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Abstract

We study the problem of estimating the mean of a random vector in Rd
based on an i.i.d. sample, when the accuracy of the estimator is measured by
a general norm on Rd . We construct an estimator (that depends on the norm)
that achieves an essentially optimal accuracy/confidence tradeoff under the
only assumption that the random vector has a well-defined covariance matrix.
At the heart of the argument is the construction of a uniform median-of-means
estimator in a class of real valued functions.

1 Introduction

In this note we explore the problem of multivariate mean estimation with respect
to an arbitrary norm. To formulate the question, let ‖ · ‖ be a norm on Rd and let X
be a random vector in Rd . One only assumes that X has a mean µ = EX and a well-
defined covariance matrix Σ = E(X−µ)⊗(X−µ). The statistical problem we consider
is estimating the mean vector µ from a sample (Xi)

N
i=1 of N independent copies of

X without any prior knowledge on the distribution. The goal is to approximate the
mean µ by finding some mean estimator µ̂N = µ̂N (X1, . . . ,XN ) ∈ Rd such that ‖µ̂N −µ‖
is as small as possible.
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Formally, the problem studied in this note is as follows:

Given a norm ‖ · ‖, a confidence parameter δ ∈ (0,1) and an i.i.d. sample
of cardinality N , find an estimator µ̂N and the best possible accuracy ε for
which

‖µ̂N −µ‖ ≤ ε with probability at least 1− δ .

Various versions of this question have been studied extensively in recent
years, but it was far from resolved. In fact, even the correct order of the best accu-
racy ε was not clear, except in special situations. While there are some results for
specific choices of norms, the only estimate that is known to be optimal was ob-
tained in Lugosi and Mendelson [15] for the Euclidean norm, see also Joly, Lugosi,
and Oliveira [11] and Catoni and Giulini [6]. In addition, there are also several
partial results (see Minsker [18], Catoni and Giulini [6]) for other special norms
(mainly in the context of the matrix operator norm) and which are suboptimal, as
is explained in what follows.

We start by analyzing the kind of accuracy ε one should be aiming for. To
this end, first consider the case where X is a real-valued random variable with
finite mean µ and variance σ2. Since the real-valued case is well-understood, it
will eventually lead us to the possible identity of ε in the vector-valued scenario.

The first observation (see, e.g., Catoni [4]) is that if X is a Gaussian ran-
dom variable then the best mean estimate that one can hope for is such that, with
probability 1− δ,

|µ̂N −µ| ≤ cσ
√

log(2/δ)
N

. (1.1)

Here c is an absolute constant1. If X is indeed Gaussian, then the choice of µ̂N is
simple: the empirical mean

1
N

N∑
i=1

Xi

has the desired accuracy at all confidence levels δ.

The empirical mean also yields (1.1) when X is L-sub-Gaussian, that is, if

for every p ≥ 2, ‖X‖Lp ≤ L
√
p‖X‖L2

, where X = X −µ and ‖X‖Lp =
(
E|X |p

)1/p
, see, for

example, [3].

Unfortunately, this is as far as the empirical mean takes us. As soon as one
leaves the sub-Gaussian realm, the empirical mean becomes a poor choice and its
performance deteriorates for ‘heavy-tailed’ distributions. In fact, for all δ there are

1In this article we focus on optimal orders of magnitude and ignore the–important–problem of
optimizing constants.
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distributions in which the estimate that follows from Chebyshev’s inequality, that

P


∣∣∣∣∣∣∣ 1
N

N∑
i=1

Xi −µ

∣∣∣∣∣∣∣ ≥ σ
√
δN

 ≤ δ, (1.2)

is sharp. In other words, while the expected value

E

∣∣∣∣∣∣∣ 1
N

N∑
i=1

Xi −µ

∣∣∣∣∣∣∣
is of the right order of magnitude (∼ σ/

√
N ), the empirical mean exhibits rather

poor concentration around µ.

Thus, the empirical mean has a performance comparable to the Gaussian
case only in two situations:

• For an arbitrary distribution ofX if one is only interested in constant confidence
level (say δ = 0.1), in which case the resulting accuracy is E|N−1∑

i=1Xi −µ|;

• If X is L-sub-Gaussian and one is interested in any confidence level, in which
case the error is determined by estimating the probability P(|N−1∑N

i=1Xi −
µ| ≥ η).

