
(h(Xi)− Yi)2 − (f∗(Xi)− Yi)2

)
+ λ(Ψ(h)−Ψ(f∗))

= Qh,f∗(j) + Mh,f∗ + λ(Ψ(h)−Ψ(f∗)) .

The first observation we require is a version of a deterministic result from [5, Theorem
3.2] (see the appendix for the proof).

Lemma 5.9. Let f∗ ∈ F` and h ∈ F for which either Ψ(h− f∗) = ρ, or Ψ(h− f∗) < ρ and
‖h− f∗‖L2 ≥ r. Assume that ∆`(ρ, r) ≥ 4ρ/5, that λ satisfies

C

2
· r

2

ρ
≤ λ ≤ 3C

4
· r

2

ρ
. (5.3)

Assume further that
Mh,f∗(j) ≥ −(C/4) max

{
‖h− f∗‖2L2

, r2
}
, (5.4)

and if also ‖h− f∗‖L2 ≥ r then

Qh,f∗(j) ≥ C‖h− f∗‖2L2
. (5.5)

Then
Qh,f∗(j) + Mh,f∗(j) + λ(Ψ(h)−Ψ(f∗)) > 0 .

Thanks to Lemma 5.9, all that is required to prove Proposition 5.5 is to verify that with
the requested probability, (5.4) and (5.5) hold uniformly in h and on a majority of the blocks
Ij , provided that f∗ ∈ F`. Indeed, we have the following lemma, proved in the appendix:

Lemma 5.10. There exists an absolute constant c and a constant C1 = C1(L, τ) for which
the following holds. Let f∗ ∈ F`. For 0 < τ < 1, with probability at least 1 − 2 exp(−cτ2n),
for every h ∈ Bf∗(ρ) that satisfies ‖f − f∗‖L2 ≥ r̂`, we have∣∣{j : Qf,f∗(j) ≥ C1‖f − f∗‖2L2

}∣∣ ≥ (1− τ)n

and ∣∣∣∣{j : Mf,f∗(j) ≤ −
C1

4
‖f − f∗‖2L2

}∣∣∣∣ ≤ τn .
Moreover, for every h ∈ Bf∗(ρ) that satisfies ‖f − f∗‖L2 ≤ r̂`, we have∣∣∣∣{j : Mf,f∗(j) ≤ −

C1

4
r2

}∣∣∣∣ ≤ τn .
It follows from Lemma 5.10 that if τ < 1/4 then with probability at least 1−2 exp(−cτ2n),

for every h as in Lemma 5.9, conditions (5.4) and (5.5) hold for C = C1 and r = r̂` on the
majority of the blocks Ij . Hence, setting τ = 1/10, on an event with probability at least
1− 2 exp(−cn), f∗ wins all the matches it participates in and that are allowed to take place
by the `-distance oracle, as we require.
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6 Examples

Let us return to the two examples, lasso and slope, and to the proofs of Theorems 1.3 and
1.4.

Recall that the assumptions here are stronger than Assumption 2.1. Namely, X is assumed
to be isotropic, and for every t ∈ Rd and and 1 ≤ p ≤ c log d,

‖ 〈t,X〉 ‖Lp ≤ C
√
p‖ 〈t,X〉 ‖L2 = C

√
p‖t‖2 . (6.1)

In other words, linear forms satisfy a sub-Gaussian moment growth, but only up to a rather low
exponent—logarithmic in the dimension of the underlying space. This moment assumption
is a sufficient and almost necessary condition for the celebrated basis pursuit procedure to
have a unique minimizer (see [6]), and as such, it is a natural assumption when studying
sparsity-driven bounds. Note that under such a moment assumption, combined with the only
condition that ξ ∈ L4, a sub-Gaussian tail estimate for the supremum

sup
t∈T

∣∣∣∣∣ 1√
N

N∑
i=1

ξi 〈t,Xi〉 − Eξ 〈t,X〉

∣∣∣∣∣ ,
is totally out of question even when |T | = 1.

Thankfully, (6.1) suffices to obtain bounds on the expectation of empirical and multiplier
processes, as long as the indexing set has enough symmetries.

