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Abstract

We study the number of facets of the convex hull of n independent
standard Gaussian points in R%. In particular, we are interested in the
expected number of facets when the dimension is allowed to grow with
the sample size. We establish an explicit asymptotic formula that is
valid whenever d/n — 0. We also obtain the asymptotic value when
d is close to n.

1 Introduction

The convex hull [Xi,...,X,] of n independent standard Gaussian samples

X1,..., X, from R? is the Gaussian polytope Péd). For fixed dimension d,

the face numbers and intrinsic volumes of P? as n tends to infinity are
well understood by now. For i = 0...,d and polytope @, let f;(Q) denote
the number of i-faces of @ and let V;(Q)) denote the ith intrinsic volume of
@. The asymptotic behavior of the expected value of the number of facets
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fd_l(Pr(Ld)) as n — oo was provided by Rényi, Sulanke [22] if d = 2, and by
Raynaud [21] if d > 3. Namely, they proved that, for any fixed d,

Ef, (PP = 297 d 2 (Inn) T (1 + o(1)) (1)
asn — o0o. Fori=0,...,d, expected value of V,-(Péd)) as n — 00 was COIn-
puted by Affentranger [1], and that of £i(P\") was determined Affentranger,
Schneider [2] and Baryshnikov, Vitale [3], see Hug, Munsonius, Reitzner
[15] and Fleury [12] for a different approach. More recently, Kabluchko and
Zaporozhets [18, 19] proved explicit expressions for the expected value of
Vd(P,(Ld)) and the number of k-faces fk(Rgd)). Yet these formulas are compli-
cated and it is not immediate how to deduce asymptotic results for large n
high dimensions d.

After various partial results, including the variance estimates of Calka,
Yukich [6] and Hug, Reitzner [16], central limit theorems were proved for
£(PYY and Vy(PL”) by Bérany and Vu [4], and for V;(P\”) by Barany and
Théle [5]. These results have been strengthened considerably by Grote and
Théle [14]. The interesting question whether E fd,l(P,(Ld)) is an increasing
function in n was answered in the positive by Kabluchko and Théle [17]. It
would be interesting to investigate the monotonicity behavior of the facet
number if n and d increases simultaneously.

The “high-dimensional” regime, that is, when d is allowed to grow with
n, is of interest in numerous applications in statistics, signal processing, and
information theory. The combinatorial structure of Pﬁd), when d tends to
infinity and n grows proportionally with d, was first investigated by Ver-
shik and Sporyshev [23], and later Donoho and Tanner [11] provided a sat-
isfactory description. For any ¢t > 1, Donoho, Tanner [11] determined the
optimal o(t) € (0,1) such that if n/d tends to ¢, then P\ is essentially o(t)d-
neighbourly (if 0 < 7 < o(t) and 0 < k < nd, then fk(Prgd)) is asymptotically
(kil)) See Donoho [10], Candés, Romberg, and Tao [7], Candés and Tao
[8, 9], Mendoza-Smith, Tanner, and Wechsung [20].

In this note, we consider fd,l(Péd)), the number of facets, when both
d and n tend to infinity. Our main result is the following estimate for the
expected number of facets of the Gaussian polytope. The implied constant
in O(-) is always some absolute constant. We write llnx for In(In ).

Theorem 1.1. Assume P\” is a Gaussian polytope. Then for d > 78 and
n > e°d, we have

n

_ _q lln
1 Sl n_dol —d

Efd—1(P,Ed)) — 24T e A
with § = 0(n, d) € [~34,2].

1
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When n/d tends to infinity as d — 0o, Theorem 1.1 provides the asymp-

totic formula i
2

Efy; (PY) = ((47r +o(1))In g)

If n/(de?) — oo, then we have 2

— — 0 and hence

lnE

— n 4 1lnZ
Efd—l(qud)) = QdW%d—%e%an—% 1n§ +o(1)
as d — 00. In the case when n grows even faster such that (Inn)/(dInd) —

00, the asymptotic formula simplifies to the result (1) of Rényi, Sulanke [22]
and Raynaud [21] for fixed dimension.

Corollary 1.2. Assume P\” is a Gaussian polytope. If (Inn)/(dlnd) — oo,
we have . -
Efo 1 (P@) = 225 44 (lnm) (1 + o(1)
There is a (simpler) counterpart of our main results stating the asymptotic

behavior of the expected number of facets of P,(Ld), if n —d is small compared
to d, that is, if n/d tends to one.

