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Abstract

The fidelity bandits problem is a variant of the K-armed bandit problem in which the
reward of each arm is augmented by a fidelity reward that provides the player with an
additional payoff depending on how ‘loyal’ the player has been to that arm in the past. We
propose two models for fidelity. In the loyalty-points model the amount of extra reward
depends on the number of times the arm has previously been played. In the subscription
model the additional reward depends on the current number of consecutive draws of the
arm. We consider both stochastic and adversarial problems. Since single-arm strategies are
not always optimal in stochastic problems, the notion of regret in the adversarial setting
needs careful adjustment. We introduce three possible notions of regret and investigate
which can be bounded sublinearly. We study in detail the special cases of increasing,
decreasing and coupon (where the player gets an additional reward after every m plays of
an arm) fidelity rewards. For the models which do not necessarily enjoy sublinear regret,
we provide a worst case lower bound. For those models which exhibit sublinear regret, we
provide algorithms and bound their regret.

Keywords: multi-armed bandit problem, fidelity reward, regret minimization

1. Introduction

Consider the problem of a worker searching for a good restaurant for their daily lunches.
They are willing to explore the neighborhood in order to find the best restaurant, but also
want to have good lunches. This is well modeled as a bandit problem, where the worker has
to balance exploration (trying out new or unfamiliar restaurants), and exploitation (having
a nice lunch at a favored place). However, the overall experience and satisfaction of the
worker may not depend solely on the chosen restaurant, but also on whether the worker is a
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regular at this restaurant. Indeed, being loyal often leads to better experiences (e.g., waiters
are more friendly, or the customer gets a free meal once in a while). We call the bonus from
this loyalty the fidelity reward. In other situations, fidelity can have the opposite effect on
the reward. For example, restaurants may offer free drinks to new customers, or customers
may get bored of visiting the same restaurant. In this case the fidelity reward decreases.

We consider multi-armed bandit problems where the reward of each arm is augmented
by a fidelity reward that provides an additional payoff depending on how loyal the player
has been to a given arm. We consider two models for the fidelity rewards, namely the
loyalty-points model and the subscription model.

Under the loyalty-points model, the fidelity reward is a (possibly arm-specific) function
of the total number of past plays of the arm. An important feature of these loyalty points
is that once collected, they stay in the bank. This corresponds to the common practice of
loyalty programs in marketing and retail, where the customer is rewarded for loyal behavior
(e.g., the loyalty schemes offered by airline companies or grocery stores). However, in other
cases, loyalty may cause the reward to decrease. For example in recommendation systems,
users grow bored of repeatedly seeing the same content. In the stochastic bandit setting,
the latter problem is known as rotting bandits and has been studied by Levine et al. (2017),
Seznec et al. (2019, 2020) and others. In this paper, we extend this to adversarial rewards
and also consider fidelity functions that are not necessarily decreasing functions of the
number of past plays.

In the subscription model, the fidelity reward is a (possibly arm-specific) function of the
current number of consecutive draws of the arm. In particular, this means that if a player
stops playing an arm, the next time they play it they will have to start the subscription
again from scratch. This model is more realistic in situations where a user pays for a
subscription, such as for a mobile phone plan or a gym membership. Here, the benefit of
using a particular service increases with the length of continuous use. Again, there may be
scenarios where continuously selecting the same option has a negative impact, for example
when customers grow bored of going to the same restaurant every day, or where the benefit
is only received after selecting an option a given number of consecutive times, such as when
using a weekly metro pass.

The aim of this paper is to understand how the presence of fidelity rewards effects the
difficulty of the multi-armed bandit problem. Our main interest is in the adversarial setting,
where we assume that the base rewards are generated by some oblivious adversary and the
player receives additional fidelity rewards depending on their past actions. We wish to
develop policies with low regret, defined as the cumulative difference of rewards between
the policy and some baseline algorithms. Clearly, the best baseline selects the best possible
sequence of T actions. However, even in the standard adversarial bandits problem without
any additional fidelity rewards, it is impossible to compete with such a strong baseline.
Instead, it is common to take inspiration from the stochastic setting, where it is known that
an optimal policy is a single-arm policy that constantly plays the best arm, and compare
the performance of an adversarial bandits algorithm to the best single-arm strategy. In
the fidelity bandits problem, we also define the regret relative to a class of policies that is
optimal in the stochastic problem. However, here the addition of fidelity rewards means
that the optimal policy class in the stochastic setting may be more complex. Moreover,
there may be multiple optimal policies for the stochastic problem, thus complicating the
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definition of regret in the adversarial setting. The first contribution of this paper is to
define several natural definitions of regret for the adversarial fidelity bandits problem and
to understand the relationship between them.

With these definitions of regret in hand, we aim to understand in which K-armed
adversarial fidelity bandits problems is it possible to achieve regret that is sublinear in T . In
the loyalty points problem, we show that when the fidelity rewards are increasing functions
of the number of previous plays, sublinear regret is not possible for any definition of the
regret that we consider. However, when the fidelity rewards are decreasing functions of the
number of past plays, sublinear regret is possible for some definitions of regret in the loyalty
points model. To show this, we introduce a bandit algorithm that exploits the concavity of
the cumulative fidelity reward in this setting and achieves regret scaling with K

√
T . Lastly,

in the so called ‘coupons’ model where the fidelity reward is only received every ρj plays of
an arm, we show that it is possible to achieve sub-linear regret and provide an algorithm
with regret scaling with

√
KT in the loyalty points setting. For the subscription model,

where the fidelity rewards are functions of the number of consecutive plays of the arm,
our results for the increasing case are the same as for the loyalty points model. Indeed,
we show that there exist some settings with increasing fidelity functions where the regret
must be linear. In the decreasing subscription model, the results are more positive. Indeed,
here we are able to provide an algorithm whose regret is sublinear, and in particular is
of order (KT )2/3. We also show that sublinear regret is possible in the coupons model
with subscription fidelity reward, although here the regret scales multiplicatively with the
periodicity of the coupon function. Our results are summarized in Tables 1 and 2. For
completeness, we also provide a near-optimal algorithm for the stochastic fidelity bandits
problem in the cases where no such algorithm exists in the literature.

1.1 Related work

In the loyalty points bandits problem, the reward changes depending on the past plays of
each arm. Thus, the loyalty points bandits problem can be seen as an instance of the rested
bandits problem introduced by Whittle (1988) which has been studied in the stochastic
reward setting. We are not aware of any work on the rested bandits problem with adversarial
rewards. In the stochastic rested bandits problem, it is classically assumed that the reward
of each arm is a stochastic process which only transitions to the next value when the arm is
played. Tekin and Liu (2010, 2012) considered Markov processes. A more general process
was considered by Cortes et al. (2017) but they considered weaker definitions of regret, and
compared the reward of their algorithm to the best single arm strategy, or the best arm
given the history of actions taken by their algorithm.

The rotting bandits problem studied by Levine et al. (2017); Seznec et al. (2019, 2020);
Bouneffouf and Féraud (2016) is another instance of the stochastic rested bandits problem.
This problem is equivalent to the loyalty points bandit problem with stochastic base rewards
and decreasing fidelity reward. Indeed, here the expected reward decreases as a function
of the number of plays of an arm. The best result that we are aware of for this problem is
from Seznec et al. (2019, 2020) who show that the regret can be bounded by Õ(

√
KT ). For

this, Seznec et al. (2020) present a natural UCB style algorithm (c.f. Auer et al. (2002a))
which does not use any knowledge of the fidelity functions. The stochastic loyalty points
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bandits problem with increasing fidelity reward was also independently studied by Metelli
et al. (2022) in concurrent work.

In the subscription bandits problem, the reward at each time step depends on the
previous plays of multiple arms. In particular, when we stop playing an arm after having
played it consecutively for some number of steps, its reward changes even though it is not
played, in addition to the reward of the played arm changing. This problem therefore does
not exactly fit into either the classical rested or restless bandit framework, especially since
while the restless bandit allows for the reward of an arm to change independently of whether
it was played, this change is typically assumed to depend on the environment and not on the
actions of the player, see Whittle (1988); Slivkins and Upfal (2008); Garivier and Moulines
(2011); Besbes et al. (2014). We are not aware of any prior work studying this particular
problem neither in the stochastic nor in the adversarial setting.

The stochastic bandit problem where the reward depends on the time between consecu-
tive plays of an arm has been studied by Immorlica and Kleinberg (2018); Pike-Burke and
Grunewalder (2019); Cella and Cesa-Bianchi (2020); Basu et al. (2019). This is potentially
another form of measuring loyalty to an arm but is distinct to the models considered in this
paper.

Lastly, we observe that standard adversarial bandit algorithms are not sufficient to deal
with the reward structure in the fidelity bandits problem. These algorithms are typically
designed to be competitive with the best single arm strategy which may be far from optimal
in the fidelity bandit problem. Moreover, the addition of the fidelity rewards means that
it is possible for the adversary to pick rewards to make either getting high reward or high
fidelity reward impossible. Similarly, algorithms for learning in Markov Decision Processes
(MDPs) with adversarial rewards (e.g., Even-Dar et al. (2009); Zimin and Neu (2013)) are
not applicable. These require the MDP to be episodic or irreducible.

2. Problem setup

In the classical K-armed bandit problem, a player sequentially interacts with the environ-
ment. Let [K] = {1, . . . ,K} denote the set of arms. Then in each round, t, the player selects
an arm Jt ∈ [K], possibly using the previous observations and incorporating an element of
randomness into their decision. The environment then returns a reward Xt,Jt depending
on which arm was selected. The player’s aim is to select arms that maximize their total
reward over T rounds of the bandit game.

In the stochastic multi-armed bandit problem, the rewards Xt,j for arm j are generated
i.i.d. from an underlying reward distribution. In particular, E[Xt,j ] = µj for all 1 ≤ t ≤ T .
We assume throughout the paper that the rewards are bounded in [0, 1]. In the adversarial
multi-armed bandit problem, we work under the model of an oblivious adversary. In this
model, all rewards Xt,j ∈ [0, 1] for j ∈ [K] and t ∈ [T ] are chosen by an adversary prior to
starting the game. At round t ∈ [T ] of the game, the player selects an arm Jt ∈ [K] and
the reward Xt,Jt is revealed to the player, while the rewards Xt,j with j 6= Jt remain hidden
forever.

In this paper, we consider a modification of the standard multi-armed bandit problem
to account for extra fidelity rewards. We focus on two models; the loyalty-points model and
the subscription model. In both these models, after playing arm Jt = j at time t, the player
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receives reward of the form,

Yt,j = Xt,j + ψj(Ht−1) ,

where ψj(Ht−1) is some known, arm-specific function of the player’s history Ht−1 = {J1,
Y1,J1 , X1,J1 . . . , Jt−1, Yt−1,Jt−1 , Xt−1,Jt−1}. For ease of expression, we often refer to the Xt,j ’s
as the base rewards and the ψj(Ht−1)’s as the fidelity rewards. Therefore the reward Yt,j
received at time t is composed of the base reward from playing arm j at time t and the
additional fidelity reward.

In the loyalty points model, the reward depends on the number of past plays of each
arm. Let Nt,j =

∑t
s=1 1{Js=j} denote the number of plays of arm j up to time t ≥ 1 and let

N0,j = 0. (Here, and in the rest of the paper, 1{·} is used to denote the indicator function.)
Then, for all arms j, ψj(Ht) = fj(Nt,j) where each fj is a function defined on the set of
natural numbers, taking values in [0, 1]. Hence, the reward the player receives from playing
arm j at time t is

Yt,j = Xt,j + fj(Nt−1,j) .

In the subscription model, the fidelity reward depends on the current number of con-
secutive plays of the arm. Formally, define

Qt,j = 1{Jt=j}(t−max{s ≤ t : Js = j, Js−1 6= j}) .

Note that since only one arm can be played per time step, Qt,j = 0 for all arms j 6= Jt−1.
In this case, ψj(Ht−1) = fj(Qt,j) for some known, arm-specific function of the number of
consecutive plays up to time t − 1 and fj : N → [0, 1] for all arms j ∈ [K]. The reward
received from playing arm j at time t is then,

Yt,j = Xt,j + fj(Qt,j) .

In this paper we assume that the fidelity functions fj are known to the player. In
addition, we assume that the time horizon T is also known in advance. We also remark
that in both models, when ψj ≡ 0 (so fj ≡ 0) for all j ∈ [K], the problem reduces to the
classical multi-armed bandit problem.

2.1 Regret

We now turn to the problem of measuring the performance of an algorithm in the fidelity
bandits problem. Typically, the performance of bandit algorithms is measured in terms
of their regret, where the regret is the total difference in reward accumulated by playing
according to some optimal policy and that from playing the algorithm of interest. In order
to properly define meaningful notions of regret, we discuss the stochastic and adversarial
versions of the problems separately.

2.1.1 Regret in the stochastic bandit problem

Consider first the stochastic variant of the problem. Recall that here, the base reward
(without the fidelity component), associated to arm j at time t is a random variable Xt,j ,
where the Xt,j are independent random variables taking values in [0, 1], and E[Xt,j ] = µj
for all t ∈ [T ] and j ∈ [K].
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A policy π of the player is a sequence (πt)
T
t=1 where πt is a mapping from the history of

arms and rewards, Ht−1 = {π1, Y1,π1 , X1,π1 . . . , πt−1, Yt−1,πt−1 , Xt−1,πt−1}, to the set [K] of
arms. We write πt to denote the choice of arm made by the policy π at time t. The history
Ht depends on the chosen arms π1, . . . , πt. The fidelity reward depends on the history of
actions chosen according to policy π so we write Ht(π) for the generated history under
policy π up to time t.