Definition 6.1. Given a vector x = (xi)
n
i=1, let (x∗i )

n
i=1 be the non-increasing rearrangement

of (|xi|)ni=1.
The normed space (Rd, ‖ ‖) is K-unconditional with respect to the basis {e1, . . . , ed} if for

every x ∈ Rd and every permutation of {1, . . . , n},∥∥∥∥∥
d∑
i=1

xiei

∥∥∥∥∥ ≤ K
∥∥∥∥∥

d∑
i=1

xπ(i)ei

∥∥∥∥∥ ,
and if y ∈ Rd and x∗i ≤ y∗i for 1 ≤ i ≤ d then∥∥∥∥∥

d∑
i=1

xiei

∥∥∥∥∥ ≤ K
∥∥∥∥∥

d∑
i=1

yiei

∥∥∥∥∥ .

There are many natural examples of K-unconditional spaces, most notably, all the `p
spaces. Moreover, the norm ‖z‖ = supv∈V

∑n
i=1 v

∗
i z
∗
i is 1-unconditional. In fact, if V ⊂

Rn is closed under coordinate permutations and reflections (sign-changes), then ‖ · ‖ =
supv∈V | 〈·, v〉 | is 1-unconditional in the sense of Definition 6.1.

The following fact has been recently established in [12]:

Theorem 6.2. There exists an absolute constant c1 and for K ≥ 1, L ≥ 1 and q0 > 2 there
exists a constant c2 that depends only on K, L and q0 for which the following holds. Consider

• V ⊂ Rd for which the norm ‖ · ‖ = supv∈V | 〈v, ·〉 | is K-unconditional with respect to the
basis {e1, ..., ed},

• ξ ∈ Lq0 for some q0 > 2,
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• an isotropic random vector X ∈ Rd that satisfies

max
1≤j≤d

sup
1≤p≤c1 log d

‖ 〈X, ej〉 ‖Lp√
p

≤ L .

If (Xi, ξi)
N
i=1 are independent copies of (X, ξ) then

E sup
v∈V

∣∣∣∣∣ 1√
N

N∑
i=1

(ξi 〈Xi, v〉 − Eξ 〈X, v〉)

∣∣∣∣∣ ≤ c2‖ξ‖Lq0 `∗(V ) ,

where `∗(V ) = E supv∈V
∑d

i=1 givi and G = (gi)
d
i=1 is a standard Gaussian vector in Rd.

Therefore, as long as V is sufficiently symmetric and linear forms exhibit a sub-Gaussian
moment growth up to p ∼ log d, the expectations of empirical and multiplier processes indexed
by V behave as if X were the standard Gaussian vector and ξ were independent of X. In the
cases we are interested in the indexing sets have enough symmetries, and since ξ ∈ L4, the
conditions of Theorem 6.2 hold for q0 = 4.

6.1 The tournament lasso

As we noted previously, the regularization function for lasso is Ψ(t) = ‖t‖1, and for any
h = 〈t0, ·〉 and ρ, r > 0,

Fh,ρ,r = {〈t, ·〉 ∈ Rd : t ∈ ρBd
1 ∩ rBd

2} .

Hence, for a fixed radius ρ the parameters rE and rM are defined using the fixed-point con-
ditions

E sup
t∈ρBd1∩rBd2

∣∣∣∣∣ 1√
N

N∑
i=1

εi 〈t,Xi〉

∣∣∣∣∣ ≤ κ√Nr (6.2)

and

E sup
t∈ρBd1∩rBd2

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi 〈t,Xi〉

∣∣∣∣∣ ≤ κ√Nr2 (6.3)

respectively. Note that the indexing set Vρ,r = ρBd
1 ∩ rBd

2 is invariant under coordinate per-
mutations and sign reflections, and therefore satisfies the conditions of Theorem 6.2. Hence,
an upper bound on rE follows if

E sup
t∈ρBd1∩rBd2

N∑
i=1

giti ≤ κ
√
Nr , (6.4)

while for an upper estimate on rM it suffices to ensure that

‖ξ‖L4E sup
t∈ρBd1∩rBd2

N∑
i=1

giti ≤ κ
√
Nr2 . (6.5)

Observe that both estimates cannot be improved. They are tight bounds on (6.2) and (6.3)
when, for example, X = (g1, . . . , gd) and ξ is a Gaussian variable that is independent of X.
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The added value in (6.4) and (6.5) is that if r satisfies these inequalities then, necessarily,
max{λQ, λM} ≤ r (for a well chosen constant κ). This is an immediate consequence of
Sudakov’s inequality, which implies that for some absolute constant c > 0, for any T ⊂ Rd
and any ε > 0,

ε
√

logM(T, εBd
2) ≤ cE sup

t∈T

d∑
i=1

giti ≡ `∗(T ) .