Theorem 1.3. Assume P\” is a Gaussian polytope. Then for n —d = o(d),

we have 2 |
(n=d) (n—d)
I
(P i

as d — 00.

This complements a result of Affentranger and Schneider [2] stating the
number of k-dimensional faces for K <n — d and n — d fixed,

EA(E) = () 4o,
as d — 00.

In the next section we sketch the basic idea of our approach, leaving the
technical details to later sections. In Section 3 we provide asymptotic approx-
imations for the tail of the normal distribution. In Section 4 concentration
inequalities are derived for the §-distribution. Finally, in Sections 5 and 6,
Corollary 1.2 and Theorem 1.3 are proven.



2 Outline of the argument

For z € R, let
) y
P(y) = N / e~ ds, and ¢(y) = ®'(y) = —=e ¥ .

Our proof is based on the approach of Hug, Munsonius, and Reitzner [15].
In particular, [15, Theorem 3.2] states that if n > d + 1 and Xj,..., X, are
independent standard Gaussian points in R?, then

Efy1([X1,.... X,]) = (n)IP’(Y ¢[Vi,... Y d),

d
where Y, Y], ..., Y, _4 are independent real-valued random variables with Y 4
N(O,%) and Y; £ N(O,%) fori=1,...,n —d. This gives

Bhia ) = 2(8) Y [ ety sy 2)

= 2(2)\/3%%1 / o(y)"o(y)'dy . (3)

—00

Note that similar integrals appear in the analysis of the expected number of
k-faces for values of k in the entire range k = 0,...,d — 1. In our case, the
analysis boils down to understanding the integral of ®(y)" ¢ (y)? over the
real line. By substituting (1 —u) = ®(y), we obtain

/ D(y)"o(y)*dy = /(1 —u)"H(® (1 — ) du .

Clearly, n > d + 2 is the nontrivial range. When n/d — oo, (1 — u)" % is
dominating, and we need to investigate the asymptotic behavior of ¢(®~*(1—
u)) as u — 0. We show that the essential term is precisely 2u. Hence, it
makes sense to rewrite the integral as

1

p1-1 / (1= )t (20) 6@~ (1~ w) " du

J/

-~

0 =:gq(u)



1
For z,y > 0, the Beta-function is given by B(x,y) = [(1—u)* *u¥"'du. It is
0

well known that for &, € N we have B(k,1) = % A random variable

U is By, distributed if its density is given by B(z,y) ' (1—u)* 'u¥~1. With
this, we have established the following identity:

Proposition 2.1.
Efi1([X1,..., X)) = 2907 d 2Egy(U) (4)
where i
ga(u) = ((2u) (27 (1 — u)))
and U is a B(n —d+ 1,d) random variable.

In Lemma 3.3 below we show that

d—1 _d—1lmnu”! , -\ O
= (d-1); 2L,

galw) = (Inu™") =7 e~ T R

as u — 0. Because the Beta function is concentrated around %, see Lemma
4.1 and Lemma 4.2, this yields

d=1 4 a3 o)
Ega(U) ~ (111%) P (1)

which implies our main result.

3 Asymptotics of the d-function

To estimate ®(z), we need a version of Gordon’s inequality [13] for the Mill’s
ratio:

Lemma 3.1. For any z > 1 there exists 0 € (0,1), such that

Proof. Tt follows by partial integration that

T 2 T 2 1 e’ Ooe*t2 e e
/e_t dt—/2te‘t—dt— —/—dt_ —
2t 2z 2t2 2z 423
which yields the lemma. O



Lemma 3.2. For any u € (0,e™'] there is a § = §(u) € (0,16) such that

11llnu-? )

4dlnut lnu-t

P11 —u) = \/ln ul — %lln u~l —In(2y/7) + (5)

Proof. Tt is useful to prove (5) for the transformed variable u = e™*. We
define

Llnt = 4(t)

z(t):\/t—%lnt—ln(Q\/E)—FZTJrT (6)

which exists for ¢ > 0. In a first step we prove that this is the asymptotic
expansion of z = ®1(1 —e™%) as z,t — oo with a suitable function § =
d(t) = O(1). In a second step we show the bound on §. Observe that z > 1
implies t > In®(—1)) = —2,54.... By Lemma 3.1, for z > 1

et=1-3(z) = Q\/_%e—* (1 - 92(—;>> (7)

as z — oo with some 0(z) € (0,1), which immediately implies that z =
z(t) — oo as t — co. Equation (7) shows that e! > 2y/7ze*” and thus

t > In(2y/7) +In2(t) + 2(t)* > 2(¢)?

for z > 1. The function z = z(t) is the inverse function we are looking for, if
it satisfies

4rz(t)?e = e 220 (1 — —0(2) : (8)
222 )
We plug (6) into this equation. This leads to
1 1 l t 6 t nt t
t—3 Int — In(2y/7) + ZHT + ¥ = tema 2 (1-0@™)

i %lnt —25(t) — O(1)

and shows — In(2y/7) 4+ o(1) = —26(¢t) — O(1). Thus the function z(t) given
by (6) in fact satisfies (7) and therefore it is the asymptotic expansion of the
inverse function.