The regret of a policy is defined as the difference between the cumulative reward of the
policy and that of the best sequence of arm choices. To define the regret formally, let [K]T

be the set of sequences of arms of the form j = (j1, . . . , jT ) with j1, . . . , jT ∈ [K] for horizon
T ∈ N. We write ST (j) =

∑T
t=1 Yt,jt for the cumulative reward of the sequence j. We then

define the regret of a candidate policy π as

max
j∈[K]T

ST (j)− ST (π) . (1)

To avoid complications caused by random fluctuations, instead of the regret defined
above, it is customary to consider the so-called pseudo-regret (see Bubeck and Cesa-Bianchi
(2012); Lattimore and Szepesvári (2020)). In this notion, the base reward of each arm Xt,j

is replaced by its expectation µj . Hence, the pseudo cumulative reward of policy π is defined

as S̃T (π) =
∑T

t=1(µπt + ψπt(Ht−1(π))). Similarly, for a competing reference sequence j, we

write S̃T (j) =
∑T

t=1(µjt + ψjt(Ht−1(j))). We then define the pseudo-regret as

RT (π) = max
j∈[K]T

S̃T (j)− S̃T (π) . (2)

We often write RT = RT (π) when the policy π is clear from the context. Note that S̃T (π)
may still be random since the arm choices of the policy π influence the fidelity rewards.
On the other hand, for each sequence j ∈ [K]T , the pseudo cumulative reward S̃T (j) is
deterministic.

Note that in the classical multi-armed bandit problem, the regret is usually defined
with respect to a much smaller reference class, containing only single-arm strategies. These
strategies are constant sequences of the form j = (j, j, . . . , j) for j ∈ [K]. The two defini-
tions are, in fact, equivalent in this problem. To see this, simply notice that in the absence
of fidelity rewards, there is always a single-arm strategy that maximizes the expected cu-
mulative reward (i.e., j∗ ∈ argminj∈[K] µj).

In the presence of fidelity rewards, single-arm strategies are not necessarily optimal.
Depending on the nature of the fidelity reward functions fj , one may still be able to deter-
mine a subclass J ⊂ [K]T that guarantees that, regardless of the distribution of the base
rewards (that is, regardless of the values of µ1, . . . , µK), there always exists j′ ∈ J such
that S̃T (j′) = maxj∈[K]T S̃T (j). In other words,

RT (π) = sup
j∈J

S̃T (j)− S̃T (π) .

We call such a subset sufficient. In solving the regret minimization problem, it is important
to understand the sufficient subsets J that allow one such a reduction. In particular, in each
case it is helpful to identify minimal sufficient sets of sequences. For a particular fidelity
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reward f , a set J is minimal if for all proper subsets J ′ ⊂ J there exists a distribution of
the arms such that maxj∈J ′ S̃T (j) < maxj∈J S̃T (j). We define

Cf = {J ⊂ [K]T : J is minimal and sufficient}

to be the class of minimal sufficient sets for given fidelity functions f . For example, for the
classical multi-armed bandit problem when fj ≡ 0, the class Cf of minimal and sufficient sets
contains just one set, namely the set J0 = {(j, j, . . . , j) : j ∈ [K]} of single-arm strategies.

2.1.2 Regret in the adversarial bandit problem

Next we discuss the possible notions of regret in the adversarial setting. We work with an
oblivious adversary. This means that the entire sequence of base rewards (Xt,j)t∈[T ],j∈[K] is
fixed before play starts. In each round t, only the reward corresponding to the arm chosen
by the player is revealed.

In the adversarial setting the player is allowed to randomize the arm selection. (Without
randomization, no nontrivial guarantees exist even for the classical multi-armed bandit prob-
lem.) Formally, a player’s policy π is a sequence (πt)

T
t=1 where πt is a measurable mapping

from the history of arms and rewards Ht−1 = {J1, Y1,J1 , X1,J1 . . . , Jt−1, Yt−1,Jt−1 , Xt−1,Jt−1}
to the set ∆K , the standard simplex in RK . At time t, an arm Jt is chosen at random,
according to the distribution πt(Ht−1).

While in the stochastic multi-armed bandit problem the definition of regret is quite
natural, the adversarial case is significantly more complex. In the stochastic setting, we
define the regret as the difference between the (pseudo) cumulative reward of the player
and that of the best sequence of actions. Adopting this notion to the adversarial framework
often leads to trivialities. To see this, just consider the case of the classical adversarial
multi-armed bandit problem where fj ≡ 0 for all arms j. In this case, the optimal policy
is to play the arm with highest reward at each time step (jt ∈ argmaxj Xt,j). Hence, the

player would need to compete with all possible KT sequences of arm choices. Obviously,
achieving a sublinear regret with respect to this class of strategies is hopeless.

One usually gets around this problem by reducing the class of comparison policies (Auer
et al. (1995)). The usual definition of regret in the absence of fidelity rewards is with respect
to the class of single-arm strategies. This definition is natural since single-arm strategies are
always optimal in the classical stochastic bandit problem. With this definition of regret, the
adversarial multi-armed problem may be considered as a “robust” version of its stochastic
counterpart.

As explained in the previous sections, in the stochastic fidelity bandits problem, com-
peting against the best single-arm strategy is often too restrictive. It is clear that in many
cases, it is necessary to switch arms in order to get good reward. This means that the best
single arm strategy is no longer a reasonable baseline. Instead, we adopt the same philoso-
phy as described above, and use knowledge of what makes a good sequence in the stochastic
setting to define the regret in the adversarial case. In particular, to define the regret for
the adversarial case—for given fidelity functions fj—, we first determine a minimal set of
sequences of arm pulls that can be optimal for the stochastic problem for some distribution.
These are the so-called sufficient and minimal sets defined in Section 2.1.1.

Then we define the regret as the difference of the cumulative reward of the player and
that of the largest reward one could achieve by following one of the policies in a sufficient
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and minimal comparison class. When there is only one sufficient and minimal set (i.e., the
class Cf contains a single set J ), then the (pseudo) regret is defined simply as

RT (π) = max
j∈J

ST (j)− S̃T (π) , (3)

where ST (j) =
∑T

t=1(Xt,jt + ψjt(Ht−1(j))) is the cumulative reward of a sequence j =

(j1, . . . , jT ) and S̃T (π) = EST (J) is the expected cumulative reward of policy π. Here
J = (J1, . . . , JT ) denotes the sequence of randomized arm choices of policy π and the
expectation is with respect to the randomizations of the policy.

In some cases of fidelity rewards, there are multiple sets of minimal sufficient sets of
sequences. In such cases there are various natural ways of defining regret. We single out
two possibilities that we call the weak and strong regrets. The weak regret is defined as

R[
T (π) = min

J∈Cf
max
j∈J

ST (j)− S̃T (π) ,

while the strong regret is

R]
T (π) = max

J∈Cf
max
j∈J

ST (j)− S̃T (π) = max
j∈

⋃
J∈Cf

J
ST (j)− S̃T (π) .

Clearly, minimizing the strong regret is a more ambitious goal, since the player competes
with a larger set of sequences of arms. On the other hand, having a small weak regret means
that the policy is able to compete against at least one minimal sufficient set of sequences
(whose identity may depend on the base rewards (Xt,j)). Of course, if Cf contains only
one set, then the weak and strong notions coincide and reduce to the definition (3). In
particular, note that when fj ≡ 0, both the weak and strong regret correspond to the
notion of regret classically considered in standard adversarial bandits problem.

2.1.3 Mean regret for loyalty points bandits

For loyalty points bandits, there is a third notion of regret that is perhaps more natural than
the weak and strong regret. This is defined by observing that in the stochastic loyalty points
model, the total reward only depends on the number of plays of each arm and the average
base reward, and not on the order of plays. We may replicate this in the adversarial setting
using empirical averages. We call this the mean regret. Unfortunately, such a definition of
regret is not suitable for the subscription model where the total reward inherently depends
on the ordering, since the subscription model only offers fidelity reward for consecutive plays
of an arm.

If a sequence j = (j1, . . . , jT ) ∈ [K]T plays arm j NT,j(j) =
∑T

t=1 1{jt=j} times up
to time T then in the stochastic analogue of loyalty points bandits problem, its (pseudo)
reward is

S̃T (j) =

K∑
j=1

µjNT,j(j) +

NT,j(j)∑
n=1

fj(n)

 =

K∑
j=1

µj (NT,j(j) + Fj(NT,j(j)))

where Fj(n) =
∑n

t=1 fj(t) are the cumulative fidelity rewards and µj is the expected value
of the base reward of arm j. Hence, for given fidelity functions f1, . . . , fK , in the stochastic
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problem, S̃T (j) only depends on the number of times each arm is played and the expected
base rewards.

To shorten notation, introduce the vector N = (N1, . . . , NK) of nonnegative integers
satisfying

∑K
j=1Nj = T . N is called the type of the sequence j if

∑T
t=1 1{jt=j} = Nj for all

j ∈ [K]. Let µ = (µ1, . . . , µK) ∈ [0, 1]K denote the vector of means of the base rewards of
the K arms and define,

σ(µ,N)
def.
=

K∑
j=1

(Njµj + Fj(Nj)) .

Then, the cumulative reward of the optimal sequence of actions is maxj∈[K]T S̃T (j) =
maxN σ(µ,N) and the regret for the stochastic problem is RT (π) = maxN σ(µ,N) −
S̃T (π). We introduce some definitions to help relate these types to the minimal sufficient
sets. Fix some fidelity reward functions f1, . . . , fK . For a given µ ∈ [0, 1]K , let N (µ) =
{N : σ(µ,N) = maxN ′ σ(µ,N ′)} be the set of optimal types. We call a set B of types a
covering set if for all µ ∈ [0, 1]K , N (µ) ∩B 6= ∅. A covering set B is minimal if no proper
subset of B is a covering set. Each minimal sufficient set of sequences J ∈ Cf is such that
J contains exactly one sequence of each type of a minimal covering set B. We say that a
type N is admissible if N ∈

⋃
µ∈[0,1]K N (µ).

In the adversarial bandit problem, it is natural to replace the values µj by the empirical
averages

µ̂T,j =
1

T

T∑
t=1

Xt,j ,

since these relate to the long run rewards. We then set maxN σ(µ̂T ,N) as a goal for the
learner, where µ̂T = (µ̂T,1, . . . , µ̂T,K). With this in mind, we define the mean regret as

R\
T (π) = max

N
σ(µ̂T ,N)− S̃T (π) = max

N∈NK :
∑

j∈[K]Nj=T

K∑
j=1

(Njµ̂T,j + Fj(Nj))− S̃T (π) .

Hence, the type N maximizing σ(µ̂T ,N) may be interpreted as the “best response” to
the (unknown) empirical means of the outcomes (in hindsight). This point of view is often
adopted in the theory of repeated games, see Hart and Mas-Colell (2000, 2001); Foster and
Vohra (1999). This gives the mean regret a natural interpretation that is a generalization
of most usual notions of regret.

The next proposition establishes the relationship between the weak, strong, and mean
regrets.

Proposition 1 In the loyalty points model, regardless of the fidelity rewards and the base
rewards, for each policy π,

R[
T (π) ≤ R\

T (π) ≤ R]
T (π) .

In particular, if there is only one minimal and sufficient set J , then all three regrets are
equal to (3).

Proof The stated inequalities may be equivalently written as

min
J∈Cf

max
j∈J

ST (j) ≤ max
N

σ(µ̂T ,N) ≤ max
J∈Cf

max
j∈J

ST (j) .
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Increasing Decreasing Coupons

Stochastic
E[RT ] = Õ(K1/3T 2/3) E[RT ] = Õ(

√
KT ) E[RT ] = Õ(

√
KT )

[ Section 3.2 ] [ Seznec et al. (2020) ] [ Section 5.2 ]

Adversarial

E[R]
T ] = Ω(T )

E[R[
T ] = Ω(T )

E[R\
T ] = Ω(T )

E[R]
T ] = Ω(T )

E[R[
T ] = Õ(K

√
T )

E[R\
T ] = Õ(K

√
T )

E[R]
T ] = Õ(

√
KT + ρ)

E[R[
T ] = Õ(

√
KT )

E[R\
T ] = Õ(

√
KT )

[ Section 3.3 ] [ Section 4.3 ] [ Section 5.3 ]

Table 1: Summary of our main results in the loyalty points bandits problems. Õ indicates
order up to log factors, and ρ is the least common multiple of the periodicity
ρ1, . . . , ρK in the coupons reward model.

Fix the fidelity reward functions f1, . . . , fK . Denote by N the type of the sequence that
solves the min-max optimization in the definition of the weak regret, that is,

min
J∈Cf

max
j∈J

ST (j) = min
j∈[T ]K :j has type N

ST (j) .

Observe that there is an admissible type with this property.
On the other hand, for any admissible type N = (N1, . . . , NK), the average of the

cumulative rewards over all sequences of type N equals

1(
T

N1,...,NK

) ∑
j∈[T ]K :j has type N

ST (j) =
1(
T

N1,...,NK

) ∑
j∈[T ]K :j has type N

T∑
t=1

Xt,jt +
K∑
j=1

Fj(Nj)

= σ(µ̂T ,N) .

Hence,
min
J∈Cf

max
j∈J

ST (j) ≤ σ(µ̂T ,N) ≤ max
N

σ(µ̂T ,N) ,

proving the first announced inequality. The second inequality is proved similarly.