Perhaps surprisingly, the error one incurs in these two special and restric-
tive situations can be attained in full generality (though obviously the estimator
one uses is not the empirical mean). One estimator that attains a “sub-Gaussian”
performance (i.e., an accuracy bounded by cN−1/2σ

√
log(2/δ) for an absolute con-

stant c) for any X with finite mean and variance is the median-of-means estimator.
To compute this estimator, first the sample X1, . . . ,XN is split into n blocks Ij , each
one of the same cardinality m (here we assume without loss of generality that n
divides N ). For each block Ij , let

aj =
1
m

∑
i∈Ij

Xi ,

and put µ̂N to be a median of {a1, . . . , an}. Setting n ∼ log(2/δ), it is straightforward
to verify that this choice of µ̂N satisfies (1.1). This estimator was introduced inde-
pendently by Nemirovsky and Yudin [19]; Jerrum, Valiant, and Vazirani [10]; and
Alon, Matias, and Szegedy [1]. Another, quite different, sub-Gaussian estimator
was constructed by Catoni [4].

Note that unlike the empirical mean, here the procedure changes with the
desired confidence. This is indeed necessary. As it is shown by Devroye, Lerasle,
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Lugosi, and Oliveira [7], there is no single procedure that attains (1.1) for all con-
fidence levels and for all distributions with finite second moment.

While the one-dimensional picture was well understood, in higher dimen-
sions the situation was far less clear. Unfortunately, establishing the ‘right’ notion
of error in higher dimensions and with respect to a general norm can be difficult,
as parameters that are totally different in the multi-dimensional setup may ‘col-
lapse’ to the same object in dimension one. However, one may still conclude the
following from the real-valued case:

• An estimator with accuracy of optimal order should depend on the prescribed
confidence level and on the norm in question.

• A reasonable notion of error is dictated by what happens in the two ‘trivial’
situations—in both of which the empirical mean is essentially optimal—as
in dimension one. For a real-valued random variable, when only a con-
stant confidence is required, the error is of the order of E|N−1∑N

i=1Xi − µ|.
For small values of δ, the optimal accuracy is of the order of η for which
P(|N−1∑N

i=1Xi −µ| ≥ η) ≤ δ when X is L-sub-Gaussian. The analogous objects
for a random vector in (Rd ,‖ · ‖) are the expectation of the norm

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Xi −µ

∥∥∥∥∥∥∥ (1.3)

and the value η such that

P


∥∥∥∥∥∥∥ 1
N

N∑
i=1

Xi −µ

∥∥∥∥∥∥∥ ≥ η
 ≤ δ (1.4)

when X is an L-sub-Gaussian random vector2.

We put (1.3) in a form more convenient for us. To this end, set

YN =
1
√
N

N∑
i=1

εi(Xi −µ)

where (εi)
N
i=1 are independent, symmetric, {−1,1}-valued random variables that are

also independent of (Xi)
N
i=1. A standard symmetrization argument shows that

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

Xi −µ

∥∥∥∥∥∥∥ ≤ 2
√
N
E‖YN ‖ .

2Recall that a random vector X is L-sub-Gaussian if for every t ∈ Rd and every p ≥ 2,
‖
〈
X −µ,t

〉
‖Lp ≤ L

√
p‖

〈
X −µ,t

〉
‖L2

.
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(Also observe that by the central limit theorem, YN tends, in distribution, to the
centred Gaussian random vector G that has the same covariance as X).

As for (1.4), if X is L-sub-Gaussian, then by a standard chaining argument
combined with the majorizing measures theorem, one has that, with probability at
least 1− δ,∥∥∥∥∥∥∥ 1

N

N∑
i=1

Xi −µ

∥∥∥∥∥∥∥ ≤ c(L)
√
N

(
E‖G‖+

√
log(2/δ) sup

x∗∈B◦

(
E(x∗(X −µ))2

)1/2
)
, (1.5)

where again, G is the centred Gaussian vector that has the same covariance as X,
B◦ is the unit ball of the dual space3 to (Rd ,‖ ‖), and c(L) is a constant that depends
on L only4

Thus, if one believes that (1.3) and (1.4) should govern the error for a gen-
eral mean estimation problem in (Rd ,‖ · ‖), one arrives to the following question:

Question 1. Let ‖ · ‖, N and δ be as above. Does there exist an estimator µ̂N
(which may depend on δ and on the norm ‖ · ‖), such that, for all distributions
whose covariance matrix exists, with probability at least 1− δ,

‖µ̂N −µ‖ ≤
c
√
N

(
max

{
E‖YN ‖, E‖G‖+R

√
log(2/δ)

})
, (1.6)

where c is an absolute constant and

R = sup
x∗∈B◦

(
E(x∗(X −µ))2

)1/2
?