Thus, when applied to the definition on λQ one obtains

logM(ρBd
1 ∩ rBd

2 , ηrB
d
2) ≤ `2∗(ρB

d
1 ∩ rBd

2)

(ηr)2
≤ κ2N ,

that is, it suffices that
`∗(ρB

d
1 ∩ rBd

2) ≤ ηκ
√
Nr ,

which is precisely the type of condition in (6.4).
We now come to the question of selecting the parameters ρ`, r` and λ` for the tournament

lasso. The choice requires several observations that have been established in [5].
First, the requirement that ∆(ρ, r) ≥ 4ρ/5 forces some constraint on the choice of ρ and r.

To simplify things, assume that t∗ = argmint∈RdE(〈X, t〉 − Y )2 is supported on I ⊂ {1, ..., d}
and that |I| ≤ s. Recall that by the definition of ∆(ρ, r), the fact that Ψ(t) = ‖t‖1 and since
X is isotropic, it suffices to consider vectors t ∈ Rd for which ‖t− t∗‖1 = ρ and ‖t− t∗‖2 ≤ r.

For such t,

‖t‖1 − ‖t∗‖1 =
∑
i∈Ic
|ti|+

∑
i∈I

(|ti| − |t∗i |) ≥
∑
i∈Ic
|ti| −

∑
i∈I
|ti − t∗i | ,

and since |I| ≤ s, ∑
i∈I
|ti − t∗i | ≤

√
|I|‖t− t∗‖2 ≤

√
sr .

Therefore, ∑
i∈Ic
|ti| =

∑
i∈Ic
|ti − t∗i | =

n∑
i=1

|ti − t∗i | −
∑
i∈I
|ti − t∗i | ≥ ρ−

√
sr .

On the other hand, there is a functional z that is norming for both t∗ and PIct =
∑

i∈Ic tiei;
hence,

z(t− t∗) ≥ z(PIc(t− t∗))−
∑
i∈I
|ti − t∗i | =

∑
i∈Ic
|ti − t∗i | −

∑
i∈I
|ti − t∗i |

≥ ρ− 2
√
sr ≥ 4ρ

5

as long as s . (ρ/r)2. This shows that, as long as the ratio ρ/r is larger than the square-root
of the degree of sparsity of vectors we are interested in, ∆(ρ, r) ≥ (4/5)ρ as our procedure
requires. A similar observation is true if t∗ is not sparse, but rather well approximated by an
s-sparse vector (see [5] for a detailed argument).

Set k = (ρ/r)2 and assume without loss of generality that k is an integer. We also restrict
ourselves to values 1 ≤ k ≤ d, intuitively because the above implies that (ρ/r)2 should capture
the degree of sparsity. Recall that

`∗(ρB
d
1 ∩ rBd

2) = r`∗(
√
kBd

1 ∩Bd
2) ≤ Cr

√
k log(ed/k) = Cρ

√
log(edr2/ρ2)
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(see, e.g. [5] for the standard proof). Hence, (6.4) becomes

Cρ
√

log(edr2/ρ2) ≤ κ
√
Nr , (6.6)

while (6.5) implies
‖ξ‖L4 · Cρ

√
log(edr2/ρ2) ≤ κ

√
Nr2. (6.7)

We consider only the case N ≤ Cd, which is the more interesting range in sparse recovery—
when the number of given linear measurements is significantly smaller than the dimension of
the underlying space. An argument following the same path may be used when N ≥ Cd and
we omit it.

