Facets of high-dimensional Gaussian polytopes

Károly J. Böröczky * ${ }^{* \dagger}$ Gábor Lugosi ${ }^{\ddagger \S \mathbb{\|}}$
Matthias Reitzner **

October 2, 2023

Abstract

We study the number of facets of the convex hull of n independent standard Gaussian points in \mathbb{R}^{d}. In particular, we are interested in the expected number of facets when the dimension is allowed to grow with the sample size. We establish an explicit asymptotic formula that is valid whenever $d / n \rightarrow 0$. We also obtain the asymptotic value when d is close to n.

1 Introduction

The convex hull $\left[X_{1}, \ldots, X_{n}\right]$ of n independent standard Gaussian samples X_{1}, \ldots, X_{n} from \mathbb{R}^{d} is the Gaussian polytope $P_{n}^{(d)}$. For fixed dimension d, the face numbers and intrinsic volumes of $P_{n}^{(d)}$ as n tends to infinity are well understood by now. For $i=0 \ldots, d$ and polytope Q, let $f_{i}(Q)$ denote the number of i-faces of Q and let $V_{i}(Q)$ denote the i th intrinsic volume of Q. The asymptotic behavior of the expected value of the number of facets

[^0]$f_{d-1}\left(P_{n}^{(d)}\right)$ as $n \rightarrow \infty$ was provided by Rényi, Sulanke [22] if $d=2$, and by Raynaud [21] if $d \geq 3$. Namely, they proved that, for any fixed d,
\[

$$
\begin{equation*}
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=2^{d} \pi^{\frac{d-1}{2}} d^{-\frac{1}{2}}(\ln n)^{\frac{d-1}{2}}(1+o(1)) \tag{1}
\end{equation*}
$$

\]

as $n \rightarrow \infty$. For $i=0, \ldots, d$, expected value of $V_{i}\left(P_{n}^{(d)}\right)$ as $n \rightarrow \infty$ was computed by Affentranger [1], and that of $f_{i}\left(P_{n}^{(d)}\right)$ was determined Affentranger, Schneider [2] and Baryshnikov, Vitale [3], see Hug, Munsonius, Reitzner [15] and Fleury [12] for a different approach. More recently, Kabluchko and Zaporozhets $[18,19]$ proved explicit expressions for the expected value of $V_{d}\left(P_{n}^{(d)}\right)$ and the number of k-faces $f_{k}\left(P_{n}^{(d)}\right)$. Yet these formulas are complicated and it is not immediate how to deduce asymptotic results for large n high dimensions d.

After various partial results, including the variance estimates of Calka, Yukich [6] and Hug, Reitzner [16], central limit theorems were proved for $f_{i}\left(P_{n}^{(d)}\right)$ and $V_{d}\left(P_{n}^{(d)}\right)$ by Bárány and $\mathrm{Vu}[4]$, and for $V_{i}\left(P_{n}^{(d)}\right)$ by Bárány and Thäle [5]. These results have been strengthened considerably by Grote and Thäle [14]. The interesting question whether $\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)$ is an increasing function in n was answered in the positive by Kabluchko and Thäle [17]. It would be interesting to investigate the monotonicity behavior of the facet number if n and d increases simultaneously.

The "high-dimensional" regime, that is, when d is allowed to grow with n, is of interest in numerous applications in statistics, signal processing, and information theory. The combinatorial structure of $P_{n}^{(d)}$, when d tends to infinity and n grows proportionally with d, was first investigated by Vershik and Sporyshev [23], and later Donoho and Tanner [11] provided a satisfactory description. For any $t>1$, Donoho, Tanner [11] determined the optimal $\varrho(t) \in(0,1)$ such that if n / d tends to t, then $P_{n}^{(d)}$ is essentially $\varrho(t) d$ neighbourly (if $0<\eta<\varrho(t)$ and $0 \leq k \leq \eta d$, then $f_{k}\left(P_{n}^{(d)}\right)$ is asymptotically $\binom{n}{k+1}$). See Donoho [10], Candés, Romberg, and Tao [7], Candés and Tao [8, 9], Mendoza-Smith, Tanner, and Wechsung [20].

In this note, we consider $f_{d-1}\left(P_{n}^{(d)}\right)$, the number of facets, when both d and n tend to infinity. Our main result is the following estimate for the expected number of facets of the Gaussian polytope. The implied constant in $O(\cdot)$ is always some absolute constant. We write $\ln x$ for $\ln (\ln x)$.
Theorem 1.1. Assume $P_{n}^{(d)}$ is a Gaussian polytope. Then for $d \geq 78$ and $n \geq e^{e} d$, we have

$$
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=2^{d} \pi^{\frac{d-1}{2}} d^{-\frac{1}{2}} e^{\frac{d-1}{2} \ln \frac{n}{d}-\frac{d-1}{4} \ln \frac{n}{d} \frac{n}{d}+(d-1) \frac{\theta}{\ln \frac{n}{d}}+O\left(\sqrt{d} e^{-\frac{1}{10} d}\right)}
$$

with $\theta=\theta(n, d) \in[-34,2]$.

When n / d tends to infinity as $d \rightarrow \infty$, Theorem 1.1 provides the asymptotic formula

$$
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=\left((4 \pi+o(1)) \ln \frac{n}{d}\right)^{\frac{d-1}{2}}
$$

If $n /\left(d e^{d}\right) \rightarrow \infty$, then we have $\frac{d}{\ln \frac{n}{d}} \rightarrow 0$ and hence

$$
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=2^{d} \pi^{\frac{d-1}{2}} d^{-\frac{1}{2}} e^{\frac{d-1}{2} \ln \frac{n}{d}-\frac{d-1}{4} \frac{\ln \frac{n}{d}}{\ln \frac{d}{d}}+o(1)}
$$

as $d \rightarrow \infty$. In the case when n grows even faster such that $(\ln n) /(d \ln d) \rightarrow$ ∞, the asymptotic formula simplifies to the result (1) of Rényi, Sulanke [22] and Raynaud [21] for fixed dimension.

Corollary 1.2. Assume $P_{n}^{(d)}$ is a Gaussian polytope. If $(\ln n) /(d \ln d) \rightarrow \infty$, we have

$$
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=2^{d} \pi^{\frac{d-1}{2}} d^{-\frac{1}{2}}(\ln n)^{\frac{d-1}{2}}(1+o(1)) .
$$

There is a (simpler) counterpart of our main results stating the asymptotic behavior of the expected number of facets of $P_{n}^{(d)}$, if $n-d$ is small compared to d, that is, if n / d tends to one.