We note that while the mean regret is not applicable in the subscription model, R[
T (π) ≤

R]
T (π) obviously holds in the subscription model as well. In fact, in all instances of the

subscription model that we consider in this paper, it will turn out that there is only one
minimal sufficient set, meaning that R[

T (π) = R]
T (π), and so there is no need to consider

an intermediate definition of regret.

2.2 Fidelity reward functions

Throughout this work, we assume that the fidelity functions are known and fj takes values
in [0, 1] for all arms j ∈ [K]. We consider both increasing and decreasing fidelity functions,

10
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Increasing Decreasing Coupons

Stochastic
E[RT ] = Õ(T 2/3K1/3) E[RT ] = Õ(T 2/3K1/3) E[RT ] = Õ(

√
KT )

[ Section 6.2 ] [ Section 7.2 ] [ Section 8.2 ]

Adversarial

E[R]
T ] = Ω(T )

E[R[
T ] = Ω(T )

E[R]
T ] = Õ((KT )2/3)

E[R[
T ] = Õ((KT )2/3)

E[R]
T ] = O(

√
ρKT )

E[R[
T ] = O(

√
ρKT )

[ Section 6.31] [ Section 7.3 ] [ Section 8.3 ]

Table 2: Summary of our main results in the subscription bandits problems. Õ indicates
order up to log factors, and ρ is the least common multiple of the periodicity
ρ1, . . . , ρK in the coupons reward model.

in addition to a certain class of periodic fidelity rewards that we call the “coupons” model.
In the increasing rewards model, we assume that for all j ∈ [K], fj(n) is a nondecreasing
function of n. For the decreasing rewards model, we assume that for all j ∈ [K], fj(n) is
nonincreasing in n. In the coupons model, a fidelity reward is obtained only once every few
(consecutive) plays of each arm. In particular, let the period length of arm j be denoted by
ρj ∈ N, and the bonus fidelity reward rj ∈ [0, 1]. Then, the player receives a fidelity bonus
rj after every ρj (consecutive) plays of arm j. More formally, for rj > 0,

fj(t) =

{
rj if t = 0 (mod ρj)

0 otherwise.

Throughout the paper, it is often helpful to consider the cumulative fidelity reward of
each arm j which is defined for any n ∈ [T ] as,

Fj(n) =
n∑
t=1

fj(n) .

We now consider the different cases in turn. For each, we first analyze the stochastic
setting and define the class of minimal sufficient sequences which also defines the regret in
the adversarial setting. We then analyze the adversarial setting. Our results are summarized
in Tables 1 and 2.

3. Loyalty points model: increasing fidelity rewards

The first setting we consider is the loyalty points model where the fidelity functions are
increasing functions of the number of past plays of each arm.

3.1 Minimal sufficient sets

We first need to define the minimal sufficient sets J of sequences of actions defined in
Section 2.1. When the fidelity rewards are nondecreasing, the unique minimal sufficient

1. This is the general result. For the special case where the fidelity functions are step functions with a step
from 0 to 1 at m we also show that the weak and strong regret can be bounded by Õ(T 2/3(Km)1/3).

11
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set of sequences is the set J0 of single-arm strategies. This is shown in the below lemma,
whose proof is in Appendix A.1. When the fidelity functions of the different arms are equal,
optimality of such a single-arm strategy is obvious. In the case of arm-specific fidelity
functions, recall that Fj(T ) =

∑T
t=1 fj(t), then the optimal arm is given by

j∗ = argmax
1≤j≤K

{
µj +

1

T
Fj(T )

}
.

(In case of multiple maximizers, we may choose any of them). The optimal policy then
plays arm j∗ for all rounds t = 1, . . . , T .

Lemma 2 In the stochastic loyalty points model with increasing fidelity rewards, regardless
of the distribution of the base rewards and the fidelity rewards, there exists a single-arm
strategy that minimizes the pseudo cumulative reward S̃T (j) over all j ∈ [K]T .

3.2 Stochastic rewards

As Lemma 2 shows, to minimize regret, it suffices to construct a strategy that is able
to compete with single-arm strategies. In the stochastic setting, a simple variant of the
UCB algorithm of Auer et al. (2002a) achieves this. Instead of using the observations Yt,j
to construct the sample averages and upper confidence bounds, one may work with the
modified rewards Ỹt,j = Xt,j + 1

T Fj(T ) . Note that since the fidelity functions are known,
computing these modified rewards is possible. These modified rewards are natural since
the best single-arm policy equates to playing the arm that maximizes µj + Fj(T )/T in all
rounds. We then define the upper confidence bounds around the sample mean of these
observations by

UCBt(j) = Xt,j +
1

T
Fj(T ) +

√
2 log(KT )

Nt,j
, (4)

where Xt,j = 1
Nt,j

∑t
s=1Xs,j1{Js=j}. The algorithm proceeds as a standard UCB algorithm:

first it plays each arm once, then for t = K + 1, . . . , T , it plays arm

Jt = argmax
1≤j≤K

UCBt−1(j) .

The regret of this algorithm is bounded in the next theorem, whose proof follows from
a modification of the standard UCB analysis (see (Auer et al., 2002a)) and is given in
Appendix A.2.

Theorem 3 The expected (pseudo) regret of the UCB algorithm defined above in the stochas-
tic loyalty points bandits problem with increasing fidelity reward is bounded by

ERT ≤
K∑

j:j 6=j∗

(
16 log(TK)

∆̃2
j

+ 1

)
(µj∗ − µj + fj∗(T )− fj(0)) +

1

K
,

where ∆̃j = µj∗ − µj + (Fj∗(T ) − Fj(T ))/T . Consequently, the worst case regret of this
algorithm is bounded by O(T 2/3(K log(T ))1/3).

12
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When the fidelity functions are all constant, fj∗(T ) = Fj∗(T )/T , fj(0) = Fj(T )/T , the
problem reduces to the standard stochastic multi-armed bandit problem and we recover
the optimal O(

∑K
j=1 log(T )/∆̃j) order of the problem dependent regret (see Auer et al.

(2002a)). When the fidelity functions are not constant, the leading term in the regret is

multiplied by
µj∗−µj+fj∗ (T )−fj(0)

∆̃j
≥ 1. This term can be as large as 2/∆̃j , in which case, the

regret is of the order of log(KT )

∆̃2
j

. Thus, while the logarithmic dependence on the horizon T

is the same as in the standard multi-armed bandit problem, the dependence on the gap ∆̃j

may be worse, depending on the fidelity functions. Concurrent work (Metelli et al., 2022)
also obtained similar upper bounds on the regret for this problem.

We argue that this worse dependence on ∆̃j is inevitable. Consider the case where
the fidelity functions are the same for all arms, that is, fj = f for all j ∈ [K]. Here,

∆̃j = µj∗ − µj and j∗ = argmaxj µj . For simplicity, assume that the distribution of
arm j is Bernoulli with parameter µj ∈ [0, 1]. If Fj(T ) = Fj∗(T ), then to distinguish
µj + Fj(T )/T from µ∗ + Fj∗(T )/T , if suffices to distinguish µj from µj∗ . A classical result
of Lai and Robbins (1985) shows that, in the standard multi-armed bandit problem, any
algorithm that is guaranteed to achieve regret o(Tα) for every α > 0 must play any arm j

at least Nj = Ω( log(T )
∆2

j
) times to distinguish µj and µj∗ . Thus, any algorithm that obtains

sublinear regret must explore sub-optimal arms which necessarily results in some loss of
fidelity reward. Define τ =

∑
j:j 6=j∗ Nj . Then the contribution to the regret from the lost

fidelity reward is

T∑
t=1

f(t)−
T∑
t=1

f(Nt−1,Jt) =
T∑

t=T−τ
f(t)−

∑
j:j 6=j∗

Nj∑
t=1

f(t) ≥
∑
j:j 6=j∗

Nj∑
t=1

(f(T − τ)− f(Nj))

This gives a lower bound on the regret of Ω(
∑

j:j 6=j∗
log(T )

∆̃2
j

(µj∗ − µj + f(T − τ)− f(Nj))).

While this does not exactly match Theorem 3, it shows that a term involving the fidelity
functions is unavoidable and that the problem is, in general, harder than the plain stochastic
bandit problem.

3.3 Adversarial rewards

As seen in the previous section, the only set of minimal sufficient sequences is the set J0

of single-arm strategies. Hence, as in (3), the notions of weak, strong, and mean regrets
introduced in Section 2.1 coincide and equal

RT (π) = max
j∈J0

ST (j)− S̃T (π) .

This is the same notion of regret as in the standard adversarial bandits problem. In
spite of the simplicity of the target and unlike in the stochastic version of the problem, here
the addition of the fidelity reward makes it considerably more difficult to achieve sublinear
regret. In fact, Theorem 4 below shows that, unless the fidelity rewards are essentially
constant, any policy must incur linear regret for some reward sequence.
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To prove the lower bound, it suffices to consider the case where the fidelity function is
the same for all arms. We obtain the following lower bound for the regret, the proof of
which is in Appendix A.3.

Theorem 4 Consider the adversarial loyalty points bandits problem with increasing fidelity
rewards, where the fidelity function is the same for every arm. Define δ = f(7T/8)−f(T/8).
Then for every policy π there exists a sequence of rewards such that the regret satisfies

RT (π) ≥ Tδ

40
.

Thus, the regret is Ω(T ) unless f is essentially constant over most of its domain. The
particular constants appearing in the bound (and in the definition of δ) have no special
significance, they have been chosen for convenience. In particular, the definition of δ may
be replaced by f(T (1 − ε)) − f(Tε) for any ε ∈ (0, 1/2) and the constant 1/40 modified
accordingly. We omit the straightforward details.

Theorem 4 implies that in the adversarial case one cannot hope for a nontrivial regret
bound unless the (nondecreasing) fidelity rewards essentially do not change with time. In
that case one may use a simple and natural modification of any low-regret algorithm for
adversarial bandits such as EXP3 (Auer et al. (2002b)). We omit the straightforward
details.

4. Loyalty points model: decreasing fidelity rewards

4.1 Stochastic rewards

The stochastic loyalty points bandit problem with decreasing fidelity rewards is equivalent
to the rotting bandits problem studied by Levine et al. (2017); Seznec et al. (2019, 2020), and
Bouneffouf and Féraud (2016). Seznec et al. (2019, 2020) provide an algorithm with regret
RT = Õ(

√
KT log(T )). This matches the lower bound for the standard bandit problem

(which can be viewed as a special case of fidelity bandits where the fidelity function is
constantly 0) up to logarithmic factors.

In the adversarial setting, the loyalty points model with decreasing fidelity rewards is
significantly more complex. In order to appropriately define the notion of regret, first we
need to determine the class Cf of minimal sufficient sets of sequences of arm pulls. We
discuss this in the next section. As it turns out, the class Cf is nontrivial in this case and
therefore the notions of strong, weak, and mean regret do not coincide. In fact, we show
that while there is no algorithm that achieves sublinear strong regret for a large class of
fidelity functions, it is possible to construct a policy with guaranteed sublinear mean regret
and thus also sublinear weak regret.

4.2 Minimal sufficient sets

In order to study the adversarial version of the problem, first we need to understand the
minimal sufficient sets of sequences of actions. Recall from Section 2.1 that each minimal
sufficient set J ∈ Cf is such that J contains exactly one sequence of each type of a minimal
covering set B. Hence, in order to understand the class Cf of minimal sufficient sets, one
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needs to understand the set of admissible types, that is, types that are maximizers of the
function σ(µ,N) for some µ ∈ [0, 1]K .

An important special case is when the fidelity rewards fj(t) are strictly decreasing
functions of t for each j ∈ [K]. Then the average cumulative reward associated to a a type
N = (N1, . . . , NK),

h

(
N

T

)
=

1

T

K∑
j=1

Fj(Nj),

is strictly concave. In fact, one may extend h to the standard simplex ∆K such that the
function h : ∆K → R is strictly concave. Then the cumulative total expected reward
corresponding to a mean vector µ ∈ [0, 1]K may be written as

σ(µ,N) = T

(〈
N

T
,µ

〉
+ h

(
N

T

))
.

It is easy to see that for such fidelity reward functions, for each type N , there exists
µ ∈ [0, 1]K such that N (µ) = {N}, that is, N is the unique type maximizing σ(µ, ·).

In such cases, the minimal sufficient sets are all those sets J that, for each type N , J
contains exactly one sequence j of type N . But then

max
J∈Cf

max
j∈J

ST (j) = max
j∈[K]T

ST (j)

and therefore it is hopeless to minimize the strong regret. Based on this, it is not difficult
to prove the following proposition.

Proposition 5 Consider the adversarial loyalty points bandit problem with strictly decreas-
ing fidelity reward functions f1, . . . , fK . Then there exists a positive constant c – depending
on the fidelity reward functions only – such that for any (randomized) policy π of the fore-
caster, there exist base rewards (Xt,j)t∈[T ],j∈[K] such that the strong regret satisfies

R]
T (π) ≥ cT .