To put Question 1 is some perspective, let us consider the case of the Eu-
clidean norm ‖ · ‖ = ‖ · ‖2 in Rd . Let Tr(Σ) be the trace of the covariance matrix of X
and set λ1 to be the largest eigenvalue of Σ. Observe that

E‖YN ‖2 ≤ (E‖YN ‖22)1/2 ≤ (E‖X −µ‖22)1/2 =
√

Tr(Σ) ,

and a similar bound holds for E‖G‖2, since YN and G share the same covariance
matrix. Also, because the Euclidean norm is self-dual, B◦ = Bd2, the Euclidean unit
ball. Therefore,

R = sup
t∈Bd2

(
E
〈
t,X −µ

〉2
)1/2
≤

√
λ1 .

3Here and in what follows we identify linear functionals on Rd with points in Rd , and the action
of t ∈ Rd is given by x∗(x) = 〈t,x〉, that is, the standard inner product with t.

4For the standard proof of (1.5) for a general sub-Gaussian process, see, e.g., [12].
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Hence, if Question 1 has an affirmative answer, the resulting mean estimation error
for the Euclidean norm would satisfy

‖µ̂N −µ‖2 ≤
c
√
N

(√
Tr(Σ) +

√
λ1 log(2/δ)

)
(1.7)

and with probability 1 − δ. This coincides with the performance of the empirical
mean if X is Gaussian (see [11]).

As it happens, (1.7) was established in [15] for an arbitrary random vector
X (that has a well-defined mean and covariance) using the notion of median-of-
means tournaments.

In Section 4 we argue that (1.6) is not far from the best (uniform) estimate
one can ever hope for. For now simply observe that the term N−1/2R

√
log(2/δ) is

truly required. Indeed, let X be a Gaussian random vector with mean µ. Note that
for any estimator ψ̂N and any x∗ ∈ B◦,

‖ψ̂N −µ‖ ≥ |x∗(ψ̂N )− x∗(µ)| .

Now fix x∗ ∈ B◦ and consider the random variable x∗(X), which is a real-valued
Gaussian whose mean is x∗(µ). If ψ̂N performs with accuracy ε with probability
1−δ given X1, . . . ,XN , then the real-valued estimator x∗(ψ̂N ) would perform with at
least as good accuracy and confidence for the real-valued Gaussian variable x∗(X).
However, the results of [4] imply that the best possible accuracy for any mean
estimator for a real valued Gaussian is ∼ N−1/2σ

√
log(2/δ), and in our case, σ2 =

E(x∗(X −µ))2. Taking the ‘worst choice’ of x∗ ∈ B◦ shows that

ε & sup
x∗∈B◦

(
E(x∗(X −µ))2

)1/2
√

log(2/δ)
N

= R

√
log(2/δ)
N

.

Our main result is an affirmative answer to Question 1, and the mean es-
timator that achieves the desired accuracy is defined as follows. The estimator
depends on the desired confidence δ ∈ (0,1) and also on an “accuracy parameter”
ε > 0. We show below that the procedure achieves accuracy ε whenever it is at
least as large as the expression on the right-hand side on (1.6). For simplicity of
presentation we assume that n = log(2/δ) is an integer and that N is divisible by
n. (Otherwise an obvious modification only effects the value of the unspecified
constants so we do not lose any generality.)
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• Set ε > 0.

• Let n = log(2/δ) and split the sample (Xi)
N
i=1 to n blocks Ij , each of cardi-

nality N/n. Set Zj = 1
m

∑
i∈Ij Xi .

• Let T be the set of extreme points of the dual unit ball B◦. For every x∗ ∈ T
set

Sx∗ =
{
y ∈ Rd : |x∗(Zj)− x∗(y)| ≤ ε for more than

n
2

blocks
}
. (1.8)

• Set S(ε) =
⋂
x∗∈T Sx∗ and select µ̂N (ε,δ) to be any point in S(ε).

Note that Sx∗ is a union of intersections of shifts of the same ‘slab’ in Rd ,
defined by the linear functional x∗ and of ‘width’ ε. Thus, each intersection is just a
(data dependent) slab, making Sx∗ to be a union of slabs defined by x∗. As a result,
S(ε) is an intersection of unions of slabs generated by the extreme points of the
dual unit ball of the given norm. We note here that mean estimators introduced by
Catoni [5] and Catoni and Giulini [6] are also constructed from one-dimensional
estimators via the intersection of slabs.

Our main result is the following—formulated using the notation introduced
previously.