Theorem 1.3. Assume $P_{n}^{(d)}$ is a Gaussian polytope. Then for $n-d=o(d)$, we have

$$
\mathbb{E} f_{d-1}\left(P_{n}^{(d)}\right)=\binom{n}{d} 2^{-(n-d)+1} e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)+o(1)}
$$

as $d \rightarrow \infty$.
This complements a result of Affentranger and Schneider [2] stating the number of k-dimensional faces for $k \leq n-d$ and $n-d$ fixed,

$$
\mathbb{E} f_{k}\left(P_{n}^{(d)}\right)=\binom{n}{k+1}(1+o(1)),
$$

as $d \rightarrow \infty$.
In the next section we sketch the basic idea of our approach, leaving the technical details to later sections. In Section 3 we provide asymptotic approximations for the tail of the normal distribution. In Section 4 concentration inequalities are derived for the β-distribution. Finally, in Sections 5 and 6, Corollary 1.2 and Theorem 1.3 are proven.

2 Outline of the argument

For $z \in \mathbb{R}$, let

$$
\Phi(y)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{y} e^{-s^{2}} d s \text {, and } \phi(y)=\Phi^{\prime}(y)=\frac{1}{\sqrt{\pi}} e^{-y^{2}} .
$$

Our proof is based on the approach of Hug, Munsonius, and Reitzner [15]. In particular, [15, Theorem 3.2] states that if $n \geq d+1$ and X_{1}, \ldots, X_{n} are independent standard Gaussian points in \mathbb{R}^{d}, then

$$
\mathbb{E} f_{d-1}\left(\left[X_{1}, \ldots, X_{n}\right]\right)=\binom{n}{d} \mathbb{P}\left(Y \notin\left[Y_{1}, \ldots, Y_{n-d}\right]\right)
$$

where $Y, Y_{1}, \ldots, Y_{n-d}$ are independent real-valued random variables with $Y \stackrel{d}{=}$ $N\left(0, \frac{1}{2 d}\right)$ and $Y_{i} \stackrel{d}{=} N\left(0, \frac{1}{2}\right)$ for $i=1, \ldots, n-d$. This gives

$$
\begin{align*}
\mathbb{E} f_{d-1}\left(\left[X_{1}, \ldots, X_{n}\right]\right) & =2\binom{n}{d} \frac{\sqrt{d}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \Phi(y)^{n-d} e^{-d y^{2}} d y \tag{2}\\
& =2\binom{n}{d} \sqrt{d} \pi^{\frac{d-1}{2}} \int_{-\infty}^{\infty} \Phi(y)^{n-d} \phi(y)^{d} d y \tag{3}
\end{align*}
$$

Note that similar integrals appear in the analysis of the expected number of k-faces for values of k in the entire range $k=0, \ldots, d-1$. In our case, the analysis boils down to understanding the integral of $\Phi(y)^{n-d} \phi(y)^{d}$ over the real line. By substituting $(1-u)=\Phi(y)$, we obtain

$$
\int_{-\infty}^{\infty} \Phi(y)^{n-d} \phi(y)^{d} d y=\int_{0}^{1}(1-u)^{n-d} \phi\left(\Phi^{-1}(1-u)\right)^{d-1} d u
$$

Clearly, $n \geq d+2$ is the nontrivial range. When $n / d \rightarrow \infty,(1-u)^{n-d}$ is dominating, and we need to investigate the asymptotic behavior of $\phi\left(\Phi^{-1}(1-\right.$ $u)$) as $u \rightarrow 0$. We show that the essential term is precisely $2 u$. Hence, it makes sense to rewrite the integral as

$$
2^{d-1} \int_{0}^{1}(1-u)^{n-d} u^{d-1} \underbrace{\left((2 u)^{-1} \phi\left(\Phi^{-1}(1-u)\right)\right)^{d-1}}_{=: g_{d}(u)} d u
$$

For $x, y>0$, the Beta-function is given by $\boldsymbol{B}(x, y)=\int_{0}^{1}(1-u)^{x-1} u^{y-1} d u$. It is well known that for $k, l \in \mathbb{N}$ we have $\boldsymbol{B}(k, l)=\frac{(k-1)!(l-1)!}{(k+l-1)!}$. A random variable U is $\boldsymbol{B}_{(x, y)}$ distributed if its density is given by $\boldsymbol{B}(x, y)^{-1}(1-u)^{x-1} u^{y-1}$. With this, we have established the following identity:

Proposition 2.1.

$$
\begin{equation*}
\mathbb{E} f_{d-1}\left(\left[X_{1}, \ldots, X_{n}\right]\right)=2^{d} \pi^{\frac{d-1}{2}} d^{-\frac{1}{2}} \mathbb{E} g_{d}(U) \tag{4}
\end{equation*}
$$

where

$$
g_{d}(u)=\left((2 u)^{-1} \phi\left(\Phi^{-1}(1-u)\right)\right)^{d-1}
$$

and U is a $\boldsymbol{B}(n-d+1, d)$ random variable.
In Lemma 3.3 below we show that
as $u \rightarrow 0$. Because the Beta function is concentrated around $\frac{d}{n}$, see Lemma 4.1 and Lemma 4.2, this yields

$$
\mathbb{E} g_{d}(U) \approx\left(\ln \frac{n}{d}\right)^{\frac{d-1}{2}} e^{-\frac{d-1}{4} \frac{1 \ln }{\ln \frac{n}{d}}-(d-1) \frac{O(1)}{\ln \frac{n}{d}}}
$$

which implies our main result.

3 Asymptotics of the Φ-function

To estimate $\Phi(z)$, we need a version of Gordon's inequality [13] for the Mill's ratio:

Lemma 3.1. For any $z>1$ there exists $\theta \in(0,1)$, such that

$$
\Phi(z)=1-\frac{e^{-z^{2}}}{2 \sqrt{\pi} z}\left(1-\frac{\theta}{2 z^{2}}\right)
$$

Proof. It follows by partial integration that

$$
\int_{z}^{\infty} e^{-t^{2}} d t=\int_{z}^{\infty} 2 t e^{-t^{2}} \frac{1}{2 t} d t=\frac{e^{-z^{2}}}{2 z}-\int_{z}^{\infty} \frac{e^{-t^{2}}}{2 t^{2}} d t=\frac{e^{-z^{2}}}{2 z}-\frac{\theta e^{-z^{2}}}{4 z^{3}}
$$

which yields the lemma.