Remark 6 In some cases, when the fidelity rewards are not strictly decreasing (so the
conditions of Proposition 5 do not hold), it is possible to achieve sublinear strong regret.
As an example, consider the case when K = 2 and the fidelity function of both arms is
fj(t) = α1t≤T0 for j = 1, 2, where α ∈ (0, 1) and T0 ∈ [T ] are some fixed parameters. Then
it is easy to see that the set of optimal types N (µ) corresponds to a single-arm strategy
whenever |µ1 − µ2| 6= α. When µ1 − µ2 = α, N (µ) consists of all types with N1 ≥ T − T0

and when µ1−µ2 = −α, N (µ) consists of all types with N1 ≤ T0. Hence, in all cases, N (µ)
contains one of the two single-arm strategies and therefore the only minimal sufficient set
is J0. This implies that the three notions of regret coincide in this case. As is shown below,
sublinear mean regret is always achievable and hence, in this particular example, the strong
regret can also be made sublinear.
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Input: T (horizon), tuning parameters η ∈ (0, 1], ε ∈ (0, 1).
Initialize: Define q(1), . . . , q(M) ∈ ∆K to be an ε cover of ∆K so M ≤

ε−(K−1). Initialize: w1,i = 1∀i = 1, . . . ,M .
1: for all t = 1, . . . , T do
2: Set pt,i =

wt,i∑M
i=1 wt,i

and define qt =
∑

i∈[M ] pt,iq
(i)

3: Select arm Jt to play by sampling the arms with probabilities
(qt,1, . . . , qt,K) and receive reward YJt,t = Xt,Jt + fJt(NJt,t−1) ∈ [0, 2].

4: Calculate the pseudo-losses X̂t,j = 1− 1−Xt,j

qt,j
1{Jt=j}

5: Calculate the pseudo-losses of each expert, ̂̀t(q(i)) =
∑

j∈[K] q
(i)
j (1−

X̂t,j)− h(q(i))

6: Update wt+1,i = wt,i exp{−η̂̀t(q(i))}.
7: end for

Figure 1: EXP4 with pseudo rewards for the adversarial loyalty points bandits model with
decreasing fidelity reward.

4.3 Minimizing the mean regret

Interestingly, as opposed to the strong regret, minimizing the mean (and therefore weak)
regret is an achievable goal. In this section we define a policy that guarantees that if the
fidelity functions are nonincreasing, then the mean regret is o(T ) regardless of the base
rewards.

The algorithm we propose is an exponentially weighted average forecaster where the
set of experts q(1), . . . , q(M) ∈ ∆K is defined by an ε-cover of the simplex ∆K . Similarly
to in the standard exponentially weighted average forecaster, we need to estimate the loss
of each expert. In this loyalty points bandits problem this is somewhat more involved
since the loss estimates need to be defined to take into account the fidelity rewards. We

use the loss estimates ̂̀t(q(i)) =
∑

j∈[K] q
(i)
j (1 − X̂t,j) − h(q(i)) for each expert i where

X̂t,j = 1 − 1−Xt,j

qt,j
1{Jt=j} for all arms j. The algorithm is defined in Figure 1. In order to

work with these adjusted losses, we need to show that they enjoy the desirable properties
of an importance sampling estimate and that they lead to the correct dependence on the
fidelity reward of our algorithm. This is done in the following theorem which provides a
bound on the regret of the algorithm.

Theorem 7 Consider the adversarial loyalty points bandit problem when the fidelity re-
wards are nonincreasing for all j ∈ [K]. Then, regardless of the base rewards, the random-
ized policy π defined in Figure 1 with ε = (K + 1)/

√
2T and η =

√
log(1/ε)/(2T ) has mean

regret

ER\
T (π) ≤ (K + 1)

√
2T

1

2

√
log(K + 1) + 1 +

√
log

√
2T

K + 1

 .
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Proof We consider a randomized forecaster that, at each time instance, selects a point
qt = (qt,1, . . . , qt,K) in the standard simplex ∆K . Then the forecaster plays a random arm,
chosen according to the distribution qt, that is,

Jt = j with probability qt,j , j ∈ [K] ,

Writing Ñj =
∑T

t=1 1Jt=j and Ñ = (Ñ1, . . . , ÑK) for the corresponding type, the cumulative
reward of such a forecaster equals

T∑
t=1

Xt,Jt +
T∑
t=1

Fj(Ñj) = T

(
1

T

T∑
t=1

Xt,Jt + h

(
Ñ

T

))
,

Consider the piecewise linear extension of h to ∆K . It follows from the fact that the fidelity
rewards are nonincreasing that h is concave and 1-Lipschitz with respect to the `1 norm.
Then we may apply the Hoeffding-Azuma inequality to both

∑T
t=1Xt,Jt and Ñj to obtain

that, with probability at least 1− δ,

T∑
t=1

Xt,Jt +

T∑
t=1

Fj(Ñj) ≥
T∑
t=1

∑
j∈[K]

qt,jXt,j + Th

(
1

T

T∑
t=1

qt

)
− (K + 1)

√
T

2
log

K + 1

δ

≥
T∑
t=1

∑
j∈[K]

qt,jXt,j +
T∑
t=1

h (qt)− (K + 1)

√
T

2
log

K + 1

δ
,

where we used concavity of h. In particular, by standard tail integration,

E

[
T∑
t=1

Xt,Jt +
T∑
t=1

Fj(Ñj)

]

≥ E

 T∑
t=1

∑
j∈[K]

qt,jXt,j +
T∑
t=1

h (qt)

− (K + 1)

√
T

2
log(K + 1) . (5)

Hence, it suffices to construct qt such that

E

 T∑
t=1

∑
j∈[K]

qt,jXt,j +
T∑
t=1

h (qt)

 ≥ max
N

T

(〈
N

T
, µ̂T

〉
+ h

(
N

T

))
− γT

with γT = (K + 1)
√

2T

(
1 +

√
log

√
2T

K+1

)
. In fact, we prove the slightly stronger bound

E

 T∑
t=1

∑
j∈[K]

qt,jXt,j +
T∑
t=1

h (qt)

 ≥ max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− γT .

In order to construct such a forecaster qt, we discretize ∆K . Let ε > 0 and let q(1), . . . , q(M)

be a minimal ε-cover of ∆K with respect to the `1 distance. Using the fact that a minimal
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ε-cover is an ε/2 packing and a standard volumetric estimate, we get that M ≤ ε−(K−1).
Also, by the Lipschitz property of h,

max
i∈[M ]

T
(〈
q(i), µ̂T

〉
+ h

(
q(i)
))
≥ max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− 2Tε . (6)

We treat q(1), . . . , q(M) as experts and use the exponentially weighted average forecaster.
In order to do this, we use the estimates

X̂t,j = 1− 1−Xt,j

qt,j
1{Jt=j} , j ∈ [K] ,

where qt,j is the probability our forecaster plays arm j in round t. Observe that X̂t,j may
be computed for all j since Xt,Jt is observed after selecting arm Jt at time t. Also note that

EJt∼qtX̂t,j = Xt,j and 1− X̂t,j ≥ 0. To each expert q(i) we assign the “loss estimate”

̂̀
t(q

(i)) =
∑
j∈[K]

q
(i)
j (1− X̂t,j)− h(q(i)) = 1−

∑
j∈[K]

q
(i)
j X̂t,j − h(q(i)) .

Now we are prepared to define the proposed forecaster. At each time instance t = 1, . . . , T ,
qt is chosen as a weighted average of the experts q(1), . . . , q(M), weighted by the distribution
pt,1, . . . , pt,M so that qt =

∑
i∈[M ] pt,iq

(i), where for t = 1, pt,i = 1/M for all i ∈ [M ] and
for t > 1,

pt,i =
wt−1,i

Wt−1
,

where

wt−1,i = exp

(
−η

t−1∑
s=1

̂̀
s(q

(i))

)
and Wt−1 =

∑
i∈[M ]

wt−1,i .

Here η > 0 is a tuning paramenter. We proceed by following analysis of the exponentially
weighted average forecaster (see, e.g., Cesa-Bianchi and Lugosi (2006)). On the one hand,

log
WT

W0
= log

∑
i∈[M ]

exp

(
−η

T∑
t=1

̂̀
t(q

(i))

)− logM

≥ −η
T∑
t=1

̂̀
t(q

(i))− logM

for all i ∈ [M ].
On the other hand,

log
WT

W0
=

T∑
t=1

log
Wt

Wt−1

=
T∑
t=1

log

∑
i∈[M ]

pt,ie
−η̂̀t(q(i))
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≤
T∑
t=1

log

1− η
∑
i∈[M ]

pt,i ̂̀t(q(i)) + η2
∑
i∈[M ]

pt,i ̂̀t(q(i))2


(using e−x ≤ 1− x+ x2 for x ≥ −1 and ̂̀t(q(i)) ≥ −1 by construction)

≤ −η
T∑
t=1

∑
i∈[M ]

pt,i ̂̀t(q(i)) + η2
T∑
t=1

∑
i∈[M ]

pt,i ̂̀t(q(i))2 .

Comparing the upper and lower bounds for log(WT /W0), we obtain that, for every i ∈ [M ]

T∑
t=1

∑
i∈[M ]

pt,i ̂̀t(q(i)) ≤
T∑
t=1

̂̀
t(q

(i)) +
logM

η
+ η

T∑
t=1

∑
i∈[M ]

pt,i ̂̀t(q(i))2 . (7)

Then, observe that EJt∼qt ̂̀t(q(i)) = 1−
∑

j∈[K] q
(i)
j Xt,j−h(q(i)), EJt∼qt

∑
i∈[M ] pt,i

̂̀
t(q

(i)) =

1−
∑

j∈[K] qt,jXt,j −
∑

i∈[M ] pt,ih(q(i)) and for each t ∈ [T ],

EJt∼qt
∑
i∈[M ]

pt,i ̂̀t(q(i))2 =
∑
i∈[M ]

pt,iEJt∼qt

∑
j∈[K]

q
(i)
j (1− X̂t,j)− h(q(i))

2

≤ 2 + 2
∑
i∈[M ]

pt,iEJt∼qt

∑
j∈[K]

q
(i)
j (1− X̂t,j)

2

= 2 + 2
∑
i∈[M ]

pt,iEJt∼qt

∑
j∈[K]

q
(i)
j

1−Xt,j

qt,j
1{Jt=j}

2

= 2 + 2
∑
i∈[M ]

pt,i
∑
j∈[K]

qt,j

(
q

(i)
j

1−Xt,j

qt,j

)2

≤ 2 + 2
∑
i∈[M ]

pt,i
∑
j∈[K]

q
(i)
j

qt,j

= 2(K + 1) (using qt =
∑
i∈[M ]

pt,iq
(i)) .

So we can rearrange the expression in (7) to get

T∑
t=1

∑
j∈[K]

qt,jXt,j +

T∑
t=1

∑
i∈[M ]

pt,ih(q(i))

≥ max
i∈[M ]

 T∑
t=1

∑
j∈[K]

q
(i)
j Xt,j + Th(q(i))

− logM

η
− 2(K + 1)ηT

≥ max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− 2Tε−
(K − 1) log 1

ε

η
− 2(K + 1)ηT
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(by (6)) and since M ≤ ε−(K−1))

= max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− 2Tε− (K + 1)

√
2T log

1

ε

(choosing η =
√

log(1/ε)/(2T ))

= max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− (K + 1)
√

2T

1 +

√
log

√
2T

K + 1


with the choice ε = (K + 1)/

√
2T . The proof is finished by noting that, by concavity of h,

∑
i∈[M ]

pt,ih(q(i)) ≤ h

∑
i∈[M ]

pt,iq
(i)

 = h(qt) ,

and therefore

T∑
t=1

∑
j∈[K]

qt,jXt,j +
T∑
t=1

h(qt) ≥ max
q∈∆K

T (〈q, µ̂T 〉+ h (q))− (K+1)
√

2T

1 +

√
log

√
2T

K + 1

 .

Combining this with (5) implies the announced regret bound.

Remark 8 Since the set of experts needs to cover the simplex, the proposed algorithm
may not be computationally efficient. A possible way to construct computationally efficient
low-regret forecasters is to exploit the concavity of h and use ideas from bandit convex
optimization (e.g., Bubeck et al. (2017)). However, it is unclear whether such an algorithm
achieves the same dependence on K. This is left for future research. A related open question
is to determine the optimal dependence on K. While the lower bound of Ω(

√
KT ) for the

standard adversarial bandits problem (where the fidelity functions are all 0) suggests that
the dependence on T in Theorem 7 cannot be improved, it is unclear what the optimal
dependence on K is in the adversarial loyalty points bandit problem with decreasing fidelity
rewards.

5. Loyalty points model: coupon rewards

In this section we study the loyalty points model with “coupons” fidelity rewards. Recall
that in this model, associated to each arm j ∈ [K], are a positive integer ρj (the period
length) and a real number rj ∈ [0, 1] and the player receives the extra fidelity reward rj
after each (not necessarily consecutive) ρj plays of arm j.

5.1 Minimal sufficient sets

Once again, in order to understand regret, the first step is to determine the class of minimal
sufficient sets. To this end, we need to understand the set of types N that are maximizers
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of the function σ(µ,N) for some µ ∈ [0, 1]K . This is not a simple task because of the
nonlinear nature of the coupon rewards. Note that

σ(µ,N) =
k∑
j=1

(
µjNj + rj

⌊
Nj

ρj

⌋)
.