The desired estimate for ¢ follows from some more elaborate but elemen-
tary calculations. First we prove that § > 0. By (8) and because e* > 1+ z,

t_%lnt—ln(Z\/E)-Flln—tJr@>t(1_11n_t_ @) <1—ﬁ)2



which is equivalent to

_pn__ 1-20Int
5(t) > In(2y/m) — 6 — =42

- (2 4 =20 =0
t

for t > 1. On the other hand, again by (8),

4t t

11 nt
t> ( ——lnt—ln(2\/_)+—it+@) €2t 2

and using e* > 1 + x implies

5(t) <

21In(2 1lnt Int)? Int)?
In(2y/m) 4 2RIt 4 L 4 p O]
t

S B TEN I

An asymptotic expansion for ¢(®~!(1 — u)) follows immediately:

Lemma 3.3. For any u € (0,e™'] there is a § = 6(u) € (0,16) such that

ga(u) = ((2u)7'¢(@71(1 = w)))"™ = (™) T e T T VT

4 Concentration of the S-distribution

A basic integral for us is the Beta-integral

/1_l,alﬁld (O[—l)'(ﬁ—]_)' (9)

(a+p—1)!

Let U ~ B(a,@) distributed.. Then EU'f o%ﬁ and V&l“(l_]) = m
Next we establish concentration inequalities for a Beta-distributed random
variable around its mean. Observe that if U ~ B(«, 3), then 1-U ~ B(f, ).

Hence we may concentrate on the case o > f.

Lemma 4.1. Let U ~ B(a+1,b+1) distributed with a > b and set n = a+b.
Then




Proof. We have to estimate the integral

2P d
B(a+1b+1 / v
0

For an estimate from above we substitute z = % — 4, fab

J. = / (1—2) @b dr
0
a®tapbts vE b\ a\’
= — 1+yy)— 1l—y/— ) dy
n"ta an bn

It is well known that

In(1+z) = i(—mk” <z-=

for x € (—1,1]. Since a > b, we have

/b ‘ a ’
an bn

which implies

nb

+ipb+3 ¢
a® 2"tz 1,2
J. < — e ¥ dy
n"ts
S

1 1
3a°t30: 1, 1.
—— —|e7 —e

o[z

1
6

3
n"t2 s

In the last step we use Stirling’s formula,
V2T ntien <nl< en”+%e_”,

to see that
aa—l— % bb+ %

w

7 = e—B(a+ 1,b+1).
nn+§ T

(10)

(11)



Lemma 4.2. Let U ~ B(a+1,b+1) distributed with a > b and set n = a+b.
Then for A > 2,
b e? a
P(U > \2) < S \bpieltie
n T
Proof. We assume that a > b and thus a > 5. We have to estimate the

probability

1

b 1
> M) < 1— )"’
IP’(U_)\n) < B(a—l—l,b—i—l)/( x)*a’ dx

A

Sl

We substitute  — %x + )\% and obtain

1 o)
ab 1 b 1
/(1 —2)%dx < /e_“” A (a{B + )\E))b o dx
py 0

< q b+ _Aab/ x—i-/\ )0 da.
0

The use of the binomial formula and the Gamma functions yields

[e.e] b [e.e]

b o bk @Dk
/ a:—i—)\ VYdr = Z%(k)/e x (/\E) dx
0

because b < /\%b fora > % > band A > 2, and %(/\%b)k is increasing for
k < (A\%2). Using (11) this gives

b 3 D\ L, e
P(U > \-) < Q+—) bz \Pe ™MW
n a

€
™

and with (1 + ) < e” the lemma. O



5 The case n — d large

In this section we combine Lemma 3.3 which gives the asymptotic behavior
of ga(u) as u — 0, with the concentration properties of the Beta function
just obtained. We split our proof in two Lemmata.