Lemma 3.2. For any $u \in\left(0, e^{-1}\right]$ there is a $\delta=\delta(u) \in(0,16)$ such that

$$
\begin{equation*}
\Phi^{-1}(1-u)=\sqrt{\ln u^{-1}-\frac{1}{2} \ln u^{-1}-\ln (2 \sqrt{\pi})+\frac{1}{4} \frac{\ln u^{-1}}{\ln u^{-1}}+\frac{\delta}{\ln u^{-1}}} \tag{5}
\end{equation*}
$$

Proof. It is useful to prove (5) for the transformed variable $u=e^{-t}$. We define

$$
\begin{equation*}
z(t)=\sqrt{t-\frac{1}{2} \ln t-\ln (2 \sqrt{\pi})+\frac{1}{4} \frac{\ln t}{t}+\frac{\delta(t)}{t}} \tag{6}
\end{equation*}
$$

which exists for $t>0$. In a first step we prove that this is the asymptotic expansion of $z=\Phi^{-1}\left(1-e^{-t}\right)$ as $z, t \rightarrow \infty$ with a suitable function $\delta=$ $\delta(t)=O(1)$. In a second step we show the bound on δ. Observe that $z \geq 1$ implies $t \geq \ln \Phi(-1))=-2,54 \ldots$ By Lemma 3.1, for $z \geq 1$

$$
\begin{equation*}
e^{-t}=1-\Phi(z)=\frac{1}{2 \sqrt{\pi} z} e^{-z^{2}}\left(1-\frac{\theta(z)}{2 z^{2}}\right) \tag{7}
\end{equation*}
$$

as $z \rightarrow \infty$ with some $\theta(z) \in(0,1)$, which immediately implies that $z=$ $z(t) \rightarrow \infty$ as $t \rightarrow \infty$. Equation (7) shows that $e^{t} \geq 2 \sqrt{\pi} z e^{z^{2}}$ and thus

$$
t \geq \ln (2 \sqrt{\pi})+\ln z(t)+z(t)^{2} \geq z(t)^{2}
$$

for $z \geq 1$. The function $z=z(t)$ is the inverse function we are looking for, if it satisfies

$$
\begin{equation*}
4 \pi z(t)^{2} e^{-2 t}=e^{-2 z(t)^{2}}\left(1-\frac{\theta(z)}{2 z^{2}}\right)^{2} \tag{8}
\end{equation*}
$$

We plug (6) into this equation. This leads to

$$
\begin{aligned}
t-\frac{1}{2} \ln t-\ln (2 \sqrt{\pi})+\frac{1 \ln t}{4} \frac{\delta(t)}{t} & =t e^{-\frac{1}{2} \frac{\ln t}{t}-2 \frac{\delta(t)}{t}}\left(1-O\left(t^{-1}\right)\right) \\
& =t-\frac{1}{2} \ln t-2 \delta(t)-O(1)
\end{aligned}
$$

and shows $-\ln (2 \sqrt{\pi})+o(1)=-2 \delta(t)-O(1)$. Thus the function $z(t)$ given by (6) in fact satisfies (7) and therefore it is the asymptotic expansion of the inverse function.

The desired estimate for δ follows from some more elaborate but elementary calculations. First we prove that $\delta \geq 0$. By (8) and because $e^{x} \geq 1+x$,

$$
\begin{aligned}
t-\frac{1}{2} \ln t-\ln (2 \sqrt{\pi})+\frac{1}{4} \frac{\ln t}{t}+\frac{\delta(t)}{t} & \geq t\left(1-\frac{1}{2} \frac{\ln t}{t}-2 \frac{\delta(t)}{t}\right)\left(1-\frac{\theta}{2 t}\right)^{2} \\
& \geq\left(t-\frac{1}{2} \ln t-2 \delta(t)\right)\left(1-\frac{\theta}{t}\right)
\end{aligned}
$$

which is equivalent to

$$
\delta(t) \geq \frac{\ln (2 \sqrt{\pi})-\theta-\frac{1-2 \theta \ln t}{4 t}}{\left(2+\frac{1-2 \theta}{t}\right)}>0
$$

for $t \geq 1$. On the other hand, again by (8),

$$
t \geq\left(t-\frac{1}{2} \ln t-\ln (2 \sqrt{\pi})+\frac{1 \ln t}{4} \frac{\delta(t)}{t}\right) e^{\frac{1}{2} \ln t+2 \frac{\delta(t)}{t}}
$$

and using $e^{x} \geq 1+x$ implies

$$
\delta(t) \leq \frac{\ln (2 \sqrt{\pi})+\frac{2 \ln (2 \sqrt{\pi})-1}{4} \frac{\ln t}{t}+\frac{1}{4} \frac{(\ln t)^{2}}{t}+\frac{1}{8} \frac{(\ln t)^{2}}{t^{2}}}{2-(2 \ln (2 \sqrt{\pi})-1) \frac{1}{t}-\frac{\ln t}{t}} \leq 16 .
$$

An asymptotic expansion for $\phi\left(\Phi^{-1}(1-u)\right)$ follows immediately:
Lemma 3.3. For any $u \in\left(0, e^{-1}\right]$ there is a $\delta=\delta(u) \in(0,16)$ such that

$$
g_{d}(u)=\left((2 u)^{-1} \phi\left(\Phi^{-1}(1-u)\right)\right)^{d-1}=\left(\ln u^{-1}\right)^{\frac{d-1}{2}} e^{-\frac{d-1}{4} \frac{\ln u^{-1}}{\ln u^{-1}-(d-1)} \frac{\delta}{\ln u^{-1}} .}
$$

4 Concentration of the β-distribution

A basic integral for us is the Beta-integral

$$
\begin{equation*}
\boldsymbol{B}(\alpha, \beta)=\int_{0}^{1}(1-x)^{\alpha-1} x^{\beta-1} d x=\frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!} \tag{9}
\end{equation*}
$$

Let $U \sim \boldsymbol{B}(\alpha, \beta)$ distributed. Then $\mathbb{E} U=\frac{\beta}{\alpha+\beta}$ and $\operatorname{var}(U)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$ Next we establish concentration inequalities for a Beta-distributed random variable around its mean. Observe that if $U \sim \mathbf{B}(\alpha, \beta)$, then $1-U \sim \mathbf{B}(\beta, \alpha)$. Hence we may concentrate on the case $\alpha \geq \beta$.