The presence of the integer part in the terms bNj/ρjc means that the set of possible op-
timizers may be quite rich and complex. However, in some cases, the class of minimal
sufficient sets is simple. For example, consider the simplest case when the period lengths ρj
associated to all arms j ∈ [K] are the same, say equal to ρ. If T happens to be divisible by
ρ, then it is easy to see that playing an arm j that maximizes µj + rj/ρ forever maximizes
the reward. (In other words, Nj = T for a maximizing arm j and Ni = 0 for all other arms
is an optimal type.) Hence, in this case, the unique minimal sufficient set of sequences is
the set J0 of single-arm strategies. However, even if T is not an integer multiple of the
period length ρ, if ρj = ρ for all j ∈ [K], then for some µ ∈ [0, 1]K the optimal type is
such that an arm maximizing µj + rj/ρ is played ρbT/ρc times and a (possibly different)
arm maximizing µj is played the remaining T − ρbT/ρc times. Thus, in this case, the class
of minimal sufficient sets consists of all sequences that are either single-arm strategies or
such that only two arms are played, one of them ρbT/ρc times and the other T − ρbT/ρc
times. When the period lengths are different, the optimizing sequences may have a more
complicated structure.2

Nevertheless, the above argument easily generalizes to possibly different period lengths
as stated in the next lemma.

Lemma 9 Let ρ denote the least common multiple of the period lengths ρ1, . . . , ρK . If T is
an integer multiple of ρ, then the unique minimal sufficient set of sequences is the set J0

of single-arm strategies. More generally, every minimal sufficient set J ∈ Cf is such that
every sequence in J has type N = (N1, . . . , NK) such that for some j ∈ [K], Nj ≥ ρbT/ρc.

In other words, even though single-arm strategies are not necessarily optimal, every
j ∈

⋃
J∈Cf J is “almost” a single-arm strategy in the sense that it differs from one in at

most T − ρbT/ρc ≤ ρ positions. This fact will help us design strategies with small strong
regret in the adversarial version of the problem.

5.2 Stochastic rewards

The observation made in Lemma 9 suggests a simple way of achieving small regret in the
stochastic loyalty-points bandit problem with coupon rewards. One may simply aim at

accumulating a reward that is not much smaller than maxj∈[K]

(
µj +

rj
ρj

)
. This may be

achieved by applying a regret-minimization strategy using the augmented rewards Ŷt,j =
Xt,j +

rj
ρj

. Suppose that one plays according to a standard K-armed bandit strategy based

on the rewards Ŷt,j , and that the expected cumulative regret of this strategy compared to

2. Note that the optimization problem is closely related to (though not completely equivalent to) a knapsack
problem where each item j has size ρj and reward ρjµj + rj and the total capacity of the knapsack is T .
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T maxj∈[K]

(
µj +

rj
ρj

)
is bounded by a quantity εT . This means that if N̂1, . . . , N̂K denote

the (random) number of times each of the K arms is pulled up to time T , then

K∑
j=1

EN̂j

(
µj +

rj
ρj

)
≥ T max

j∈[K]

(
µj +

rj
ρj

)
− εT .

This implies that the expected fidelity-augmented reward of the strategy satisfies

k∑
j=1

E

(
µjN̂j + rj

⌊
N̂j

ρj

⌋)
≥

k∑
j=1

E

(
µjN̂j + rj

(
N̂j

ρj
− 1

))

≥ T max
j∈[K]

(
µj +

rj
ρj

)
− εT −K

≥ max
N

k∑
i=1

Ni

(
µi +

ri
ρi

)
− εT −K

≥ max
N

σ(µ,N)− εT −K .

In other words, the regret of the strategy is at most εT + K. For example, by using a
standard UCB algorithm (Lattimore and Szepesvári, 2020), one may take

εT =
∑

j∈[K]:∆j>0

16 log(T )

∆j
+ 3K ,

where

∆j = max
i∈[K]

(
µi +

ri
ρi

)
−
(
µj +

rj
ρj

)
are the “gap” parameters, see Lattimore and Szepesvári (2020). Summarizing, we have the
following:

Theorem 10 Consider the stochastic loyalty-points bandit problem with coupon rewards.
There exists a strategy of play whose expected regret satisfies

E[RT ] ≤
∑

j∈[K]:∆j>0

16 log(T )

∆j
+ 4K .

Consequently, the worst case regret of this strategy is O(
√
KT log(T )).

Note that these regret bounds are near optimal for the standard stochastic K-armed
bandit problem, so we expect that they cannot be improved for the stochastic loyalty points
bandits problem with coupons fidelity rewards.
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5.3 Adversarial rewards

Equipped with our understanding of the class of minimal sufficient sets and having derived
a small-regret strategy for the stochastic version of the problem, it is now easy to design
strategies that work well in the adversarial case. The main take-home message from the
previous sections is that (a) single-arm strategies are almost optimal in the presence of
coupon rewards; (b) playing a standard bandit strategy based on the augmented rewards
Xt,j+rj/ρj is nearly optimal. We show here that the same principles work in the adversarial
case as well, and lead to similar near optimal regret bounds.

Theorem 11 Consider the adversarial loyalty-points bandit problem with coupon rewards.
There exists a randomized policy π whose expected weak, mean and strong regret satisfy

ER[
T (π) ≤ ER\

T (π) ≤ 4
√
TK logK +K ,

and
ER]

T (π) ≤ 4
√
TK logK + ρ+K .

Proof The argument for bounding the mean regret is similar to that of Theorem 10.
Suppose that one plays a standard (randomized) adversarial bandit strategy based on the
augmented rewards Ŷt,j = Xt,j +

rj
ρj

. Denote by Jt the arm selected by the strategy at time

t and by N̂j =
∑T

t=1 1{Jt=j} the number of times the strategy plays arm j up to time T .

Recall also that µ̂T,j = 1
T

∑T
t=1Xj,t denotes the empirical average of the base rewards of

arm j. Assume that the strategy comes with the regret guarantee

E
T∑
t=1

Ŷt,Jt ≥ max
j∈K

T∑
t=1

Ŷt,Jt − εT .

For example, by using the exp3 algorithm of Auer et al. (1995), one may take εT =
4
√
TK logK (see, e.g., (Lattimore and Szepesvári, 2020, Theorem 11.1)). Then the ex-

pected cumulative reward of this strategy equals

E
T∑
t=1

Xt,Jt +

K∑
j=1

rj

⌊
N̂j

ρj

⌋
≥ E

T∑
t=1

Xt,Jt +

K∑
j=1

rj
N̂j

ρj
−K

= E
T∑
t=1

Ŷt,Jt −K

≥ max
j∈K

T∑
t=1

(
Xt,j +

rj
ρj

)
−K − εT

= T max
j∈K

(
µ̂T,j +

rj
ρj

)
−K − εT

= max
N

K∑
i=1

Ni

(
µ̂T,i +

ri
ρi

)
−K − εT

= max
N

σ(µ̂T ,N)−K − εT ,
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proving the bound for the mean regret. To prove the upper bound for the strong regret,
notice that by Lemma 9,

max
J∈Cf

max
j∈J

St(j) ≤ max
j∈J0

St(j)+ρ = max
j∈[K]

T∑
t=1

(
Xt,j +

⌊
rj
ρj

⌋)
+ρ ≤ max

j∈[K]

T∑
t=1

(
Xt,j +

rj
ρj

)
+ρ .

But we have already proved above that

max
j∈[K]

T∑
t=1

(
Xt,j +

rj
ρj

)
≤ E

T∑
t=1

Xt,Jt +
K∑
j=1

rj

⌊
N̂j

ρj

⌋
+K + εT ,

concluding the proof.

6. Subscription model: increasing fidelity rewards

In the rest of the paper we discuss what we call the subscription model. Recall from
the introduction that in this model the fidelity rewards depend on the current number of
consecutive plays of the selected arm — as opposed to the loyalty points models where the
fidelity rewards are a function of the total number of times the selected arm has been played
in the past. Just like in the case of the loyalty points model, here we also consider three
types of fidelity rewards: increasing, decreasing, and “coupon” rewards.

We begin the discussion by considering increasing fidelity rewards. More precisely, we
assume that the fidelity reward is a nondecreasing function of the number of consecutive
plays of an arm prior to the current time step. Recall the definition Qt,j = 1{Jt=j}(t −
max{s ≤ t : Js = j, Js−1 6= j}) as the number of consecutive plays of arm j up to time
t and assume that the reward is of the form Yt,j = Xt,j + fj(Qt,j), where Xt,j is the base
reward and fj is the (known) fidelity function associated with arm j that is assumed to be
nondecreasing. We may assume, without loss of generality, that fj(0) = 0 for all j ∈ [K].

6.1 Minimal sufficient sets

It is clear that for the stochastic subscription bandit problem with increasing fidelity re-
wards, there is always an optimal policy that is a single-arm policy. Indeed, a single-arm
policy that plays an arm j∗ ∈ argmax1≤j≤K{µjT + Fj(T )} for all T time steps maximizes

total reward. (Recall that Fj(t) =
∑t

s=1 fj(t) denotes the cumulative fidelity reward of
playing arm j during t consecutive steps.) Hence, the class of minimal and sufficient sets
contains the single set J0 of single-arm strategies.

6.2 Stochastic rewards

We know that in the stochastic bandit problem with increasing fidelity rewards in the
subscription model, the reward of the optimal strategy is max1≤j≤K{µjT+Fj(T )}, achieved
by playing a single arm j∗ for all T rounds.

Since the optimal policy is the same as in the standard stochastic bandits problem,
one may imagine that similar learning algorithms can be applied here. However, note that
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the usual regret-minimizing strategies (such as ucb) keep exploring all through their run.
This involves switching to sub-optimal arms in order to make sure that unlikely events of
good arms collecting small rewards get detected. Such strategies are not suitable for the
subscription model under increasing fidelity rewards, since a single switch of arms resets
the count Qt,j to zero, resulting in a significant loss of fidelity rewards. In particular, any
strategy that switches an arm after time εT (for a constant ε ∈ (0, 1)) must suffer a regret
of at least Fj∗(εT ) which is of order Ω(T ) except in trivial cases.

However, an expected reward that is not much smaller than that of the optimal strategy
may be achieved by any strategy that is able to identify an arm achieving the optimum early
on. Indeed, strategies designed for best-arm identification may be used directly to achieve
sublinear expected regret in the stochastic subscription bandits problem with decreasing
fidelity reward. In best-arm identification problems, the goal of the learner is to learn the
identity of the arm with the highest expected reward. Instead of reviewing the growing
literature of best-arm identification, we show how such a simple strategy may be adopted,
in a straightforward manner, to obtain strategies with sublinear regret. We refer the reader
to the book by Lattimore and Szepesvári (2020) for an exhaustive survey.

The notion of simple regret proves to be useful in our approach. To define the simple
regret, we first define the sub-optimality gap of arm j as ∆̃j = µj∗ + Fj∗(T )/T − (µj +
Fj(T )/T ) where j∗ = argmax1≤j≤K(µj + Fj(T )/T ). (Note that in the case where the

fidelity functions are the same across all arms, ∆̃j = µj∗ − µj = ∆j .) The simple regret of
the best-arm identification strategy outputting arm J is defined as

E∆̃J .

Suppose that one plays a best-arm identification strategy during the first t0 < T rounds,
besed on the fidelity-augmented rewards Xt,j +Fj(T )/T , at the end of which the algorithm
identifies an arm J ∈ [K]. For the rest of the rounds t ∈ {t0 + 1, . . . , T}, the strategy plays
arm J , independently of the rewards. During these T − t0 steps, the strategy accumulates
a total expected reward of E[(T − t0)µJ + FJ(T − t0)].

The expected regret of the above-defined strategy may be bounded in terms of the simple
regret, since

E[RT ] ≤ Tµj∗ + Fj∗(T )− E [(T − t0)µJ + FJ(T − t0)]

≤ Tµj∗ + Fj∗(T )− E [TµJ + FJ(T )] + 2t0

= 2TE∆̃J + 2t0 .

The simplest best-arm identification strategy samples all K arms bt0/Kc times and outputs
an arm that maximizes the empirical reward accumulated over this time. This simple
strategy achieves an expected simple regret bounded by C

√
(K logK)/t0 for a universal

constant C (see Lattimore and Szepesvári (2020)). Substituting this into the upper bound
above and choosing t0 ∼ T 2/3(K logK)1/3, we obtain the following.

Theorem 12 Consider the stochastic bandit problem in the subscription model with in-
creasing fidelity rewards. There exists a strategy of play whose expected regret satisfies

E[RT ] ≤ CT 2/3(K logK)1/3 ,

where C is a numerical constant.
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Of course, the naive algorithm used here is not optimal and more sophisticated best-arm
strategies may be used to improve the regret bound. In particular, one may get a bound
that is logarithmic in T but depends on the sub-optimality gaps ∆̃j . However, we conjecture
that even an improved strategy will not be able to achieve regret of order

√
KT since the

fidelity functions can be chosen such that any algorithm which explores sufficiently must
pay in terms of the fidelity rewards, much like in the increasing loyalty points model in
Section 3.2. Moreover, the use of such improved strategies involves the same key idea and
we prefer to present the idea here in its simplest form.

6.3 Adversarial rewards

Next we consider the adversarial version of the problem. As noted in Section 6.1, the only
class of minimal and sufficient sets contains the single set J0 of single-arm strategies. This
implies that the notions of weak and strong regrets coincide as the learner simply competes
with the best single-arm strategy.

It is easy to see that one cannot expect to achieve sublinear regret in general. In fact,
for any sequence j = (j1, . . . , jT ) of actions, the corresponding cumulative reward ST (j) is
at most the analogous cumulative reward in the loyalty-points model. To see this, note that
every arm switch in j reduces the cumulative reward in the subscription model more than
in the loyalty points model. Hence, minimizing regret with respect to the class of single-arm
strategies is at least as hard in the subscription model as in the loyalty-points model. In
particular, Theorem 4 immediately implies the following:

Theorem 13 Consider the adversarial bandits problem in the subscription model with in-
creasing fidelity rewards, where the fidelity function is the same for every arm. Define
δ = f(7T/8)− f(T/8). Then for every policy π there exists a sequence of rewards such that
the regret satisfies

RT (π) ≥ Tδ

40
.