It follows from a rather tedious computation that (6.6) holds provided that

r ≥ c ρ

κ
√
N

√
log

(
cd

κN

)
, (6.8)

and it follows from (6.7) that

r2 ≥ cρ‖ξ‖L4√
N

√
log

(
c
‖ξ‖L4d√
Nρ

)
(6.9)

as long as ‖ξ‖L4d/
√
Nρ ≥ c′.

Using the constraint that ρ/r ≥ c
√
s, it is evident from (6.8) that

s ≤ c(L)N/ log (ed/N), and that

1

s
≥ c1(L)

r2

ρ2
&

1

ρ
· ‖ξ‖L4√

N

√
log

(
e
‖ξ‖L4d√
Nρ

)
.

Therefore, to have a ‘legal’ choice of ρ and r, we must have

N ≥ c2(L)s log

(
ed

s

)
,

and

ρ ≥ c3(L)
s√
N
‖ξ‖L4 ·

√
log

(
ed

s

)
.

This naturally leads to the following choices: if the degree of sparsity s = d/2`−1 and s ≥
c(L)N/ log

(
ed
N

)
, set ρ` = r` = ∞. The statistical intuition behind this choice is that one is

not given enough data to obtain nontrivial information.
If the reverse inequality holds, set

ρ` = c(L)
d

2`
√
N
‖ξ‖L4

√
log (e2`) ∼L

d
√
`

2`
√
N
‖ξ‖L4 ,

and for that choice ρ`, the required value of r` is

r` ≥ c(L)‖ξ‖L4

√
s

N
log

(
ed

s

)
∼L ‖ξ‖L4

√
d`

2`N
.

Finally, let r̂` ≥ r` and recall that λ` ∼L r̂2
`/ρ`. Set

F` = {t : ∃v, |supp(v)| ≤ d/2`−1, ‖t− v‖1 ≤ ρ`}

to be the set of vectors that are ‘well-approximated’ by d/2`−1 sparse vectors. Applying
Theorem 4.3, these choices complete the proof of Theorem 1.3.
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6.2 The tournament slope

The argument used here is similar to the one used for the tournament lasso, and so we skip
most of the details.

In tournament slope one selects βi ≤ c0

√
log(ed/i) and therefore the corresponding

indexing set is contained in

Vρ,r = ρB ∩ rBd
2 =

{
v ∈ Rd : ‖v‖2 ≤ r and

d∑
i=1

v∗i
√

log(ed/i) ≤ ρ/c0

}
,

where here, as always, (v∗i )
d
i=1 denotes the non-increasing rearrangement of (|vi|)di=1.

Because Vρ,r has enough symmetries, one may apply Theorem 6.2, leading to an upper
bound on rE when

E sup
v∈Vρ,r

d∑
i=1

givi ≤ κ
√
Nr . (6.10)

Also, to estimate rM it suffices to ensure that

‖ξ‖L4E sup
v∈Vρ,r

d∑
i=1

givi ≤ κ
√
Nr2 . (6.11)

Next, one may verify (see Lemma 4.3 in [5]) that if we set Bs =
∑

i≤s βi/
√
i and if Bs . r/ρ,

then ∆(ρ, r) ≥ (4/5)ρ for centres that are ‘well approximated’ by s-sparse vectors. Also, for
our choice of βi, Bs . C

√
s log(ed/s). Hence, for a fixed degree of sparsity 1 ≤ s ≤ d, one

has the constraint that
r

ρ
≥ C1

√
s log(ed/s) (6.12)

for a constant C1 that depends only on c0.
Following the same path used for the tournament lasso, there is a nontrivial choice of

ρ and r only when s .L N/ log(ed/N); otherwise, ρ = r = ∞ as one would expect. When
s .L N/ log(ed/N), we follow the computation in [5]: let s = d/2`−1 and define

ρ` ∼L ‖ξ‖L4

s√
N

log

(
ed

s

)
∼L ‖ξ‖L4

d`

2`
√
N

and

r` ∼L ‖ξ‖L4

√
s

N
log

(
ed

s

)
.

Finally, fix r̂` ≥ r` and set λ` ∼L r̂2
`/ρ. Applying Theorem 4.3 for the choice of ρ`, r̂` and λ`,

and to the hierarchy

F` = {t : ∃v, |supp(v)| ≤ d/2`−1, Ψ(t− v) ≤ ρ`}

which completes the proof of Theorem 1.4.