Lemma 4.1. Let $U \sim \boldsymbol{B}(a+1, b+1)$ distributed with $a \geq b$ and set $n=a+b$. Then

$$
\mathbb{P}\left(U \leq \frac{b}{n}-s \frac{a^{\frac{1}{2}} b^{\frac{1}{2}}}{n^{\frac{3}{2}}}\right) \leq \frac{3 e^{3}}{\pi} \frac{1}{s}\left(e^{-\frac{1}{6} s^{2}}-e^{-\frac{1}{6} \frac{n b}{a}}\right)_{+} .
$$

Proof. We have to estimate the integral

$$
\frac{1}{\boldsymbol{B}(a+1, b+1)} \int_{0}^{\frac{b-s}{n}(1-x)^{a} x^{b} d x \text { 京 }}
$$

For an estimate from above we substitute $x=\frac{b}{n}-\frac{y}{n} \sqrt{\frac{a b}{n}}$.

$$
\begin{aligned}
J_{-} & =\int_{0}^{\frac{b-s}{n-\sqrt{\frac{a b}{n}}}}(1-x)^{a} x^{b} d x \\
& =\frac{a^{a+\frac{1}{2}} b^{b+\frac{1}{2}}}{n^{n+\frac{3}{2}}} \int_{s}^{\sqrt{\frac{n b}{a}}}\left(1+y \sqrt{\frac{b}{a n}}\right)^{a}\left(1-y \sqrt{\frac{a}{b n}}\right)^{b} d y
\end{aligned}
$$

It is well known that

$$
\begin{equation*}
\ln (1+x)=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{k}}{k} \leq x-\frac{x^{2}}{6} \tag{10}
\end{equation*}
$$

for $x \in(-1,1]$. Since $a \geq b$, we have

$$
\left(1+y \sqrt{\frac{b}{a n}}\right)^{a}\left(1-y \sqrt{\frac{a}{b n}}\right)^{b} \leq e^{-\frac{1}{6} y^{2}}
$$

which implies

$$
\begin{aligned}
J_{-} & \leq \frac{a^{a+\frac{1}{2}} b^{b+\frac{1}{2}}}{n^{n+\frac{3}{2}}} \int_{s}^{\sqrt{\frac{n b}{a}}} e^{-\frac{1}{6} y^{2}} d y \\
& \leq \frac{3 a^{a+\frac{1}{2}} b^{b+\frac{1}{2}}}{n^{n+\frac{3}{2}}} \frac{1}{s}\left(e^{-\frac{1}{6} s^{2}}-e^{-\frac{1}{6} \frac{n b}{a}}\right) .
\end{aligned}
$$

In the last step we use Stirling's formula,

$$
\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} \leq n!\leq e n^{n+\frac{1}{2}} e^{-n}
$$

to see that

$$
\begin{equation*}
\frac{a^{a+\frac{1}{2}} b^{b+\frac{1}{2}}}{n^{n+\frac{3}{2}}} \leq \frac{e^{3}}{\pi} \boldsymbol{B}(a+1, b+1) \tag{11}
\end{equation*}
$$

Lemma 4.2. Let $U \sim \boldsymbol{B}(a+1, b+1)$ distributed with $a \geq b$ and set $n=a+b$. Then for $\lambda \geq 2$,

$$
\mathbb{P}\left(U \geq \lambda \frac{b}{n}\right) \leq \frac{e^{3}}{\pi} \lambda^{b} b^{\frac{1}{2}} e^{b+\frac{3}{2}} e^{-\lambda \frac{a b}{n}}
$$

Proof. We assume that $a \geq b$ and thus $a \geq \frac{n}{2}$. We have to estimate the probability

$$
\mathbb{P}\left(U \geq \lambda \frac{b}{n}\right) \leq \frac{1}{\boldsymbol{B}(a+1, b+1)} \int_{\lambda \frac{b}{n}}^{1}(1-x)^{a} x^{b} d x
$$

We substitute $x \rightarrow \frac{1}{a} x+\lambda \frac{b}{n}$ and obtain

$$
\begin{aligned}
\int_{\lambda \frac{b}{n}}^{1}(1-x)^{a} x^{b} d x & \left.\leq \int_{0}^{\infty} e^{-x-\lambda \frac{a b}{n}}\left(\frac{1}{a} x+\lambda \frac{b}{n}\right)\right)^{b} \frac{1}{a} d x \\
& \left.\leq a^{-(b+1)} e^{-\lambda \frac{a b}{n}} \int_{0}^{\infty} e^{-x}\left(x+\lambda \frac{a b}{n}\right)\right)^{b} d x
\end{aligned}
$$

The use of the binomial formula and the Gamma functions yields

$$
\begin{aligned}
\left.\int_{0}^{\infty} e^{-x}\left(x+\lambda \frac{a b}{n}\right)\right)^{b} d x & =\sum_{k=0}^{b}\binom{b}{k} \int_{0}^{\infty} e^{-x} x^{b-k}\left(\lambda \frac{a b}{n}\right)^{k} d x \\
& =\sum_{k=0}^{b}\binom{b}{k}(b-k)!\left(\lambda \frac{a b}{n}\right)^{k} \\
& \leq b\left(\lambda \frac{a b}{n}\right)^{b}
\end{aligned}
$$

because $b \leq \lambda \frac{a b}{n}$ for $a \geq \frac{n}{2} \geq b$ and $\lambda \geq 2$, and $\frac{1}{k!}\left(\lambda \frac{a b}{n}\right)^{k}$ is increasing for $k \leq\left(\lambda \frac{a b}{n}\right)$. Using (11) this gives

$$
\mathbb{P}\left(U \geq \lambda \frac{b}{n}\right) \leq \frac{e^{3}}{\pi}\left(1+\frac{b}{a}\right)^{a+\frac{3}{2}} b^{\frac{1}{2}} \lambda^{b} e^{-\lambda \frac{a b}{n}}
$$

and with $(1+x) \leq e^{x}$ the lemma.