The theorem shows that if the fidelity function grows substantially between (say) T/8
and 7T/8, one cannot expect sublinear regret. If this is not the case, sublinear regret may
be possible, depending on the fidelity function. In the rest of the section we take a closer
look at the special but important case when the fidelity reward follows a step function.
More precisely, consider the case where the fidelity functions take the form

fj(t) =

{
1 if t ≥ m
0 if t < m

for all j ∈ [K] and for some positive integer m ≤ T . We refer to fj(t) as an m-step function.
Theorem 13 shows that when m ≥ T/8 (or more generally, when m = Ω(T )), sublinear

regret cannot be guaranteed. However, for small values of m, small regret is achievable.
To see why, consider first the extremal case when m = 1. In this case, the only time

when the player does not receive a fidelity reward is when the player switches actions.
Hence, the problem is equivalent to a bandit problem with switching costs that has been
studied in the adversarial setting by Dekel, Ding, Koren, and Peres (Dekel et al., 2014) and
Cesa-Bianchi, Dekel, and Shamir (Cesa-Bianchi et al., 2013). In particular, Theorem 1 of
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Dekel et al. (2014), shows that for every randomized strategy in the bandits with switching
costs problem, there exists a sequence of rewards such that the regret is Ω(T 2/3K1/3) for
K ≤ T .

This lower bound is, in fact, achievable. In fact, an easy “batch” modification of the
EXP3 algorithm shows that regret of the order of O(T 2/3K1/3m1/3) is achievable when the
fidelity reward is an m-step function. This is stated in the next theorem.

Theorem 14 Consider the adversarial fidelity bandits problem in the subscription model
with the m-step fidelity function. There exists a randomized strategy whose expected (weak
and strong) regret satisfies

E[RT ] = O((K logK)1/3T 2/3m1/3) .

In particular, sublinear regret is achievable whenever m = o(T ), hence characterizing
the range of values of m for which sublinear regret is achievable.

7. Subscription model: decreasing fidelity rewards

We continue the study of the subscription model in the case when the fidelity rewards fj are
nonincreasing functions of Qt,j = 1{Jt=j}(t −max{s ≤ t : Js = j, Js−1 6= j}), the number
of consecutive plays of arm j prior to the current time step.

This case is substantially different from the case of increasing fidelity rewards studied in
the previous section. As always, we start by determining the class of minimal and sufficient
sets that allow us to design regret minimization strategies in the stochastic model and to
define regret in the adversarial case.

7.1 Minimal sufficient sets

In order to define the minimal sufficient sets for given nonincreasing fidelity functions
f1, . . . , fK , we need to characterize the sequences j ∈ [K]T that can have a maximal ex-
pected reward in the stochastic bandit problem for some values of the expected rewards
µ1, . . . , µK of the K arms. To this end, note that for fixed µ1, . . . , µK , it is optimal to play
the arm j∗ with the largest expected initial reward, that is, j∗ = argmax1≤j≤K{µj +fj(0)},
repeatedly until time m ∈ [1, T ] when µj∗ + fj∗(m+ 1) < maxj 6=j∗{µj + fj(0)}, that is until
its expected reward drops under the initial expected reward of the second best arm. An
arm j∗(2) ∈ argmaxj 6=j∗ µj is then played once to allow for the Q value of the optimal arm
to reset and then arm j∗ is played again for m steps. This is then repeated in every period
of m+ 1 steps.

Each such sequence j is indexed by a triplet (i, k,m) ∈ [K]× [K]× [T−1], corresponding
to periodically playing arm i m ∈ N times before arm k is played once and then repeating
it. Denote this sequence by

j(i, k,m) = (i, . . . , i︸ ︷︷ ︸
m times

, k, i, . . . , i︸ ︷︷ ︸
m times

, k, · · · ) (8)

Moreover, if the fidelity functions fj are strictly decreasing, then every such sequence is the
only optimal sequence for some values of µ1, . . . , µK . Hence, in such cases, there is only one

27



Lugosi, Pike-Burke, Savalle

minimal sufficient set, containing all sequences of the form j(i, k,m), that is,

J = {j(i, k,m) : (i, k,m) ∈ [K]× [K]× [T − 1]} .

Moreover, in all cases, the minimal sufficient set is unique and it is a subset of J defined
above.

7.2 Stochastic rewards

In this section we show that one may achieve sublinear regret in the stochastic version of
the problem. As it is shown in the previous section, the goal of the learner is to achieve
an expected reward that is not much smaller than the expected reward corresponding to
playing the best sequence of the type j(i, k,m), that is,

max
(i,k,m)∈[K]×[K]×[T−1]

WT (µi, µk,m) (9)

where

WT (µi, µk,m)
def.
=

(
T −

⌊
T

m+ 1

⌋)
µi +

⌊
T

m+ 1

⌋
µk

+

⌊
T

m+ 1

⌋
(Fi(m) + Fk(1)) + Fi

(
T − (m+ 1)

⌊
T

m+ 1

⌋)
(10)

is the expected reward of playing arm i m times, then arm j once and repeating this until
horizon T in a subscription bandits problem where the expected base rewards are given by
µ1, . . . , µK . We denote by (i∗, k∗,m∗) a triple achieving the maximum in (9).

The proposed strategy is similar to the one of Section 6.2 in that the first t0 rounds of
the game are used purely for exploration. After time t0, the strategy commits to a triplet
(i, k,m) and plays accordingly.

More precisely, up to time t0, the strategy samples each arm bt0/Kc times and computes
the empirical average of the observed base reward of each arm. Denote these estimates by
µ̂1, . . . , µ̂K . By a simple use of Hoeffding’s inequality, we have

E max
j∈[K]

|µ̂j − µj | ≤
√
K logK

2t0
. (11)

Let î and k̂ denote the arms corresponding to the two highest values of µ̂i + fi(0) such that
µ̂î+fî(0) ≥ µ̂k̂ +fk̂(0). (In case of ties, we may choose arbitrarily.) Moreover, let m̂ denote
the corresponding period length, that is,

m̂ = min
{
m : µ̂î + fî(m+ 1) < µ̂k̂ + fk̂(0)

}
.

Equivalently,

(̂i, k̂, m̂) = argmax
i,j,m

WT (µ̂i, µ̂k,m) . (12)

Starting from time t0 + 1, until time T , the strategy plays according to the sequence
j (̂i, k̂, m̂).
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Theorem 15 Consider the stochastic bandit problem in the subscription model with de-
creasing fidelity rewards. The expected regret of the explore-then-commit strategy defined
above with t0 = (2T )2/3(K logK)1/3 is bounded by

E[RT ] ≤ 3T 2/3(K logK)1/3 .

Proof Conditionally on the rewards observed during the first t0 periods of play, the ex-
pected reward of the proposed strategy for the remaining T − t0 rounds equals

WT−t0(µî, µk̂, m̂)

≥ WT (µî, µk̂, m̂)− 2t0 (since all rewards are bounded by 2)

≥ WT (µ̂î, µ̂k̂, m̂)− 2t0 − T max
j∈[K]

|µ̂j − µj |

≥ WT (µ̂i∗ , µ̂k∗ ,m
∗)− 2t0 − T max

j∈[K]
|µ̂j − µj | (by (12))

≥ WT (µi∗ , µk∗ ,m
∗)− 2t0 − 2T max

j∈[K]
|µ̂j − µj | .

Taking expected values and using (11), we get that

E[RT ] ≤WT (µi∗ , µk∗ ,m
∗)− EWT−t0(µî, µk̂, m̂) ≤ 2t0 + 2T

√
K logK

2t0
.

Choosing t0 = T 2/3(K logK)1/3/2, we obtain the stated bound.

We remark that, just like in the case of increasing fidelity rewards, one may also design
strategies that yield regret bounds that have a logarithmic dependence on the time horizon
T . For example, one may use successive elimination strategies in the exploration phase to
identify the two arms i∗ and k∗ played by the optimal strategy. The price to pay is that
the regret bound depends on the means µj of the arms. In particular, they depend on the
gap between the expected reward of the best and second best arm, as well as on the gap
between the expected reward of the second and the third best arms. In order to keep the
discussion simple, we omit these regret bounds from this paper. We also note that there
is currently no known lower bound for the stochastic subscription model with decreasing
fidelity rewards, so determining the optimal dependence on T and K in this problem remains
an open question.

7.3 Adversarial rewards

In this section we show that in the adversarial bandit problem in the subscription model with
decreasing fidelity rewards, it is possible to achieve sublinear regret. Recall from Section 7.1
that in this model, there is only one minimal sufficient set, and in all cases it is a subset of
the class J containing all sequences of the type j(i, k,m) for (i, k,m) ∈ [K]× [K]× [T − 1].
Hence, weak and strong regret of a policy π coincide and, recalling (3), are bounded as

RT (π) ≤ max
(i,k,m)∈[K]×[K]×[T−1]

ST (j(i, k,m))− S̃T (π) .
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In other words, our goal is to design a strategy whose expected cumulative reward is close
to max(i,k,m) ST (j(i, k,m)).

Our approach is to treat each triple (i, k,m) as an “expert” that plays according to
the sequence j(i, k,m) and design a strategy that competes with the best expert. To this
end, we use a variant of the exponentially weighted average forecaster that assigns a weight
to each expert, based on an exponential function of its estimated cumulative reward, and
selects a random expert with probability proportional to its weight. A difficulty in the
subscription bandits problem is that the reward of the strategy depends not only on the
reward of the chosen expert but also on the number of consecutive plays of the selected arm.
Therefore the reward an expert would gain from playing an arm in a given round may differ
from the actual reward the learner receives. In order to keep such deviations under control,
we draw inspiration from the lazy label efficient exponentially weighted average forecaster
proposed by Cesa-Bianchi, Lugosi, and Stoltz (Cesa-Bianchi et al., 2004). The forecaster, at
each time instance, flips a biased coin that comes up heads with probability ε, where ε is a
small, appropriately chosen value. When the coin flip results in heads, the forecaster selects
a random arm, plays it, and updates the estimated cumulative reward of each expert. Then
the algorithm selects a random expert according to the exponentially weighted average
distribution over the experts, and plays according to the sequence corresponding to the
selected expert until the next time when the coin flip comes up heads. This “lazy” play
guarantees that the strategy switches between experts at most about εT times, making the
possibly adverse effect of switching between experts negligible.

More precisely, at every time t ∈ {2, . . . , T}, an independent Bernoulli random variable
Zt with P{Zt = 1} = 1 − P{Zt = 0} = ε is drawn. If Zt = 1, then the strategy simply
explores by selecting an arm Jt chosen uniformly at random. (We define Z1 = 1 to ensure
that the strategy explores in the first step.) These time instances are used to estimate the
cumulative reward of each expert. In particular, for an expert (i, k,m) ∈ [K]× [K]× [T −1],
let jt(i, k,m) ∈ [K] denote the arm played by the expert at time t, that is, the t-th element
of the sequence j(i, k,m) as defined in (8). The cumulative reward of the expert, at time t,
is

St(j(i, k,m)) =
t∑

s=1

(
Xs,js(i,k,m) + Φ(i, k,m)

)
,

where we define

Φ(i, k,m) =
1

T

(⌊
T

m+ 1

⌋
(Fi(m) + Fk(1)) + Fi

(
T − (m+ 1)

⌊
T

m+ 1

⌋))
as the normalized total fidelity reward received by the expert.

St(j(i, k,m)) is estimated by

Ŝt(i, k,m) =
t∑

s=1

Ŷs,js(i,k,m)

where

Ŷs,js(i,k,m)
def.
= 2− K

ε
1Zs=11Js=js(i,k,m)(2−Xs,js(i,k,m) − Φ(i, k,m))
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is the estimated reward of expert (i, k,m) at time s, where Js indicates the arm played by
the learner in round s. Note that the factor K/ε guarantees that EŶs,(i,k,m) = Xs,js(i,k,m) +

Φ(i, k,m) and therefore Ŝt(i, k,m) is an unbiased estimator of the cumulative total reward
of the expert. It is convenient to introduce the estimated “losses”

̂̀
s,(i,k,m)

def.
= 2− Ŷs,(i,k,m) =

K

ε
1Zs=11Js=js(i,k,m)(2−Xs,js(i,k,m) − Φ(i, k,m)) .

Note that ̂̀s,(i,k,m) is always nonnegative, a property that is crucial for the proof below.
In the time instance immediately following an exploration step – unless the Benoulli

random variable again equals 1 –, the learner selects an expert (It,Kt,Mt) ∈ [K] × [K] ×
[T−1] at random, based on the exponentially weighted average distribution. More precisely,

Pt−1 {(It,Kt,Mt) = (i, k,m)} = pt,(i,k,m)
def.
=

wt−1,(i,k,m)

Wt−1

where Pt−1 denotes conditional probability given the past and

wt,(i,k,m) = exp(ηŜt(j(i, k,m)))

and
Wt =

∑
(i,k,m)∈[K]×[K]×[T−1]

exp(ηŜt(j(i, k,m))) .