Theorem 1. There exist absolute constants c,c′ such that the following holds. Given a
norm ‖ ‖, confidence parameter δ ∈ (0,1) and sample size N , if

ε ≥ c
√
N

(
max

{
E‖YN ‖, E‖G‖+R

√
log(2/δ)

})
, (1.9)

then the estimator µ̂N (ε,δ) defined above satisfies that, with probability at least 1− c′δ,
S(ε) is nonempty, and

‖µ̂N (ε,δ)−µ‖ ≤ 2ε .

Remark. Observe that Theorem 1 also implies that if ε is as in (1.9) then the set
S(ε) is bounded. Moreover, the set is also closed because each Sx∗ is closed.

Remark. There is a conceptually more natural way of defining the mean estimator
described above5. Indeed, observe that for any real numbers a1, . . . , an, if for some
m ∈ R and η > 0 one has ∣∣∣∣{j ∈ {1, . . . ,n} : |aj −m| ≤ η}∣∣∣∣ ≥ n2 ,

5We thank the anonymous referee for pointing out this fact.
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then a median MED
(
aj ; j = 1, . . . ,n

)
satisfies that∣∣∣∣MED

(
aj ; j = 1, . . . ,n

)
−m

∣∣∣∣ ≤ η.
Therefore, the definition of Sx∗ in (1.8) may be replaced by

Sx∗ =
{
y ∈ Rd : MED

(
x∗(Zj); j = 1, . . . ,n

)
− x∗(y)| ≤ ε

}
and Theorem 1 still holds. In other words, the estimator µ̂N (ε,δ) is simply any
point in the intersection of these confidence regions.

The estimator µ̂N (ε,δ) has the disadvantage that it requires the knowledge
of the accuracy level ε. However, the achievable optimal accuracy depends on the
distribution and it is generally unknown to the statistician. Luckily, it is easy to use
the theorem above to construct an estimator that does not depend on such previous
knowledge and yet achieves the same performance bound. We may simply define
our estimator µ̃N = µ̃N (δ) as follows. Let ε0 = inf{ε > 0 : S(ε) , ∅}. The sets S(ε)
for ε > ε0 are nested and compact and therefore ∩ε>ε0

S(ε) , ∅. We define µ̃N to be
an arbitrary element of ∩ε>ε0

S(ε). It follows from Theorem 1 that for ε satisfying
(1.9), with probability at least 1− δ , S(ε) , ∅, and in particular, µ̃N ∈ S(ε). Hence,
one obtains the following.

Corollary 1. There exist absolute constants c,c′ such that the following holds. Given a
norm, confidence parameter δ ∈ (0,1) and sample size N , if

ε ≥ c
√
N

(
max

{
E‖YN ‖, E‖G‖+R

√
log(2/δ)

})
, (1.10)

then the estimator µ̃N satisfies that, with probability at least 1− c′δ,

‖µ̃N −µ‖ ≤ ε .

Theorem 1 is established using a general fact that is of independent inter-
est: we construct an effective uniform median-of-means estimator in a class of real
valued functions, as described in the next section.

Remark. In this article the focus is on the existence of mean estimators with
optimal or near-optimal statistical performance, leaving the notion of computa-
tional efficiency aside. Indeed, the way the estimators are defined here is not com-
putationally efficient. In particular, a naive implementation of the estimator µ̃N
requires exponential running time (as a function of the dimension).

When the error is measured by the Euclidean distance, Hopkins [8] con-
structs a mean estimator with the desired sub-Gaussian performance that runs in
polynomial time. However, the case of general norms is open and poses an inter-
esting challenge.
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Related work

The multivariate median-of-means estimators that behave well under heavy-tailed
distributions have been the subject of intensive study. Minsker [17] and Hsu and
Sabato [9] defined and analyzed multivariate extensions of the median-of-means
estimator, see also Lerasle and Oliveira [14]. The first truly sub-Gaussian estimator
(under the Euclidean norm) was shown to exist by Lugosi and Mendelson [15]. See
Joly, Lugosi, and Oliveira [11] for an earlier attempt and Catoni and Giulini [6] for
a different estimator.

Minsker [18] and Catoni and Giulini [6] consider estimating the mean of
random matrices based on an i.i.d. sample under the spectral norm and the Hilbert-
Schmidt norm. They both prove sub-Gaussian confidence bounds that fall short,
in various aspects, of the optimal order of magnitude achieved by the estimator of
Theorem 1. As far as we know, prior to this work estimators achieving the accu-
racy/tradeoff of Theorem 1 have only been known for the Euclidean norm.

2 Uniform median-of-means estimators

In this section we explore the next problem:

Let F be a class of functions on a probability space (Ω,ν) and let δ ∈ (0,1).
Given an independent sample (X1, . . . ,XN ) distributed according to νN , find
an estimator Φ̂N , such that, with probability at least 1 − δ, for every f ∈ F,
|Φ̂N (f )−Ef (X)| is small.