Lemma 5.1. Ford > dy = 78 and n > e°d we have

d=1yny_d=1m(3) o 2 6 ~ 1
Ega(U) < ¢ 70~ R+ Dty £ i

Lemma 5.2. Ford > dy = 78 and n > e°d we have

n

1In
d—1 n d—1 d 34 6 _ 1
7 IIn(3)—5 In % —(d 1)11’1% 672% de~ 10¢

Ega(U) = e

These two bounds prove Theorem 1.1. The idea is to split the expectation
into the main term close to % and two error terms,

+Ega(U) 1 (U c [ng,Q%D
+Egq(U) 1 (U > 2%) .

Proof of Lemma 5.2. Recall that U is B(n — d + 1, d)-distributed. Lemma
4.2 with a =n — d and b = d — 1 shows that

— 3 Dt
P (U > )‘g) <P (U > >\d 1) < e—Ad_l(d — 1)%e(d_1)+%e_>‘%
n T

because =1 < 4 For \ = 2 this gives
n—1 n

™

6 6
P (U > 2§> < 5—\/360“2—1“%” < g—ﬂe—%od (12)
n m

for n > 10d. The probability that U is small is estimated by Lemma 4.1 with
s=(1— 6_2) (d=1)(n—-1)

n—d ’

d—1 3e3 n—d 1 —oy2 (d=1)(n—1)
P(U<e? < T (1-eHt —s(l—e )2 =0
( = n—l) s U= aThm o
< e_e_%od
- 27

10



for d > 6. Combining both estimates and using
In(1+2) > 42z (13)

for = € [0, 1], we have

6 6 L
P (U € [EQ 2dD >1- % Vde i — 26—@—%d > o Ve T (14)
n n

for d > dy = 78. (Observe that %\/Ege’%do < 1) In the last step we
compute

lunu—l d=1Inlnu" (d 1)

min  gg(u) = min e I e
ue[e—Q%,Z%] uE[e—Q%,Z%]
ﬂ]ln(lﬁ)_d;l“ (%%) —(d—1) max §
Z e 2 2d 4 ln(%%) ln(%%)

for n > e°d. Here, note that lllrrl‘—gf is decreasing for x > e¢. Now using

IIn (d> > lIn 63) —lIn (d) +ln( 1:2;)) > lln (%) _ ill(—n;

d
and

S S <1+21n2)<21
In(12)  In(%)—In2 = In(%) In(%)/) = In(4)

2d
for n > e®d, we have

, dlygn_d1lhg g gy 8
min  gi(u) > o Rk
uE[e*Q%,Z%]

with ¢ = 32242 max § € [0, 34]. Combinig this estimate with (14) we obtain

d d
: —2
BuU) > _win, oun) B (ve [4.28])
> e%ungf%'ﬁgi(dq)l% 6*25}6‘/3@7%d
for d > dy and n > ed. O

11



Proof of Lemma 5.1. As an upper bound we have

Ega(U) < Ega(U)1 (U - 6_22)

+ max

d _d
_2_ -
o 00 P (U € le n2nD

d
+ max g4(u) P (U > 2—)
uel24 1] n

————

Smax, 4y 9a(w)

Egq(U)1 (U < 622)

IA

d— d— lln(e2ﬁ)
4L lin(e?2)— 42 d

+6 4 ln(eg%)
_ —1In(%) 6
41 Jin(2)— 91 —d

4 n € 1
ln(g) 2_\/86_ lOd

4
™

since § > 0, and where the last term follows from (12). For the first term we

use that ¢(®71(+)) is a symmetric and concave function and thus increasing
on [0,e7%4], and that § > 0.

Egq(U)1 (U < e2Z)

6_21
1 d=1 jjp =1 _d=11na"! —d_d—1
2 4 a1 (1l —2)" d
Bln—d+1,d) /e (L) e
0
1

d— d— lln(ezﬂ)
9L in(e? 2 )— 41 d

s i
4 In(e2D) -2 —(n—d)acd
B(n—d+1,d)e ’ (6 n) /6 v
0

Now the remaining integration is trivial. We use Stirling’s formula (11) to
estimate the Beta-function and obtain