Then the learner follows the expert (It,Kt,Mt) until the next time the Bernoulli variable
takes value 1. More precisely, if for some t, Zt = 1 and t′ = min{s > t : Zs = 1}, then
for all time instances s ∈ {t, . . . , t′ − 1}, the learner plays the arms according to positions
t, . . . , t′ − 1 of the sequence j(It,Kt,Mt), as defined in (8). The algorithm is described in
detail in Figure 2.

The next theorem establishes sublinear regret for the performance of the proposed strat-
egy. In particular, it shows that the expected regret grows at a rate at most Õ(T 2/3). As
in the stochastic setting, it remains an open problem to determine if this rate is optimal.

Theorem 16 Consider the adversarial fidelity bandits problem in the subscription model
with nonincreasing fidelity rewards. Then, choosing the parameters of the algorithm as

η =
(
log(K2(T − 1))/(2TK)

)2/3
and ε = K

√
η, the expected (weak and strong) regret of the

strategy define above satisfies

ERT ≤ 3(2TK)2/3 log1/3
(
K2(T − 1)

)
.

Proof Let J = (J1, . . . , JT ) ∈ [K]T denote the (random) sequence of arms played by the
strategy. The strategy is defined such that, except for the times when Zt = 1, the strategy
follows the expert (It,Kt,Mt), that is, Jt = jt(It,Kt,Mt).

Define the “pseudo” reward of the strategy by

ST
def.
=

T∑
t=1

(Xt,Jt + Φ(It,Kt,Mt)) .
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Input: T (horizon), ε ∈ (0, 1) (sampling probability), η > 0 (learning rate).
Initialize: w0,(i,k,m) = 1.

1: Sample T independent Bernoulli(ε) random variables Z1, . . . , ZT .
2: Set Z1 = 1
3: for all t = 1, . . . , T do
4: if Zt = 1, then
5: Select a uniformly random arm Jt and observe Xt,Jt ;

6: Compute wt,(i,k,m) = exp(ηŜt(j(i, k,m))) ∀(i, k,m) ∈ [K]2×[T−1];
7: end if
8: if Zt = 0, then
9: if Zt−1 = 1 then

10: Draw a random expert (It,Kt,Mt) according to the distribu-
tion pt,(i,k,m) = wt−1,(i,k,m)/Wt−1 and play according to the t-th
position of the sequence j(It,Kt,Mt);

11: else
12: Play according to the same expert as at time t− 1.
13: end if
14: end if
15: end for

Figure 2: Lazy strategy for adversarial bandits with decreasing fidelity rewards, subscrip-
tion model

The key observation is that, since the fidelity rewards are decreasing, the realized total
reward of the strategy is at least

ST (J) =

T∑
t=1

(Xt,Jt + fJt(Qt−1,Jt)) ≥ ST − 2

T∑
t=1

1{Zt=1} ,

since
∑T

t=1 1{Zt=1} is the total number of times the strategy switches experts and the
rewards are bounded in [0, 2]. Hence, it suffices to show that the total expected pseudo
reward EST is not much smaller than

max
(i,k,m)

ST (j(i, k,m)) = max
(i,k,m)

T∑
t=1

(
Xt,jt(i,k,m) + Φ(i, k,m)

)
.

As it is customary in the analysis of exponentially weighted average forecasters (see Cesa-
Bianchi and Lugosi (2006)), we compare upper and lower bounds for the “weight” Wt. On
the one hand,

log
WT

W0
= log

 ∑
(i,k,m)

exp(ηŜT (j(i, k,m)))

− log(K2(T − 1))

≥ η max
(i,k,m)

ŜT (j(i, k,m))− log(K2(T − 1)) .
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On the other hand, log(WT /W0) =
∑T

t=1 log(Wt/Wt−1) and for each t ∈ [T ], we have

log
Wt

Wt−1

= log

 ∑
(i,k,m)

pt,(i,k,m) exp(ηŶt(i, k,m))


= 2η + log

 ∑
(i,k,m)

pt,(i,k,m) exp(−η̂̀t,(i,k,m))


≤ 2η + log

 ∑
(i,k,m)

pt,(i,k,m)

(
1− η̂̀t,(i,k,m) +

η2

2
̂̀2
t,(i,k,m)

)
(using e−x ≤ 1− x+ x2/2 for x ≥ 0)

≤ 2η − η
∑

(i,k,m)

pt,(i,k,m)
̂̀
t,(i,k,m) +

2η2K

ε

∑
(i,k,m)

pt,(i,k,m)
̂̀
t,(i,k,m)

(using log(1 + x) ≤ x for all x ≥ −1 and ̂̀t,(i,k,m) ≤ 2K/ε)

≤ η
∑

(i,k,m)

pt,(i,k,m)Ŷt,(i,k,m) +
2η2K

ε

∑
(i,k,m)

pt,(i,k,m)
̂̀
t,(i,k,m)

(by definition of ̂̀s,(i,k,m) = 2− Ŷs,(i,k,m))

Comparing the upper and lower bounds obtained for log(WT /W0), we have that for all
(i′, k′,m′) ∈ [K]× [K]× [T − 1],

T∑
t=1

∑
(i,k,m)

pt,(i,k,m)Ŷt,(i,k,m) ≥ ŜT (j(i′, k′,m′))

− log(K2(T − 1))

η
− 2ηK

ε

T∑
t=1

∑
(i,k,m)

pt,(i,k,m)
̂̀
t,(i,k,m) .

Taking expected values on both sides and noting that

E
T∑
t=1

∑
(i,k,m)

pt,(i,k,m)Ŷt,(i,k,m) = EST ,

we get

EST ≥ max
(i,k,m)

ST (j(i, k,m))− log(K2(T − 1))

η
− 4TηK

ε
,

and therefore

ERT ≤
log(K2(T − 1))

η
+

4TηK

ε
+ 2Tε .
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Optimizing the upper bound suggests the choices

ε = K
√
η and η =

(
log(K2(T − 1))

2TK

)2/3

,

yielding the announced upper bound.

8. Subscription model: coupon rewards

We finally consider the subscription model with so-called “coupons” fidelity rewards. Here
the player earns an additional reward rj ∈ [0, 1] after each consecutive ρj ∈ N plays of
an arm j. As we will see, this setting is similar to the loyalty points model with coupon
rewards which was studied in Section 5. However, a key difference is that here, in order to
get any additional fidelity reward, an arm needs to be played ρj times consecutively.

8.1 Minimal sufficient sets

We begin by considering the class of minimal sufficient sets for the subscription model with
coupon rewards. For this, we note that due to the need to be playing an arm continuously
in order to receive any fidelity reward, any optimal sequence j ∈ [K]T will mainly consist
of consecutive instances of any arm, where the length of these segments is determined by
ρj , the period of arm j. Moreover, it can easily be seen that if ρj = ρ for all arms j and T
is divisible by ρ, then the optimal strategy is to play the arm maximizing µj + rj/ρ for all
rounds t = 1, . . . , T , and thus the minimal sufficient sets are the single arm strategies J0. In
the more general case, the minimal sufficient sets may not simply be single arm strategies.
However, by an argument similar to the one in the loyalty points setting, we can show that
the total reward accumulated by the best single arm strategy is not too far from that of the
best minimal sufficient set. In particular,

Lemma 17 Let ρ denote the least common multiple of the period lengths ρ1, . . . , ρK . Then,

max
j∈∪J∈CfJ

ST (j)− max
j′∈J0

St(j
′) ≤ 2ρ .

Therefore, as in the coupons loyalty points model, we compare our algorithms to single
arm strategies knowing that the maximal reward of such strategies does not differ too much
from the true maximal reward.

8.2 Stochastic rewards

From the above discussion, it is clear that to gain the additional fidelity reward, each time
an arm j is played, it should be played for ρj rounds consecutively. Since the fidelity
functions are known, so are the ρj . Therefore, we consider algorithms that run in batches,
that is, they select an arm j using all the available data up to that point, then play that
arm ρj times before updating the estimates and selecting another arm. While in principle,
any standard algorithm for the multi-armed bandit problem could be used to select the
arms at the beginning of each batch, for simplicity, here we consider a batch version of
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the UCB algorithm (Auer et al., 2002a). We aim to accumulate rewards comparable to
T maxj∈[K](µj + rj/ρj) and so we use confidence bounds of the form.

UCBt(j) = Xt,j +
rj
ρj

+

√
2 log(KT )

Nt,j
, (13)

where Xt,j is the average base reward from Nt,j plays of arm j up to time t. Note that each
arm j is played ρj times when it is selected. This leads to the following regret bound, the
complete proof of which is given in Appendix B.1.

Theorem 18 The expected regret of the Batch-UCB algorithm up to horizon T in the
stochastic coupons subscription model can be bounded by

E[RT ] ≤
∑
j 6=j∗

16 log(TK)

∆̃j

+
∑
j 6=j∗

ρj∆̃j + (1 +
2

K
)
∑
j 6=j∗

∆̃j + 2ρ

where ∆̃j = maxi∈[K](µi + ri/ρi)− (µj + rj/ρj). So the worst case regret bound is E[RT ] =

O(
√
KT log(T ) +

∑K
j=1 ρj + ρ).

The above regret bounds exhibit the expected optimal leading order terms. However, it
is still an open question to determine whether the dependence on the period lengths ρj can
be improved.

8.3 Adversarial rewards

Since we know that the best single arm strategy is almost optimal in the subscription
coupons model, we aim to develop an algorithm that is competitive with that. Unlike
in the loyalty points model with coupon rewards where we could simply use a standard
adversarial bandits algorithm with augmented rewards, the subscription structure of the
fidelity rewards here means that we need to be a bit more careful to guarantee that the
augmented rewards are actually similar to the accumulated rewards. Specifically, this means
that we need to play in batches and play each arm j some multiple of ρj times whenever it is
selected. For example, we may select arms using the EXP3 (Auer et al., 2002b) algorithm
and then play them ρ times, where ρ is again the least common multiple of the period
lengths ρ1, . . . , ρK . This gives the following regret bound,

Theorem 19 Selecting arms according to the EXP3 algorithm with parameter λ = min{1,√
ρK log(K)

(e−1)T } and playing each arm j ρ times when selected in the adversarial coupons sub-

scription fidelity bandits model leads to regret of

E[R]
T ] = Õ(

√
ρKT log(K)) ,

where ρ is again the least common multiple of the period lengths ρ1, . . . , ρK .

Proof The proof follows by considering an adversarial bandits problem over S = bTρ c
rounds. In each round s = 1, . . . , S, the algorithm selects an arm Js using the EXP3 algo-

rithm and receives reward
∑

t∈Ts Xt,j+rj
2ρ ∈ [0, 1] where Ts is such that |Ts| = ρ and represents

35



Lugosi, Pike-Burke, Savalle

the set of time points t = ρs+ 1, . . . , ρ(s+ 1) in the fidelity bandits problem where we are
playing arm j ρ times consecutively. Let RS denote the regret in this modified problem

compared to playing arm j∗ = argmax1≤j≤K

∑T
t=1Xt,j+Srj

ρ , which we note is the same arm

as the best single arm strategy in the original problem. By Lemma 17, RT ≤ 2ρRS + ρ, so
it suffices to provide a bound on RS . This can be done by applying the analysis of EXP3 in

Corollary 3.2 of (Auer et al., 2002b). In particular, for parameter λ = min{1,
√

ρK log(K)
(e−1)T },

E[RS ] = O(
√

KT log(K)
ρ ), thus giving the result.

Remark 20 Note that when ρ1 = · · · = ρK = ρ, then the regret is simply Õ(
√
ρKT ).

However, in other cases, depending on the periodicities, ρ can be significantly larger than
any single ρj. By a simple modification of the argument, the regret bound can be improved

to Õ(
maxj ρj√

minj ρj

√
KT ) by considering a variant of EXP3 that plays each arm j exactly ρj

times when it is selected, using the pseudo-rewards
∑

t∈Ts Xt,j+rj
2 maxj ρj

∈ [0, 1] and S ≤ b T
minj ρj

c
rounds. However, to avoid some technicalities arising from the fact that the number of
rounds becomes random, we chose to present the simplest version. It is also an open question
to determine the optimal dependence on the periods ρ1, . . . , ρK .

Remark 21 The above result assumes that ρj is constant for all j ∈ [K]. Clearly if ρj
are such that ρ = Ω(T ), the bound in Theorem 19 becomes vacuous. In such a case, one
may simply ignore the fidelity reward of any arm with ρj = Ω(T ) as it is not received often
enough to make a significant difference to the cumulative reward. In fact, for ρj = Ω(T 1/4)
it is better to ignore the fidelity rewards. We omit the straightforward details.

Remark 22 From Theorems 18 and 19, we observe that the cost of playing in batches is
additive in the stochastic case, and multiplicative in the adversarial setting. This is to be
expected since playing in batches can almost be viewed as a form of delayed feedback. It
is known that the penalty for receiving delayed feedback is multiplicative in the adversarial
setting (see, e.g., Joulani et al. (2013)), so our results are consistent with this.

9. Conclusion

In this paper we have studied several instances of the fidelity bandits problem where the
reward of each arm is augmented by a fidelity reward which measures how loyal the player
has been to that arm in the past. Our focus has been on the settings with adversarially
generated base rewards, although we also analyze the stochastic version of the problem
for completeness. For this problem, the definition of the regret when the rewards are
adversarial is nontrivial. By considering the stochastic analogue of the problem we suggest
several natural regret definitions. In particular, we define the regret with respect to a
class of policies which may be optimal for some configuration of the stochastic problem, a
technique which we believe may be applicable in many settings beyond the fidelity bandits
problem studied here. Our main interest in this paper was to determine when it is possible
for these regrets to be sub-linear. We considered two forms of fidelity reward, namely the

36



Bandit problems with fidelity rewards

loyalty points model where the fidelity reward depends on the number of times of an arm
was previously played, and the subscription model where the fidelity reward is a function
of the number of consecutive plays of an arm up to that point.