The obvious choice of Φ̂N is simply the standard median-of-means esti-
mator we use for a single random variable. However, expecting Φ̂N to have the
‘individual’ sub-Gaussian error is too optimistic. The best uniformly achievable
accuracy must depend on some appropriate notion of the ‘size’ of the class F.

To address the problem above, fix integers n and m and let N = mn. As
before, split the given sample to n blocks, each one of cardinalitym, while keeping
in mind that the natural choice is n ∼ log(2/δ). The goal is to find the smallest
possible value of r such that supf ∈F |Φ̂N (f ) − Ef (X)| ≤ r with probability at least
1− δ.

Recall that if one would like to ensure that the median-of-means estimator
performs with an error of at most r for a single function f ∈ F, then it suffices that

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

f (Xi)−Ef (X)

∣∣∣∣∣∣∣ ≥ r
 ≤ 1

2
−θ (2.1)
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for some θ > 0. Indeed, if (2.1) holds then with probability at least 1−2exp(−cθ2n),

Ef (X)− r ≤ 1
m

∑
i∈Ij

f (Xi) ≤ Ef (X) + r

for more than n/2 of the blocks Ij , where c is an absolute constant. However,
a uniform result calls for a little more flexibility. Firstly, there is a need to have a
larger number of ‘good’ blocks Ij . It suffices that for any fixed function one controls
0.9n of them. Clearly, that may be achieved if (2.1) holds for 1/2−θ ≤ 0.05. With
that in mind, let

pm(η) = sup
f ∈F

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

f (Xi)−Ef (X)

∣∣∣∣∣∣∣ ≥ η
 .

From here on we write at times pm instead of pm(η). We set D to be the unit ball
in L2(ν) and let M(F,rD) be the maximal cardinality of a subset of F that is r-
separated with respect to the L2(ν) norm. We also denote F−F = {f1−f2 : f1, f2 ∈ F}.

Let us describe the performance of the uniform median-of-means estimator:

Theorem 2. There exist absolute constants c0, . . . , c4 for which the following holds. Set
η0,η1 and η2 ≥ c0η1/

√
m that satisfy the following:

(1) pm(η0) ≤ 0.05 ;

(2) logM(F,η1D) ≤ c2n log(e/pm(η0)) ;

(3) Esupw∈W
∣∣∣∑N

i=1 εiw(Xi)
∣∣∣ ≤ c3η2N ,

where W = (F −F)∩ η1D and W = {w −Ew : w ∈W }.
Let r = η0 +η2. Then with probability at least 1−2exp(−c4n), for any f ∈ F one

has that ∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

f (Xi)−Ef (X)

∣∣∣∣∣∣∣∣ ≤ r for at least 0.6n blocks Ij .

To put Theorem 2 in some perspective, note that η0 captures the worst indi-
vidual error caused by a function in F. Moreover, as noted previously, the standard
median-of-means estimator would perform with accuracy η0 and confidence 1− δ
if

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

f (Xi)−Ef (X)

∣∣∣∣∣∣∣ ≥ η0

 ≤ 0.05,
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and by Chebyshev’s inequality, one may set

η0 &
(
E(f (X)−Ef (X))2

)1/2
· 1
√
m
∼

(
E(f (X)−Ef (X))2

)1/2
·
√

log(2/δ)
N

,

as one would expect from a sub-Gaussian estimate.

In contrast, the role of η2 is to calibrate the impact of the ‘size’ of F.

Proof. Fix f ∈ F and let δj be the indicator of the event
∣∣∣∣ 1
m

∑
i∈Ij f (Xi)−Ef (X)

∣∣∣∣ ≥ η0.
By a standard binomial tail estimate, for k ≥ 0.06n,

P
(∣∣∣{j : δj = 1}

∣∣∣ ≤ k) ≥ 1− 2exp(−c0k log(ek/pmn)) .

In particular, |{j : δj = 1}| ≤ 0.1n with probability at least 1− 2exp(−c1n log(e/pm)).

The importance of the high-probability estimate is seen in the next step of
the proof: one may control all the elements of an η1-net of F (with respect to the
L2(ν) norm) as long as its cardinality is at most exp(c2n log(e/pm)). Indeed, by the
union bound, with probability at least 1− 2exp(−c3n log(e/pm)), for every h in the
net there are at least 0.9n blocks Ij such that∣∣∣∣∣∣∣∣ 1

m

∑
i∈Ij

h(Xi)−Eh(X)

∣∣∣∣∣∣∣∣ ≤ η0 .