5 The case $n-d$ large

In this section we combine Lemma 3.3 which gives the asymptotic behavior of $g_{d}(u)$ as $u \rightarrow 0$, with the concentration properties of the Beta function just obtained. We split our proof in two Lemmata.

Lemma 5.1. For $d \geq d_{0}=78$ and $n \geq e^{e} d$ we have

Lemma 5.2. For $d \geq d_{0}=78$ and $n \geq e^{e} d$ we have

$$
\mathbb{E} g_{d}(U) \geq e^{\frac{d-1}{2} \ln \left(\frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \frac{n}{d}}{\ln \frac{d}{d}}-(d-1) \frac{34}{\ln \frac{n}{d}}} e^{-\frac{2 e^{6}}{\pi} \sqrt{d} e^{-\frac{1}{10} d}} .
$$

These two bounds prove Theorem 1.1. The idea is to split the expectation into the main term close to $\frac{d}{n}$ and two error terms,

$$
\begin{aligned}
\mathbb{E} g_{d}(U)= & \mathbb{E} g_{d}(U) \mathbb{1}\left(U \leq e^{-2} \frac{d}{n}\right) \\
& +\mathbb{E} g_{d}(U) \mathbb{1}\left(U \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]\right) \\
& +\mathbb{E} g_{d}(U) \mathbb{1}\left(U \geq 2 \frac{d}{n}\right) .
\end{aligned}
$$

Proof of Lemma 5.2. Recall that U is $\boldsymbol{B}(n-d+1, d)$-distributed. Lemma 4.2 with $a=n-d$ and $b=d-1$ shows that

$$
\mathbb{P}\left(U \geq \lambda \frac{d}{n}\right) \leq \mathbb{P}\left(U \geq \lambda \frac{d-1}{n-1}\right) \leq \frac{e^{3}}{\pi} \lambda^{d-1}(d-1)^{\frac{1}{2}} e^{(d-1)+\frac{3}{2}} e^{-\lambda \frac{(n-d)(d-1)}{n-1}}
$$

because $\frac{d-1}{n-1}<\frac{d}{n}$. For $\lambda=2$ this gives

$$
\begin{equation*}
\mathbb{P}\left(U \geq 2 \frac{d}{n}\right) \leq \frac{e^{6}}{2 \pi} \sqrt{d} e^{\left(\ln 2-1+2 \frac{d}{n}\right) d} \leq \frac{e^{6}}{2 \pi} \sqrt{d} e^{-\frac{1}{10} d} \tag{12}
\end{equation*}
$$

for $n \geq 10 d$. The probability that U is small is estimated by Lemma 4.1 with $s=\left(1-e^{-2}\right) \sqrt{\frac{(d-1)(n-1)}{n-d}}$,

$$
\begin{aligned}
\mathbb{P}\left(U \leq e^{-2} \frac{d-1}{n-1}\right) & \leq \frac{3 e^{3}}{\pi}\left(1-e^{-2}\right)^{-1} \sqrt{\frac{n-d}{(d-1)(n-1)}} e^{-\frac{1}{6}\left(1-e^{-2}\right)^{2} \frac{(d-1)(n-1)}{n-d}} \\
& \leq \frac{e^{6}}{2 \pi} e^{-\frac{1}{10} d}
\end{aligned}
$$

for $d \geq 6$. Combining both estimates and using

$$
\begin{equation*}
\ln (1+x) \geq+2 x \tag{13}
\end{equation*}
$$

for $x \in\left[0, \frac{1}{2}\right]$, we have

$$
\begin{equation*}
\mathbb{P}\left(U \in\left[\frac{1}{2} \frac{d}{n}, 2 \frac{d}{n}\right]\right) \geq 1-\frac{e^{6}}{2 \pi} \sqrt{d} e^{-\frac{1}{10} d}-\frac{e^{6}}{2 \pi} e^{-\frac{1}{10} d} \geq e^{-\frac{2 e^{6}}{\pi} \sqrt{d} e^{-\frac{1}{10} d}} \tag{14}
\end{equation*}
$$

for $d \geq d_{0}=78$. (Observe that $\frac{2 e^{6}}{\pi} \sqrt{d_{0}} e^{-\frac{1}{10} d_{0}} \leq \frac{1}{2}$.) In the last step we compute

$$
\begin{aligned}
\min _{u \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]} g_{d}(u) & =\min _{u \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]} e^{\frac{d-1}{2} \ln u^{-1}-\frac{d-1}{4} \frac{\ln \ln u^{-1}}{\ln u^{-1}-(d-1) \frac{\delta}{\ln u^{-1}}}} \\
& \geq e^{\frac{d-1}{2} \ln \left(\frac{1}{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(\frac{1}{n} \frac{n}{d}\right)}{\left.\ln \frac{1}{2} \frac{n}{d}\right)}-(d-1) \frac{\max \delta}{\ln \left(\frac{1}{2} \frac{n}{d}\right)}}
\end{aligned}
$$

for $n \geq e^{e} d$. Here, note that $\frac{\ln x}{\ln x}$ is decreasing for $x \geq e^{e}$. Now using

$$
\ln \left(\frac{n}{d}\right) \geq \ln \left(\frac{1}{2} \frac{n}{d}\right)=\ln \left(\frac{n}{d}\right)+\ln \left(1-\frac{\ln 2}{\ln \left(\frac{n}{d}\right)}\right) \geq \ln \left(\frac{n}{d}\right)-\frac{2 \ln 2}{\ln \left(\frac{n}{d}\right)},
$$

and

$$
\frac{1}{\ln \left(\frac{1}{2} \frac{n}{d}\right)}=\frac{1}{\ln \left(\frac{n}{d}\right)-\ln 2} \leq \frac{1}{\ln \left(\frac{n}{d}\right)}\left(1+2 \frac{\ln 2}{\ln \left(\frac{n}{d}\right)}\right) \leq 2 \frac{1}{\ln \left(\frac{n}{d}\right)}
$$

for $n \geq e^{e} d$, we have

$$
\min _{u \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]} g_{d}(u) \geq e^{\frac{d-1}{2} \ln \frac{n}{d}-\frac{d-1}{4} \ln \frac{n}{d} \frac{n}{d}-(d-1) \frac{\delta^{\prime}}{\ln \frac{\pi}{d}}}
$$

with $\delta^{\prime}=\frac{3 \ln 2}{2}+2 \max \delta \in[0,34]$. Combinig this estimate with (14) we obtain

$$
\begin{aligned}
\mathbb{E} g_{d}(U) & \geq \min _{u \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]} g_{d}(u) \mathbb{E} \mathbb{1}\left(U \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]\right) \\
& \geq e^{\frac{d-1}{2} \ln \frac{n}{d}-\frac{d-1}{4} \frac{\ln \frac{n}{d}}{\ln \frac{d}{d}}-(d-1) \frac{\delta^{\prime}}{\ln \frac{\pi}{d}}} e^{-\frac{2 e^{6}}{\pi} \sqrt{d} e^{-\frac{1}{10} d}}
\end{aligned}
$$

for $d \geq d_{0}$ and $n \geq e^{e} d$.