Our findings show that learning with adversarial rewards and increasing fidelity functions
is hard, with Ω(T ) bounds presented for even the weakest regret definition in both the
loyalty points and subscription model. However, these results are worst case, so it remains
a possibility that for specific fidelity functions sublinear regret could be achieved (see, e.g.,
the results for m-step functions in Section 6.3). For decreasing fidelity rewards, the picture is
more positive. Although we provide Ω(T ) lower bounds for the strongest notions of regret in
the loyalty points model, we show that for weaker notions of regret, it is possible to achieve
sub-linear regret in this case. This means that we are able to perform comparably to
some near-optimal sequence of actions. For the subscription model, we show that sublinear
regret is possible for even the strong regret when the fidelity rewards are decreasing. The
reason for this distinction is that in the subscription model, due to the fact that the fidelity
reward depends on the number of consecutive plays, there is only one minimal sufficient
set, simplifying the class of comparator policies for the strong regret. Lastly, we note that
in the coupons rewards setting, where a bonus reward is obtained every ρj (consecutive)
plays of arm j, it is possible to get sub-linear strong regret in both the loyalty points and
subscription models with adversarial base rewards. Interestingly, in this case, the effects
of the fidelity rewards are different in the subscription and loyalty points models, with the
regret scaling mutliplicatively with the periodicity of the coupon function in the subscription
case, while it only increases additively in the loyalty points model.

Although we have considered several forms of fidelity reward in this paper, there are still
other realistic assumptions one could make on the fidelity reward. For example, it may be
interesting to consider more general periodic fidelity functions, or other measures of fidelity
such as the number of times the arm has been played in the last m plays. This is left for
future work.

We also point out that throughout the paper we have assumed that the entire fidelity
functions are known to the forecaster, although typically the algorithms only require knowl-
edge of the cumulative fidelity reward Fj(T ). It remains to be seen if this can be reduced to
requiring no knowledge of the fidelity reward. A related problem is whether one can remove
the need to know the horizon T and develop anytime algorithms for fidelity bandits prob-
lems. A key challenge here is that the optimal sequence of arms typically depends on the
horizon so standard techniques such as the doubling trick (see e.g. Besson and Kaufmann
(2018)) may not be applicable. For example, in the subscription model with increasing fi-
delity rewards, since we lose any fidelity reward accrued when we switch arms, it is possible
to construct fidelity functions such that even if we played the best arm for an entire phase
we may not get enough fidelity reward, so the doubling trick could lead to linear regret. By
assuming that the average fidelity reward is stationary over time or independent of T , one
may be able to adapt our results to the anytime setting, but we leave this to future work.

Lastly, we note that our aim in this paper was to understand when it is possible to
achieve sub-linear expected regret in the fidelity bandits problem. As such, some constants
or rates (particularly in the stochastic reward case) may not be tight. Therefore, tightening
them and/or providing matching lower bounds remains an interesting open problem. We
have also focused on providing bounds on the expected regret. We imagine that our analysis
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for upper bounds in the stochastic setting can be easily extended to obtain high probability
bounds. On the other hand, obtaining high-probability upper bounds on the regret in the
adversarial setting is less straightforward and we leave this topic for future research.
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Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex
optimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 72–85, 2017.
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A. Proofs for the loyalty points model with increasing rewards

A.1 Proof of Lemma 2 (Optimality of single arm strategies for increasing
loyalty points bandits)

Proof Suppose that a sequence j plays arm j Nj times up to time T (and therefore∑K
j=1Nj = T ). Then the total (pseudo) reward of such a sequence is

S̃T (j) =
K∑
j=1

Njµj +

Nj∑
n=1

fj(n)

 =
K∑
j=1

Nj

(
µj +

1

Nj
Fj(Nj)

)

≤
K∑
j=1

Nj

(
µj +

1

T
Fj(T )

)
(since the fj are increasing functions)

≤ T max
1≤j≤K

{
µj +

1

T
Fj(T )

}
= S̃T (j∗, j∗, . . . , j∗) .

Hence there is a single-arm strategy whose total reward is at least as large as that of j.
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A.2 Proof of Theorem 3 (Regret of UCB in stochastic loyalty points bandits
with increasing fidelity rewards)

Proof This proof is similar to the standard proofs of the regret bounds of UCB (see Auer
et al. (2002a); Lattimore and Szepesvári (2020)) with some adjustments to deal with the
fidelity functions.

Let B = ∩Kj=1 ∩Tt=1 {µj + Fj(T )/T ≤ UCBt(j)} be the event that the upper confidence
bounds on each arm hold at all time steps. We show that on event B, the number of plays
of sub-optimal arms is small. First, we write

RT =

T∑
t=1

(µj∗ − µJt + fj∗(t)− fJt(Nt−1,Jt)))

=
K∑
j=1

NT,j(µj∗ − µj) +
T∑
t=1

fj∗(t)−
K∑
j=1

NT,j∑
n=1

fj(n)

=

K∑
j=1

NT,j(µj∗ − µj) +

T∑
n=NT,j∗

fj∗(n)−
∑
j:j 6=j∗

NT,j∑
n=1

fj(n)

≤
K∑
j=1

NT,j(µj∗ − µj) + (T − (T −
∑
j:j 6=j∗

NT,j))fj∗(T )−
∑
j:j 6=j∗

NT,jfj(0)

(since the fidelity functions are increasing)

≤
∑
j:j 6=j∗

NT,j(µj∗ − µj + fj∗(T )− fj(0)) ,

since NT,j∗ = T −
∑

j 6=j∗ NT,j .
Hence, it suffices to bound the number of plays of each sub-optimal arm. Let mj =⌈

8 log(KT )

∆̃2
j

⌉
and observe that on the event B, if Nt,j > mj arm j will not be played again.

Indeed, in this case, for any number of plays m∗ of the optimal arm,

UCBt(j) = Xt,j +
1

T
Fj(T ) +

√
2 log(KT )

mj
≤ µj +

1

T
Fj(T ) + 2

√
2 log(KT )

mj

< µj +
1

T
Fj(T ) + ∆̃j = µj∗ +

1

T
Fj∗(T ) ≤ UCBt(j

∗)

and therefore arm j is not played again.
Then, using the fact that the confidence bounds hold with probability 1/(KT )2 (by

Hoeffding’s inequality), the expected regret may be bounded by

ERT = E[RT1B] + E[RT1BC ]

≤
∑
j:j 6=j∗

E[NT,j1B](µj∗ − µj + fj∗(T )− fj(0)) + TP(BC)

≤
∑
j:j 6=j∗

⌈
8 log(KT )

∆̃2
j

⌉
(µj∗ − µj + fj∗(T )− fj(0)) + T

T∑
t=1

K∑
j=1

P(µj + Fj(T )/T > UCBt(j))
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≤
∑
j:j 6=j∗

(
8 log(KT )

∆̃2
j

+ 1

)
(µj∗ − µj + fj∗(T )− fj(0)) +

1

K
,

proving the result. To obtain the worst case regret bound, we use standard techniques (see,

e.g. Lattimore and Szepesvári (2020)) and set ∆̃j ≈
√

K log(T )
T .

A.3 Proof of Theorem 4 (Lower bound on the regret for the adversarial
loyalty points bandit problem with increasing fidelity reward)

Proof It suffices to consider the two-armed setting (i.e., K = 2). The argument may easily
be extended to multiple arms, for example, by replicating the rewards of the two arms. We
may also assume that T is even and the fidelity functions of each arm are the same. We
write F (t) =

∑t
s=1 f(s) for the cumulative fidelity reward.

In order to prove the theorem, we consider just two possible sequences of rewards. In
both cases arm 1 has reward X1,t = δ/5 for all t ∈ [T ]. Also, in both cases arm 2 has reward
X2,t = 0 for all t ∈ [T/2]. The reward X2,t of arm 2 for all t > T/2 equals 0 in case (I),
while it equals δ in case (II).

We know that in this problem single arm strategies are optimal. In case (I), the optimal
arm is arm 1 with total reward Tδ/5 + F (T ), while in case (II), the optimal arm is arm 2
with total reward Tδ/2 + F (T ).

Consider any policy and denote by τ1 the number of times the policy chooses arm 1 up
to time T/2. Similarly, τ2 denotes the number of times the policy chooses arm 1 between
times T/2 + 1 and T . Note that τ1 is the same in cases (I) and (II) as up to time T/2 the
two cases are identical.

If τ1 ≤ T/4, then in case (I) the policy suffers regret at least Tδ/20, so in the rest of
the proof we may assume that τ1 > T/4 and we consider case (II).

In that case the total reward of the policy equals

(τ1 + τ2)δ

5
+
Tδ

2
− τ2δ + F (τ1 + τ2) + F (T − τ1 − τ2) .

Thus, since arm 2 is optimal, the regret becomes

RT =
−τ1δ

5
+

4τ2δ

5
+ F (T )− (F (τ1 + τ2) + F (T − τ1 − τ2)) .

If τ2 > τ1 − T/8, then the regret is at least

RT ≥ −τ1δ

5
+

4τ2δ

5
(since the fidelity reward is nondecreasing)

≥ 3τ1δ

5
− Tδ

10

≥ Tδ

20
(since τ1 > T/4).
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Finally, if τ2 ≤ τ1 − T/8, then

τ1 + τ2 ∈
[
T

4
,
7T

8

]
,

and therefore, by the nondecreasing property of the fidelity rewards, for any t ∈ [T ], F (t) +
F (T − t) is nonincreasing in t ≤ T/2 and nondecreasing in t ≥ T/2. Hence,

F (T )− (F (τ1 + τ2) + F (T − τ1 − τ2)) ≥ F (T )− F (7T/8)− F (T/8)

=

T/8∑
t=1

(f(T − t)− f(t))

≥ T

8
(f(7T/8)− f(T/8)) =

Tδ

8
.

Hence, the regret satisfies

RT ≥
−τ1δ

5
+ F (T )− (F (τ1 + τ2) + F (T − τ1 − τ2)) ≥ −Tδ

10
+
Tδ

8
=
Tδ

40
.

B. Results for Stochastic Coupons Subscription Model

B.1 Proof of Theorem 18 (Regret bound for the Batch-UCB algorithm in the
stochastic coupons subscription model)

We first bound the number of plays of any sub-optimal arm.

Lemma 23 For any sub-optimal arm j,

0 ≤ E[Nj(T )] ≤ 16 log(TK)

∆̃2
j

+ ρj + 1 +
2

K

Proof Let B be the event that the confidence bounds hold for all arms at all time steps,
that is, B = ∩Kj=1 ∩Tt=1 {µj ≤ UCBt(j)}. Then define n∗j = d16 log(TK)

∆̃2
j

e = m∗jρj + lj for

some integer m∗j ∈ N and remainder 0 ≤ lj ≤ ρj . We now show that on event B, if we have
played arm j ñ∗j = (m∗j + 1)ρj ≥ n∗j times, then it is not played again. Indeed, if t is such
that Nj,t ≥ ñ∗j ≥ n∗j , then,

UCBt(j) = Y j,t + 2

√
log(TK)

NT,j
≤ µ̃j + 4

√
log(TK)

n∗j
< µ̃j + ∆̃j = µ̃j∗ ≤ UCBt(j

∗).

Here we have used the definition of the confidence bounds and the notation µ̃j = µj +
rj
ρj

and j∗ = argmax1≤j≤K µj +
rj
ρj

. Hence, UCBt(j) < UCBt(j
∗) and so we would play arm

j∗ and not play arm j again. Consequently arm j is not played more than n∗j times.
Using this, we bound the expected number of times we play arm j as,

E[NT,j ] = E[NT,j1{B}] + E[NT,j1{BC}] ≤ n∗j + TP(BC)
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≤ (m∗j + 1)ρj + T
K∑
j=1

T∑
t=1

P(µj > UCBt(j)) ≤
⌈

16 log(TK)

∆̃2
j

⌉
+ ρj +

2

K

where we have used the fact that the confidence intervals hold with probability at least
1− 2

T 2K2 . Using the trivial bound dxe ≤ x+ 1 and noting that Nj(T ) ≥ 0 gives the result
of the lemma.

Using this, we now prove the regret bound in Theorem 18.
Proof We play each arm j in batches of ρj plays. Denote the number of such batches of
arm j as BT,j and note that NT,j = ρjBT,j . Using Lemma 17, we write the regret as,

E[RT ] = T (µj∗ +
rj∗

ρj∗
) + 2ρ−

K∑
j=1

E[BT,j ](ρjµj + rj)

= T (µj∗ +
rj∗

ρj∗
)−

K∑
j=1

E[NT,j ](µj +
rj
ρj

) + 2ρ =
∑
j 6=j∗

E[NT,j ]∆̃j + 2ρ

where ∆̃j = max1≤j≤K{µj +
rj
ρj
} − (µj +

rj
ρj

). Substituting the result from Lemma 23 into

the above result gives,

E[RT ] ≤
∑
j 6=j∗

16 log(TK)

∆̃j

+
∑
j 6=j∗

ρj∆̃j + (1 +
2

K
)
∑
j 6=j∗

∆̃j + 2ρ.
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