The final and crucial step in the proof is passing from the net to the entire class: for
every f ∈ F set πf to be the best approximation to f in the net. Thus, ‖f −πf ‖L2

≤
η1. We show that for every f ∈ F there are at most 0.2n blocks Ij such that∣∣∣∣∣∣∣∣ 1

m

∑
i∈Ij

(f (Xi)−Ef (X))− 1
m

∑
i∈Ij

(πf (Xi)−Eπf (X))

∣∣∣∣∣∣∣∣ > η2. (2.2)

If that is indeed the case then for every f ∈ F there are at least 0.7n blocks for
which∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

f (Xi)−Ef (X)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

(πf )(Xi)−Eπf (X)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

(f (Xi)−Ef (X))− 1
m

∑
i∈Ij

(πf (Xi)−Eπf (X))

∣∣∣∣∣∣∣∣
≤ η0 + η2 ,

as required.
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It remains to prove (2.2). To this end, note that f −πf ∈ (F − F)∩ η1D = W ,
and thus f −Ef (X)− (πf −Eπf ) ∈W were W = {w−Ew : w ∈W }. Hence, the proof
is completed once it is established that, with probability at least 1− 2e−c4n,

S
def.= sup

w∈W

∣∣∣∣∣∣∣∣
j :

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣ ≥ η2


∣∣∣∣∣∣∣∣ ≤ 0.2n .

To control S, note that by the bounded differences inequality (see, e.g., [3]) there
is an absolute constant c1 such that

P(S ≥ ES + 0.1n) ≤ 2exp(−c1n) .

Thus, all that remains is to show that ES ≤ 0.1n. Observe that for any (aj)
n
j=1,

|{j : |aj | ≥ η}| =
n∑
j=1

1{|aj |≥η} ≤
1
η

n∑
j=1

|aj | .

By standard methods of empirical processes, via an analogous argument to that in
[15], one has

E sup
w∈W

∣∣∣∣∣∣∣∣
j :

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣ ≥ η2


∣∣∣∣∣∣∣∣

≤ 1
η2

E sup
w∈W

n∑
j=1

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣
≤ 1

η2
E sup
w∈W

n∑
j=1


∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣−E
∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣
+

n
η2

sup
w∈W

E

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ij

w(Xi)

∣∣∣∣∣∣∣∣
≤ 2

η2
E sup
w∈W

∣∣∣∣∣∣∣∣
n∑
j=1

εj

 1
m

∑
i∈Ij

w(Xi)


∣∣∣∣∣∣∣∣+

1
η2
· sup
w∈W

‖w‖L2√
m

≤ 4n
η2

E sup
w∈W

∣∣∣∣∣∣∣ 1
N

N∑
i=1

εiw(Xi)

∣∣∣∣∣∣∣+
η1√
m

 .
In particular, ES ≤ 0.1n provided that

E sup
w∈W

∣∣∣∣∣∣∣
N∑
i=1

εiw(Xi)

∣∣∣∣∣∣∣ ≤ c2η2N and
η1√
m
≤ c3η2 ,

as was assumed.
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Remark. Note that if F is a finite class and log |F| ≤ c2n log(e/pm(η0)) then Φ̂N
performs with accuracy η0. The proof follows from the standard bound on the
performance of the median-of-means estimator for each real random variable f (X)
and a straightforward application of the union bound.

3 Estimation with respect to a general norm

In this section we prove Theorem 1 by invoking Theorem 2.

Let ‖ · ‖ be a norm on Rd and let B◦ be the unit ball of the dual norm. Recall
that for any v ∈ Rd ,

‖v‖ = sup
x∗∈ext(B◦)

x∗(v) ,

where ext(B◦) denotes the set of extreme points in B◦; and that the empirical aver-
age within block Ij , for 1 ≤ j ≤ n, is denoted by

Zj =
1
m

∑
i∈Ij

Xi .

Let r > 0 be as in Theorem 2 for the class of functions F = {x∗(·) : x∗ ∈ ext(B◦)} and
with respect to the measure ν endowed by X − µ. Finally, let A be the event for
which the assertion of Theorem 2 holds.

Consider the sets

Sx∗ =
{
y ∈ Rd :

∣∣∣x∗(Zj)− x∗(y)
∣∣∣ ≤ r for more than

n
2

indices j
}

and put µ̂N (ε,δ) to be any point that belongs to the set

S(ε) =
⋂

x∗∈ext(B◦)
Sx∗ . (3.1)

To show that selecting µ̂N (ε,δ) ∈ S(ε) has the desired properties, fix a sam-
ple (Xi)

N
i=1 ∈ A. First, observe that S(ε) is nonempty as it contains µ. Indeed, setting

f (x) = x∗(x), it is evident that

Ef (X −µ) = 0 and
1
m

∑
i∈Ij

f (Xi −µ) = x∗(Zj)− x∗(µ) .