Proof of Lemma 5.1. As an upper bound we have

$$
\begin{aligned}
\mathbb{E} g_{d}(U) \leq & \mathbb{E} g_{d}(U) \mathbb{1}\left(U \leq e^{-2} \frac{d}{n}\right) \\
& +\max _{u \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]} g_{d}(u) \mathbb{P}\left(U \in\left[e^{-2} \frac{d}{n}, 2 \frac{d}{n}\right]\right) \\
& +\underbrace{\max _{u \in\left[2 \frac{d}{n}, 1\right]} g_{d}(u)}_{\leq \max _{u \in\left[\frac{d}{n}, 1\right]} g_{d}(u)} \mathbb{P}\left(U \geq 2 \frac{d}{n}\right) \\
\leq & \mathbb{E} g_{d}(U) \mathbb{1}\left(U \leq e^{-2} \frac{d}{n}\right) \\
& +e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{\ln }\right)}{\ln \left(e^{2} \frac{n}{d}\right)}} \\
& +e^{\frac{d-1}{2} \ln \left(\frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(\frac{n}{n}\right)}{\ln \left(\frac{n}{d}\right)}} \frac{e^{6}}{2 \pi} \sqrt{d} e^{-\frac{1}{10} d}
\end{aligned}
$$

since $\delta \geq 0$, and where the last term follows from (12). For the first term we use that $\phi\left(\Phi^{-1}(\cdot)\right)$ is a symmetric and concave function and thus increasing on $\left[0, e^{-2} \frac{d}{n}\right]$, and that $\delta \geq 0$.

$$
\begin{aligned}
& \mathbb{E} g_{d}(U) \mathbb{1}\left(U \leq e^{-2} \frac{d}{n}\right) \\
& \quad \leq \frac{1}{\boldsymbol{B}(n-d+1, d)} \int_{0}^{e^{-2} \frac{d}{n}} e^{\frac{d-1}{2} \ln x^{-1}-\frac{d-1}{4} \frac{\ln x^{-1}}{\ln x^{-1}}}(1-x)^{n-d} x^{d-1} d x \\
& \quad \leq \frac{1}{\boldsymbol{B}(n-d+1, d)} e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{d}\right)}{\ln \left(e^{2} \frac{n}{d}\right)}}\left(e^{-2} \frac{d}{n}\right)^{d-1} \int_{0}^{\infty} e^{-(n-d) x} d x
\end{aligned}
$$

Now the remaining integration is trivial. We use Stirling's formula (11) to estimate the Beta-function and obtain

$$
\begin{aligned}
& \mathbb{E} g_{d}(U) \mathbb{1}\left(U \leq e^{-2} \frac{d}{n}\right) \\
& \quad \leq \frac{e^{3}}{\pi} \frac{(n-1)^{n+\frac{1}{2}}}{(n-d)^{n-d+\frac{3}{2}}(d-1)^{d-\frac{1}{2}}} e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{l}\right)}{\ln \left(e^{2} \frac{n}{d}\right)}}\left(e^{-2} \frac{d}{n}\right)^{d-1} \\
& \quad \leq e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{d}\right)}{\ln \left(e^{2} \frac{d}{d}\right)}} \frac{e^{5}}{\pi} e^{(d-1)+\frac{(d-1)}{(n-d)}\left(\frac{3}{2}\right)+1+\frac{1}{(d-1)} \frac{1}{2}-2 d} \\
& \quad \leq e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{d}\right)}{\ln \left(e^{2} \frac{d}{d}\right)}} \frac{e^{5}}{\pi} e^{-\frac{1}{10} d}
\end{aligned}
$$

e.g. for $n \geq e^{e} d$ and $d \geq 78$. Combining our results gives

$$
\begin{aligned}
\mathbb{E} g_{d}(U) \leq & e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{1}\right)}{\ln \left(e^{\left.\frac{n}{d}\right)}\right.} e^{5}} \frac{e^{5}}{\pi} e^{-\frac{1}{10} d} \\
& +e^{\frac{d-1}{2} \ln \left(e^{2} \frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(e^{2} \frac{n}{d}\right)}{\ln \left(e^{2} \frac{d}{d}\right)}} \\
& +e^{\frac{d-1}{2} \ln \left(\frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(\frac{n}{d}\right)}{\ln \left(\frac{d}{d}\right)}} \frac{e^{6}}{2 \pi} \sqrt{d} e^{-\frac{1}{10} d}
\end{aligned}
$$

In a similar way as above, we get rid of the involved constant e^{2} by using

$$
\ln \left(\frac{n}{d}\right) \leq \ln \left(e^{2} \frac{n}{d}\right)=\ln \left(\frac{n}{d}\right)+\ln \left(1+\frac{2}{\ln \left(\frac{n}{d}\right)}\right) \leq \ln \left(\frac{n}{d}\right)+\frac{2}{\ln \left(\frac{n}{d}\right)},
$$

and

$$
\frac{1}{\ln \left(e^{2} \frac{n}{d}\right)}=\frac{1}{\ln \left(\frac{n}{d}\right)}\left(1+\frac{2}{\ln \left(\frac{n}{d}\right)}\right)^{-1} \geq \frac{1}{\ln \left(\frac{n}{d}\right)}\left(1-\frac{2}{\ln \left(\frac{n}{d}\right)}\right) .
$$