A Additional proofs

The proofs of Lemma 5.9 and Lemma 5.10 are, in fact, the same as in [5] and [8], respectively.
The minor modifications to the original proofs are presented in this appendix solely for the
sake of completeness and not in full detail.

24



Proof of Lemma 5.9

The proof of Lemma 5.9 follows the same path as that of Theorem 3.2 in [5]. Let us begin by
examining

(∗) = Qf,f∗(j) + Mf,f∗(j) + λ(Ψ(f)−Ψ(f∗))

in the set {f ∈ F : Ψ(f − f∗) = ρ}. If Ψ(f − f∗) = ρ one should consider two cases. First, if
‖f − f∗‖L2 ≥ r then by the triangle inequality for Ψ, and since Qf,f∗(j) ≥ C‖f − f∗‖2L2

and
Mf,f∗(j) ≥ −(C/4)‖f − f∗‖2L2

, we have

(∗) ≥ C‖f − f∗‖2L2
− C

4
‖f − f∗‖2L2

− λΨ(f − f∗) (A.1)

≥ 3C

4
‖f − f∗‖2L2

− λρ ≥ 3C

4
r2 − λρ > 0 ,

provided that

λ ≤ 3C

4
· r

2

ρ
. (A.2)

If, on the other hand, ‖f−f∗‖L2 ≤ r, then Qf,f∗(j) ≥ 0 and Mf,f∗(j) ≥ −(C/4)r2. Therefore,

(∗) ≥ −C
4
r2 + λ(Ψ(f)−Ψ(f∗)) .

Fix v ∈ Bf∗(ρ/20) and write f∗ = u + v; thus Ψ(u) ≤ ρ/20. Set z∗ to be a linear functional
that is norming for v and observe that for any f ∈ E,

Ψ(f)−Ψ(f∗) ≥ Ψ(f)−Ψ(v)−Ψ(u) ≥ z∗(f − v)−Ψ(u) ≥ z∗(f − f∗)− 2Ψ(u)

≥ z∗(f − f∗)− ρ

10
. (A.3)

Hence, if f∗ ∈ F` and f ∈ F ∩ Bf∗(ρ) ∩ Df∗(r) then optimizing the choices of v and of z∗,
z∗(f − f∗) ≥ ∆`(ρ, r); thus

Ψ(f)−Ψ(f∗) ≥ ∆`(ρ, r)−
ρ

10
≥ 7

10
ρ . (A.4)

And, if

λ ≥ C

2
· r

2

ρ
, (A.5)

we have that

(∗) ≥ −C
4
r2 + λ · 7

10
ρ > 0 .

In other words, if λ is chosen to satisfy both (A.2) and (A.5), f ∈ F and Ψ(f − f∗) = ρ, it
follows that

Qf,f∗(j) + Mf,f∗(j) + λ(Ψ(f)−Ψ(f∗)) > 0 .

Next, if Ψ(f − f∗) > ρ, there are θ ∈ (0, 1) and h ∈ F that satisfy

Ψ(h− f∗) = ρ and θ(f − f∗) = h− f∗.
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If ‖h− f∗‖L2 ≥ r, then by the triangle inequality for Ψ followed by (A.1),

(∗) ≥ 1

θ2
Qh,f∗(j) +

1

θ
(Mh,f∗(j)− λΨ(h− f∗))

≥ 1

θ
(Qh,f∗(j) + Mh,f∗(j)− λΨ(h− f∗)) > 0 .

If, on the other hand, ‖h− f∗‖L2 ≤ r, then

(∗) ≥ 1

θ
Mh,f∗(j) + λ(z∗(f − f∗)− 2Ψ(u))

≥ 1

θ
(Mh,f∗(j) + λ (z∗(h− f∗)− 2θΨ(u)))

≥ 1

θ
(Mh,f∗(j) + λ (z∗(h− f∗)− 2Ψ(u))) > 0 ,

because 0 ≤ θ < 1 and using (A.3).
Now, all that remains is to control f ∈ F ∩ Bf∗(ρ) and show that if ‖f − f∗‖L2 ≥ r, then

Qf,f∗(j) + Mf,f∗(j) + λ(Ψ(f)−Ψ(f∗)) > 0 .