By Theorem 2 it follows that

|x∗(Zj)− x∗(µ)| ≤ r

13



for a majority of the indices j, which means that µ ∈ Sx∗ for every x∗ ∈ ext(B◦).
Next, one has to show that if y ∈ S(ε), then ‖y − µ‖ is ‘small’. To that end,

observe that for every x∗ ∈ ext(B◦) there is some index j such that∣∣∣x∗(Zj)− x∗(y)
∣∣∣ ≤ r and

∣∣∣x∗(Zj)− x∗(µ)
∣∣∣ ≤ r ,

because both conditions hold for more than half of the indices j. Thus,∣∣∣x∗(y)− x∗(µ)
∣∣∣ ≤ ∣∣∣x∗(Zj)− x∗(y)

∣∣∣+
∣∣∣x∗(Zj)− x∗(µ)

∣∣∣ ≤ 2r .

Finally, recalling that ‖v‖ = supx∗∈ext(B◦)x
∗(v), one has that

‖y −µ‖ = sup
x∗∈ext(B◦)

|x∗(y)− x∗(µ)| ≤ 2r ,

as claimed.

To complete the proof of Theorem 1 let us bound η0 and η2. To that end,
recall that

R = sup
x∗∈B◦

(
E(x∗(X −µ))2

)1/2
,

G is the centred Gaussian vector that has the same covariance as X, and

YN =
1
√
N

N∑
i=1

εi(Xi −µ) .

The three conditions of Theorem 2 can be controlled when F = {x∗(·) : x∗ ∈
ext(B◦)} and with respect to the measure ν endowed by X = X−µ. Indeed, to verify
(1), fix x∗ ∈ B◦ and note that

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

x∗(Xi −µ)

∣∣∣∣∣∣∣ ≥ η0

 ≤ E|x∗(X −µ)|2

η2
0m

=
E|x∗(X −µ)|2 log(2/δ)

η2
0N

,

because n = log(2/δ) (recall that it was assumed, without loss of generality, that
log(2/δ) is an integer that divides N ). Thus, to ensure that pm ≤ 0.05 it suffices that

η0 ≥ c0R

√
log(2/δ)
N

.

Turning to (2), identify B◦ with the set {t ∈ Rd : supx∈B 〈t,x〉 ≤ 1}, and the
action of a functional x∗ associated with t is given by x∗(x) = 〈t,x〉. With a minor
abuse of notation, let D be the unit ball of the L2(X) norm endowed on Rd by
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identifying each t ∈ Rd with a linear functional. By Sudakov’s inequality (see [13]),
there is an absolute constant c such that

logM(B◦,η1D) ≤ cη−2
1 (E sup

x∗∈B◦
x∗(G))2 = c

(
E‖G‖
η1

)2

,

implying that one may set

η1 = c1
E‖G‖
√
n

.

In particular, this forces the constraint

η2 ≥ c2
E‖G‖
√
N

.

Finally, to control (3), observe that

W ⊂ {〈t, ·〉 : t ∈ 2B◦ ∩ η1D} .

Therefore, one has to show that

E sup
t∈2B◦∩η1D

∣∣∣∣∣∣∣ 1
√
N

N∑
i=1

εi
〈
t, (Xi −µ)

〉∣∣∣∣∣∣∣ = E sup
t∈2B◦∩η1D

| 〈t,YN 〉 | ≤ η2

√
N ,

where YN =N−1/2∑N
i=1 εi(Xi −µ). Clearly, it suffices that

η2 ≥ c3
E‖YN ‖√
N

, (3.2)

and one may set
η2 =

c4√
N

max {E‖YN ‖,E‖G‖} .

Now Theorem 1 follows from Theorem 2.

Remark. Note that the choices of η0,η1 and η2 need not be optimal for each F and
X as above. Indeed, η1 was chosen via Sudakov’s inequality which is not always
sharp, and η2 was determined after the ‘localization’ 2B◦ ∩ η1D was replaced by
2B◦. Therefore, it stands to reason that there are cases in which the resulting
estimate may be improved with more care. However, as we explain in the next
section, Theorem 1 is likely to be the best uniform result that one can hope for.
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4 Lower bounds

Let us turn to the question of the optimality of the upper bound of Theorem 1.
In the introduction it was already pointed out that the term N−1/2R

√
log(2/δ) is

inevitable. What remains is the necessity of the termN−1/2E‖G‖ (and, equivalently,
the term N−1/2E‖YN ‖ since limN→∞E‖YN ‖ = E‖G‖ by the central limit theorem).