This yields

$$
\begin{equation*}
\mathbb{E} g_{d}(U) \leq e^{\frac{d-1}{2} \ln \left(\frac{n}{d}\right)-\frac{d-1}{4} \frac{\ln \left(\frac{n}{d}\right)}{\ln \left(\frac{d}{d}\right)}+(d-1) \frac{\frac{3}{2}}{\ln \left(\frac{n}{d}\right)}}\left(1+\frac{e^{6}}{\pi} \sqrt{d} e^{-\frac{1}{10} d}\right) \tag{15}
\end{equation*}
$$

6 The case $n-d$ small

Finally, it remains to prove Theorem 1.3. The starting point here is again formula (2), together with the substitution $y \rightarrow \frac{y}{\sqrt{d}}$.

$$
\begin{align*}
\mathbb{E} f_{d-1}\left(\left[X_{1}, \ldots, X_{n}\right]\right) & =2\binom{n}{d} \frac{\sqrt{d}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \Phi(y)^{n-d} e^{-d y^{2}} d y \\
& =2\binom{n}{d} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \Phi\left(\frac{y}{\sqrt{d}}\right)^{n-d} e^{-y^{2}} d y \tag{16}
\end{align*}
$$

The Taylor expansion of Φ at $y=0$ is given by

$$
\Phi(y)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} y+\frac{1}{\sqrt{\pi}}\left(-\theta_{1}\right) e^{-\theta_{1}^{2}} y^{2}=\frac{1}{2}+\frac{1}{\sqrt{\pi}} y\left(1-\theta_{2} y\right)
$$

with some $\theta_{1}, \theta_{2} \in \mathbb{R}$ depending on y. Since $\Phi(y)$ is above its tangent at 0 for $y>0$ and below it for $y<0$, we have $0 \leq 1-\theta_{2} y \leq 1$. Further,

$$
\left|\theta_{2}\right| \leq \max _{\theta_{1}} \theta_{1} e^{-\theta_{1}^{2}}=\frac{1}{\sqrt{2 e}}
$$

Hence an expression for $\ln \Phi$ at $y=0$ is given by

$$
\ln \Phi(y)=-\ln 2+\ln \left(1+\frac{2}{\sqrt{\pi}} y\left(1-\theta_{2} y\right)\right) .
$$

We need again estimates for the logarithm, namely $\ln (1+x)=x-\theta_{3} x^{2}<x$ with some $\theta_{3}=\theta_{3}(x) \geq 0$. In addition, there exists $c_{3} \in \mathbb{R}$ such that $\theta_{3}<c_{3}$ if x is bounded away from -1 , for example, for $x \geq 2 \Phi(-1)-1$. This gives

$$
\ln \Phi(y) \leq-\ln 2+\frac{2}{\sqrt{\pi}} y-\frac{2}{\sqrt{\pi}} \theta_{2} y^{2}
$$

and

$$
\begin{aligned}
\ln \Phi(y) & =-\ln 2+\frac{2}{\sqrt{\pi}} y\left(1-\theta_{2} y\right)-\theta_{3} \frac{4}{\pi} y^{2} \underbrace{\left(1-\theta_{2} y\right)^{2}}_{\leq 1} \\
& \geq-\ln 2+\frac{2}{\sqrt{\pi}} y-\frac{2}{\sqrt{\pi}} \theta_{2} y^{2}-\theta_{3} \frac{4}{\pi} y^{2}
\end{aligned}
$$

with $\theta_{3}<c_{3}$ for $y \geq-1$. Thus the Taylor expansion of $\ln \Phi$ at $y=0$ is given by

$$
\ln \Phi(y)=-\ln 2+\frac{2}{\sqrt{\pi}} y-\theta_{4} y^{2}
$$

with some $\theta_{4}=\theta_{4}(y)>-\frac{1}{2}$, and there exists a $c_{4} \in \mathbb{R}$ with $\theta_{4} \leq c_{4}$ for $y \geq-1$. We plug this into (16) and obtain

$$
\int_{-\infty}^{\infty} \Phi\left(\frac{y}{\sqrt{d}}\right)^{n-d} e^{-y^{2}} d y=e^{-(n-d) \ln 2} \int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\theta_{4} \frac{n-d}{d} y^{2}-y^{2}} d y
$$

Since $\frac{n-d}{d} \rightarrow 0$ we assume that $1+\theta_{4} \frac{n-d}{d} \geq 1-\frac{1}{2} \frac{n-d}{d}>0$. As an estimate from above we have

$$
\begin{align*}
\int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\left(1+\theta_{4} \frac{n-d}{d}\right) y^{2}} d y & \leq \int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\left(1-\frac{1}{2} \frac{n-d}{d}\right) y^{2}} d y \\
& =e^{\frac{\frac{4}{\pi}\left(\frac{n-d}{}\right)^{2}}{4\left(1-\frac{1}{2} \frac{n-d}{d}\right)}} \int_{-\infty}^{\infty} e^{-\left(\frac{\frac{2}{\sqrt{\pi}}}{2 \sqrt{\left(1-\frac{1}{2} \frac{n-d}{d}\right)}}-\sqrt{\left(1-\frac{1}{2} \frac{n-d}{d}\right) y}\right)^{2}} d y \\
& =e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}\left(1+O\left(\frac{n-d}{d}\right)\right)} \frac{\sqrt{\pi}}{\sqrt{\left(1-\frac{1}{2} \frac{n-d}{d}\right)}} \\
& =\sqrt{\pi} e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)+O\left(\frac{n-d}{d}\right)} . \tag{17}
\end{align*}
$$

The estimate from below is slightly more complicated. For $y \geq-\sqrt{d}$ there is an upper bound c_{4} for θ_{4}. Using this we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\theta_{4} \frac{n-d}{d} y^{2}-y^{2}} d y & \geq e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}} \int_{\frac{1}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}}-\sqrt{d}}^{\infty} e^{-\left(\frac{1}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}}-y\right)^{2}-c_{4} \frac{n-d}{d} y^{2}} d y \\
& \geq e^{\frac{1(n-d)^{2}}{d}} \int_{-\infty}^{\sqrt{d}} e^{-y^{2}-c_{4} \frac{n-d}{d}\left(\frac{1}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}}-y\right)^{2}} d y
\end{aligned}
$$