This follows from (A.1).

Proof of Lemma 5.10

The first part of Lemma 5.10 is identical to Lemma 5.1 from [8], with the trivial modification
that the constant −C/4 replaces −3C/4 used in [8]. The second part of Lemma 5.10 was not
needed in [8], but its proof follows the same path as Lemma 5.1 from [8].

Set r = r̂` and fix f ∈ F that satisfies ‖f − f∗‖L2 ≤ r. Recall that m = N/n and
that

√
n/N ≤

√
θr/σ4 for a well-chosen constant θ that depends only on L and τ . Set

U = (f − f∗)(X) · (f∗(X)− Y ) and observe that

Mf,f∗ =
1

m

m∑
i=1

Ui.

It follows from the convexity of F that EU = E(f − f∗)(X) · (f∗(X) − Y ) ≥ 0; therefore,
Mf,f∗ ≥Mf,f∗ − EMf,f∗ . Also,

Pr (|Mf,f∗ − EMf,f∗ | > t) ≤ t−1E|Mf,f∗ − EMf,f∗ |,

and by a straightforward symmetrization argument,

E|Mf,f∗ − EMf,f∗ | ≤ 2E

∣∣∣∣∣ 1

m

m∑
i=1

εiUi

∣∣∣∣∣ ≤ 2√
m

(E|U |2)1/2.

Applying Assumption 2.1, it is evident that

(E|U |2)1/2 ≤ ‖f∗(X)− Y ‖L4 · ‖f − f∗‖L4 ≤ Lrσ4,

and thus

Pr (|Mf,f∗ − EMf,f∗ | > t) ≤ 2Lrσ4

t
√
m

=
2Lσ4r

√
n

t
√
N

≤ τ

3
,
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where we use the fact that
√
n/N ≤

√
θr/σ4 and select t = Cr2/8 and θ = θ(τ, L). Therefore,

Pr
(
Mf,f∗ ≤ −(C/8)r2

)
≤ τ

3
,

and with probability at least 1− 2 exp(−cτ2n),∣∣{j : Mf,f∗(j) ≥ −(C/8)r2
}∣∣ ≥ (1− τ/2)n. (A.6)

The rest of the argument is identical to the proof of Lemma 5.1 from [8]: let H be a max-
imal separated subset of F ∩ Bf∗(ρ) ∩ Df∗(r) with respect to the L2 norm, of cardinality
exp(cτ2n/2), and with the following property: for any f ∈ F ∩Bf∗(ρ)∩Df∗(r) there is h ∈ H
for which

‖f − h‖L2 ≤ ε and E(f∗(X)− Y )(f(X)− h(X)) ≥ 0; (A.7)

here ε denotes the mesh of the net. The existence of such a separated set is established in [8]
(see Lemma 5.3), and one may show that the mesh ε is a small proportion of r.

By (A.6), we have that with probability at least 1− 2 exp(−cτ2n/2), for every h ∈ H∣∣{j : Mh,f∗(j) ≥ −(C/8)r2
}∣∣ ≥ (1− τ/2)n. (A.8)

For every f ∈ F ∩Bf∗(ρ)∩Df∗(r) let πf ∈ H be as in (A.7), and at the heart of the proof
of Lemma 5.4 in [8] is that with probability at least 1− 2 exp(−c1τ

2n),

sup
f∈F∩Bf∗ (ρ)∩Df∗ (r)

∣∣{j : Mf,f∗(j)−Mπf,f∗(j) ≤ −(C/8)r2
}∣∣ ≤ τn

2
. (A.9)

Combining (A.8) and (A.9), there is an event of probability at least 1 − 2 exp(−c2τ
2n) on

which for any f ∈ F∩Bf∗(ρ)∩Df∗(r) there is a set of coordinate blocks (Ij)j∈J , of cardinality
|J | ≥ (1− τ)n and for j ∈ J ,

Mf,f∗(j) ≥Mπf,f∗(j) + (Mf,f∗(j)−Mπf,f∗(j)) ≥ −
C

4
r2.
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