Egq(U)1 <U < e—ﬂ)

n
3 T'L+l d—1 on d—1 lln(e2ﬂ) d—1
< ¢ (n—1)"*2 e )45 _od
= n—d+32 dfle ¢ -
T (n—d) 2(d—1)%"2 n
ﬂlln@?ﬁ)_@%@e d—1)Ld=1) 3y ¢ 1_1_94
< e 2 d 4 In(e? ) —6( - )+(n—d)(§)+ tan2—
™
=1 qin(e22) ERRLICE 2 1
< e 2 d 4 In(e23) —e_ﬁd
™



e.g. for n > e°d and d > 78. Combining our results gives

ln(e?
4oL iin(e2 )~ 4L 2O 4 ¢

Egs(U) < e L)

1
™
g1 lin(e2 %)

d—1 2
T (e 9= ey

d—1 1, (ny_d—118(g) .6

A=l (ny_d=1(g) o 1

e ? n(G)—%3 1n(3)2 \/Ee_ﬁd
™

In a similar way as above, we get rid of the involved constant e? by using

lIn (g) < ln (8%) —lIn (g) +In (1 n 1n(2§)) < lin (g) + @

and

This yields

d—1qy,(n _ﬂlln(ﬂ) _ 3 6
Egy(U) < e * 87T miy -y (ue_me—fod) (15)

6 The case n — d small

Finally, it remains to prove Theorem 1.3. The starting point here is again
formula (2), together with the substitution y — =

Efa (X0, X)) = 2(’;)% 7 B(y)" e dy

_ 2(2)%/@(%)”5@2 dy  (16)

The Taylor expansion of ® at y = 0 is given by

1 1 1 2 1
o = 4 —y+—(—0)e "yt =—F —y(1-86
() VA \/E( eyt =g+ ﬁy( 2y)
with some 6,60, € R depending on y. Since ®(y) is above its tangent at 0
for y > 0 and below it for y < 0, we have 0 < 1 — 6,y < 1. Further,

1

05| < max fye % =
01

[q¥)

13



Hence an expression for In® at y = 0 is given by

2
In®(y) = —In2+1In <1 + ﬁy(l — sz)) :
We need again estimates for the logarithm, namely In(1+ ) = z — 0322 < z
with some 03 = 05(x) > 0. In addition, there exists c3 € R such that 03 < c3
if x is bounded away from —1, for example for x > 2®(—1) — 1. This gives

ndy) < —In2+—

77y

and
2 4 2 2
In®(y) = —In2+ —=y(1—by) — 03—y (1 — bay)
NZ3 T Nt
<1

> —In2+ — Oo1% — 03

\/_ \/_
with 65 < c3 for y > —1. Thus the Taylor expansion of In ® at y = 0 is given
by

2
m®(y) = —In2+ ——y — Oy°

VT

with some 0y = 04(y) > —%, and there exists a ¢4 € R with 6, < ¢4 for

y > —1. We plug this into (16) and obtain

[e.9] o0

/(I)(%)n_de?ﬂ dy _ 6—(n—d)ln2 / 6%%3;—94%%?;272!2 dy .

—00 —00

Since %l — 0 we assume that 1 + 94"T_d >1-— l”T_d > (. As an estimate

from above we have

oo oo

e%";ddyf(lwﬂ%d)f dy < G%deyf(lfl"’d)yz d
Yy = Y
— 00 —00
2 n—d 2
st o RVE T
41— L n=d, 24/ (1-1n=dy 2 a ¥
= e 2°d e 274 dy
—00
n— 2 n—
i aro(rzty VT
1n—d
(1—35"3%)
1(71, d (n Li) n d

14



The estimate from below is slightly more complicated. For y > —+/d there
is an upper bound ¢4 for 64. Using this we have

o o
2 n—d, _p n—d,2 .2 1 (n—d)? (L n-d_ \ _. n=d,2
/eﬁdy 477 Yy dy ex d / e ( =" y) Ca—g Y dy
—00 1 n—d__
VT Vd vd

Now we use (a — b)? < 2a? + 2b* which shows that

o0 Vd
/eﬁn_ddy—@xn;dlﬂ—lﬂ dy > 6}‘(" a)? +O((n )/76—(1+204";d)y2 dy
\/d(1+204
_ e}r(n )2 +O((n @3 1 / _y2 dy
\ /(1 + 2¢4254)
> ejr(n = +O( 5 Sk )+0(27%) / eV’ dy. (18)
Recall the estimate for ®(z) from Lemma 3.1,
Vd
/ e dy = 7BV > V(1 — e = \/mele (19)
We combine equations (17), (18) and (19) and obtain
/ej;n\/_gdy_€4_ 2—y? dy _ \/_61 (n—=d)” d) +O((" )3 )+O(n d)+0( )

which yields Theorem 1.3.
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