Now we use $(a-b)^{2} \leq 2 a^{2}+2 b^{2}$ which shows that

$$
\begin{align*}
\int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\theta_{4} \frac{n-d}{d} y^{2}-y^{2}} d y & \geq e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)} \int_{-\infty}^{\sqrt{d}} e^{-\left(1+2 c_{4} \frac{n-d}{d}\right) y^{2}} d y \\
& =e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)} \frac{1}{\sqrt{\left(1+2 c_{4} \frac{n-d}{d}\right)}} \int_{-\infty}^{\sqrt{d\left(1+2 c_{4} \frac{n-d}{d}\right)}} e^{-y^{2}} d y \\
& \geq e^{\frac{1}{\pi} \frac{(n-d)^{2}}{d}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)+O\left(\frac{n-d}{d}\right)} \int_{-\infty}^{\sqrt{d}} e^{-y^{2}} d y \tag{18}
\end{align*}
$$

Recall the estimate for $\Phi(z)$ from Lemma 3.1,

$$
\begin{equation*}
\int_{-\infty}^{\sqrt{d}} e^{-y^{2}} d y=\sqrt{\pi} \Phi(\sqrt{d}) \geq \sqrt{\pi}\left(1-e^{-d}\right)=\sqrt{\pi} e^{O\left(e^{-d}\right)} . \tag{19}
\end{equation*}
$$

We combine equations (17), (18) and (19) and obtain

$$
\int_{-\infty}^{\infty} e^{\frac{2}{\sqrt{\pi}} \frac{n-d}{\sqrt{d}} y-\theta_{4} \frac{n-d}{d} y^{2}-y^{2}} d y=\sqrt{\pi} e^{\frac{1(n-d)^{2}}{\frac{d}{d}}+O\left(\frac{(n-d)^{3}}{d^{2}}\right)+O\left(\frac{n-d}{d}\right)+O\left(e^{-d}\right)}
$$

which yields Theorem 1.3.
Acknowledgement: We would like to thank Imre Bárány and Gergő Nemes for fruitful discussions.

References

[1] F. Affentranger: The convex hull of random points with spherically symmetric distributions. Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 359-383.
[2] F. Affentranger R. Schneider: Random projections of regular simplices. Discrete Comput. Geom. 7 (1992), 219-226.
[3] Y.M. Baryshnikov, R.A. Vitale: Regular simplices and Gaussian samples. Discrete Comput. Geom. 11 (1994), 141-147.
[4] I. Bárány, V.H. Vu: Central limit theorems for Gaussian polytopes. Ann. Probab. 35 (2007), 1593-1621.
[5] I. Bárány, C. Thäle: Intrinsic volumes and Gaussian polytopes: the missing piece of the jigsaw. Doc. Math. 22 (2017), 1323-1335..
[6] P. Calka, J.E. Yukich: Variance asymptotics and scaling limits for Gaussian polytopes. Probab. Theory Related Fields 163 (2015), 259-301.
[7] E.J. Candés, J. Romberg, T. Tao: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2006), 489-509.
[8] E.J. Candés, T. Tao: Decoding via linear programming. IEEE Trans. Inform. Theory 51 (2005), 4203-4215.
[9] E.J. Candés, T. Tao: Near optimal signal recovery from random projections and universal encoding strategies. IEEE Trans. Info. Theory 52 (2006), 5406-5425.
[10] D.L. Donoho: High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput. Geom. 35 (2006), 617-652.
[11] D.L. Donoho, J. Tanner: Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Amer. Math. Soc. 22 (2009), 1-53.
[12] B. Fleury: Poincaré inequality in mean value for Gaussian polytopes. Probab. Theory Related Fields 152 (2012), 141-178.
[13] R.D. Gordon: Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Statist. 12 (1941), 364-366.
[14] J. Grote, C. Thäle: Gaussian polytopes: A cumulant-based approach. J. Complexity 47 (2018), 1-41
[15] D. Hug, G.O. Munsonius, M. Reitzner: Asymptotic mean values of Gaussian polytopes. Beitr. Algebra Geom. 45 (2004), 531-548.
[16] D. Hug, M. Reitzner: Gaussian polytopes: Variances and limit theorems. Adv. in Appl. Probab. 37 (2005), 297-320.
[17] Z. Kabluchko, C. Thäle: Monotonicity of expected f-vectors for projections of regular polytopes. Proc. Amer. Math. Soc. 146 (2018), 12951303.
[18] Z. Kabluchko, D. Zaporozhets: Expected volumes of Gaussian polytopes, external angles, and multiple order statistics. Trans. Amer. Math. Soc. 372 (2019), 1709-1733.
[19] Z. Kabluchko, D. Zaporozhets: Absorption probabilities for Gaussian polytopes and regular spherical simplices. Adv. in Appl. Probab. 52 (2020), 588-616.
[20] R. Mendoza-Smith, J. Tanner, F. Wechsung: A robust parallel algorithm for combinatorial compressed sensing. IEEE Transactions on Signal Processing. IEEE Trans. Signal Process. 66 (2018), 2167-2177.
[21] H. Raynaud: Sur lénveloppe convexe des nuages de points aléatoires dans \mathbb{R}^{n}. J. Appl. Probab. 7 (1970), 35-48.
[22] A. Rényi, R. Sulanke: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrsch. Verw. Gebiete 2 (1963), 75-84.
[23] A.M. Vershik, P.V. Sporyshev: Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem. Selecta Math. Soviet. 11 (1992), 181-201.

[^0]: *Alfréd Rényi Institute of Mathematics, Budapest, Hungary, boroczky.karoly.j@renyi.hu
 ${ }^{\dagger}$ supported by Hungarian Grant NKFIH 132002
 ${ }^{\ddagger}$ Department of Economics and Business, Pompeu Fabra University, Barcelona, Spain, gabor.lugosi@upf.edu
 ${ }^{\text {§ }}$ ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
 ${ }^{\text {I Barcelona Graduate School of Economics }}$
 ${ }^{\|}$Supported by the Spanish grant PID2022-138268NB-I00, financed by MCIN/AEI/10.13039/501100011033, FSE+MTM2015-67304-P, and FEDER, EU.
 ${ }^{* *}$ Institut für Mathematik, Universität Osnabrück, Germany, matthias.reitzner@uniosnabrueck.de
 ${ }^{\dagger} \dagger$ Supported by the German Research Foundation DFG-GRK 1916.