As it happens, the order of magnitude of the bound of Theorem 1 is essen-
tially un-improvable even if one only considers isotropic Gaussian distributions,
with one minor caveat. Recall that the proof of Theorem 1 uses Sudakov’s inequal-
ity to ensure that

logM(B◦,η1D) . n , (4.1)

and then the contribution to the error is ∼ η1/
√
m = η1

√
n/N . As noted previously,

while it is convenient to use Sudakov’s inequality, its application may be loose.
A more accurate upper estimate on the error is ∼ η1/

√
m where η1 is the smallest

value for which (4.1) holds. As it happens, if X is a Gaussian measure whose
covariance is the identity matrix, this more accurate upper estimate is actually a
lower bound as well.

To formulate the lower bound, let G be the standard Gaussian random vec-
tor in Rd and denote by ν the corresponding measure. Consider the performance
of an arbitrary mean estimation procedure with respect to a norm ‖ · ‖, for a collec-
tion of Gaussian measures endowed by {G + t : t ∈ T } and where T ⊂ Rd is a well
chosen set. Note that for any X = G + t one has that X = G, let D ⊂ Rd be the unit
ball endowed by the norm L2(X) = L2(ν) (which in this case is simply the Euclidean
unit ball Bd2), and set B to be the unit ball of (Rd ,‖ · ‖).
Theorem 3. There exist absolute constants c1 and c2 for which the following holds. Let
n ≤ N and assume that logM(B◦,ηD) ≥ c1n. There is a set T ⊂ Rd such that any
mean estimator Ψ̂N that performs with confidence 1/2 with respect to all the Gaussian
measures {G+ t : t ∈ T }, cannot perform with higher accuracy than c2η

√
n/N .

Remark. An immediate outcome of Theorem 3 is that when Sudakov’s inequal-
ity is sharp at scale η, the lower bound on the accuracy that holds with constant
confidence is indeed ∼ E‖G‖/

√
N .

Proof.

Let c1 be an absolute constant whose value is specified in what follows. To
define the set T , observe that if logM(B◦,ηD) ≥ c1n then by the duality theorem
of metric entropy [2], and since D◦ = Bd2, there are absolute constants c2 < 1 and c3
such that

logM(D,c2ηB) ≥ c3 · c1n.

In other words, the set D contains a subset that is c2η-separated with respect to
the norm ‖ · ‖ and whose log-cardinality is at least c3 · c1n.
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Set R =
√
n/N = 1/

√
m and r = c2η/

√
m. Clearly,

logM(D,c2ηB) = logM(D, (r/R)B) = logM(RD,rB) ≥ c3 · c1n ,

and let T ⊂ RD be the r-separated set with respect to the norm ‖ · ‖.
Now, assume that there is a mean estimator that performs with confidence

1/2 and accuracy r/3 for every one of the Gaussian random vectors G+t, t ∈ T , and
let us reach a contradiction.

If Ψ̂N is such an estimator, it follows that for every t ∈ T there is a set At ⊂
(Rd)N with νN (At) ≥ 1/2, such that for ω ∈ At + (t, . . . , t) one has that ‖Ψ̂N (ω)− t‖ ≤
r/3. Moreover, since the set T is r-separated, it is evident that the sets Ut = At +
(t, . . . , t) are disjoint. Indeed, if ω ∈ (Ax + (x, . . . ,x))∩ (Ay + (y, . . . , y)) then Ψ̂N would
have to be ‘close’ to both x and y, which is impossible.

Observe that νN is the standard Gaussian measure on (Rd)N , and

‖(t, . . . , t)‖L2(νN ) =
√
N‖t||2 ≤

√
NR.

Using the same argument as in Talagrand’s proof of the dual Sudakov inequality
[13] (see also [16]) and recalling that t ∈ RD = RBd2,

νN (Ut) ≥ νN (At)exp(−cN‖t‖22) ≥ 1
2

exp(−cNR2) ,

for an absolute constant c.

On the other hand, the sets Ut are disjoint and thus

1 ≥ νN
⋃
t∈T

Ut

 =
∑
t∈T

νN (Ut) ≥ c|T |exp(−c′NR2) .

In particular, there is an absolute constant c′′ such that

log |T | ≤ c′′NR2 = c′′n ,

which is a contradiction to the choice of T if c1 > c
′′/c3.
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