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Abstract
The purpose of this paper is to discuss empirical risk minimization when the losses

are not necessarily bounded and may have a distribution with heavy tails. In such
situations usual empirical averages may fail to provide reliable estimates and empirical
risk minimization may provide large excess risk. However, some robust mean estimators
proposed in the literature may be used to replace empirical means. In this paper we
investigate empirical risk minimization based on a robust estimate proposed by Catoni.
We develop performance bounds based on chaining arguments tailored to Catoni’s mean
estimator.

1 Introduction

One of the basic principles of statistical learning is empirical risk minimization that has
been routinely used in a great variety of problems such as regression function estimation,
classification, and clustering. The general model may be described as follows. Let X be
a random variable taking values in some measurable space X and let F be a set of non-
negative functions defined on X . For each f ∈ F , define the risk mf = Ef(X) and let
m∗ = inff∈F mf denote the optimal risk. In statistical learning n independent random
variables X1, . . . , Xn are available, all distributed as X, and one aims at finding a function
with small risk. To this end, one may define the empirical risk minimizer

fERM = argmin
f∈F

1
n

n∑
i=1

f(Xi)

where, for the simplicity of the discussion and essentially without loss of generality, we
implicitly assume that the minimizer exists. If the minimum is achieved by more than one
function, one may pick one of them arbitrarily.

Remark. (loss functions and risks.) The main motivation and terminology may
be explained by the following general prediction problem in statistical learning. Let
(Z1, Y1), . . . , (Zn, Yn) be independent identically distributed pairs of random variables rep-
resenting “training data” where the Zi take their values in, say, Rd and the Yi are real-
valued. In classification problems the Yi take discrete values. Given a new observation Z,
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one is interested in predicting the value of the corresponding response variable Y where
the pair (Z, Y ) has the same distribution as that of the (Zi, Yi). A predictor is a function
g : Rd → R whose quality is measured with the help of a loss function ` : R × R → R+.
The risk of g is then E`(g(Z), Y ). Given a class G of functions g : Rd → R, empirical risk
minimization chooses one that minimizes the empirical risk (1/n)

∑n
i=1 `(g(Zi), Yi) over all

g ∈ G. In the simplified notation followed in this paper, Xi corresponds to the pair (Zi, Yi),
the function f represents `(g(·), ·), and mf substitutes E`(g(Z), Y ).

The performance of empirical risk minimization is measured by the risk of the selected
function,

mERM = E [fERM(X)|X1, . . . , Xn] .

In particular, the main object of interest for this paper is the excess risk mERM − m∗.
The performance of empirical risk minimization has been thoroughly studied and well
understood using tools of empirical process theory. In particular, the simple observation
that

mERM −m∗ ≤ 2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)−mf

∣∣∣∣∣
allows one to apply the rich theory on the suprema of empirical processes to obtain upper
performance bounds. The interested reader is referred to Bartlett and Mendelson [6],
Boucheron, Bousquet, and Lugosi [8], Koltchinskii [14], Massart [18], Mendelson [21], van
de Geer [29] for references and recent results in this area. Essentially all of the theory of
empirical minimization assumes either that the functions f are uniformly bounded or that
the random variables f(X) have sub-Gaussian tails for all f ∈ F . For example, when all
f ∈ F take their values in the interval [0, 1], Dudley’s [12] classical metric-entropy bound,
together with standard symmetrization arguments, imply that there exists a universal
constant c such that

EmERM −m∗ ≤
c√
n

E
∫ 1

0

√
logNX(F , ε)dε , (1)

where for any ε > 0, NX(F , ε) is the ε-covering number of the class F under the em-
pirical quadratic distance dX(f, g) =

(
1
n

∑n
i=1(f(Xi)− g(Xi))2

)1/2, defined as the mini-
mal cardinality N of any set {f1, . . . , fN} ⊂ F such that for all f ∈ F there exists an
fj ∈ {f1, . . . , fN} with dX(f, fj) ≤ ε. Of course, this is one of the most basic bounds and
many important refinements have been established.

A tighter bound may be established by the so-called generic chaining method, see
Talagrand [27]. Recall the following definition (see, e.g., [27, Definition 1.2.3]). Let T be a
(pseudo) metric space. An increasing sequence (An) of partitions of T is called admissible
if for all n = 0, 1, 2, . . . , #An ≤ 22n . For any t ∈ T , denote by An(t) the unique element of
An that contains t. Let ∆(A) denote the diameter of the set A ⊂ T . Define, for α = 1, 2,

γα(T, d) = inf
An

sup
t∈T

∑
n≥0

2n/α∆(An(t)) ,
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where the infimum is taken over all admissible sequences. Then one has

EmERM −m∗ ≤
c√
n

Eγ2(F , dX) (2)

for some universal constant c. This bound implies (1) as γ2(F , dX) is bounded by a constant
multiple of the entropy integral

∫ 1
0

√
logNX(F , ε)dε.

However, when the functions f are no longer uniformly bounded and the random vari-
ables f(X) may have a heavy tail, empirical risk minimization may have a much poorer
performance. This is simply due to the fact that empirical averages become poor estimates
of expected values. Indeed, for heavy-tailed distributions, several estimators of the mean
are known to outperform simple empirical averages. It is a natural idea to define a robust
version of empirical risk minimization based on minimizing such robust estimators.

In this paper we focus on an elegant and powerful estimator proposed and analyzed by
Catoni [11]. (A version of) Catoni’s estimator may be defined as follows.

Introduce the non-decreasing differentiable truncation function

φ(x) = −1{x<0} log
(

1− x+
x2

2

)
+ 1{x≥0} log

(
1 + x+

x2

2

)
. (3)

To estimate mf = Ef(X) for some f ∈ F , define, for all µ ∈ R,

r̂f (µ) =
1
nα

n∑
i=1

φ(α(f(Xi)− µ))

where α > 0 is a parameter of the estimator to be specified below. Catoni’s estimator of
mf is defined as the unique value µ̂f for which r̂f (µ̂f ) = 0. (Uniqueness is ensured by the
monotonicity of µ 7→ r̂f (µ)). Catoni proves that for any fixed f ∈ F and δ ∈ [0, 1] such
that n > 2 log(1/δ), under the only assumption that Var (f(X)) ≤ v, the estimator above
with

α =

√√√√ 2 log(1/δ)

n
(
v + 2v log(1/δ)

n(1−(2/n) log(1/δ))

)
satisfies that, with probability at least 1− 2δ,

|mf − µ̂f | ≤

√
2v log(1/δ)

n(1− (2/n) log(1/δ))
. (4)

In other words, the deviations of the estimate exhibit a sub-Gaussian behavior. The price
to pay is that the estimator depends both on the upper bound v for the variance and on
the prescribed confidence δ via the parameter α.

Catoni also shows that for any n > 4(1 + log(1/δ)), if Var (f(X)) ≤ v, the choice

α =

√
2
nv
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guarantees that, with probability at least 1− 2δ,

|mf − µ̂f | ≤ (1 + log(1/δ))
√
v

n
. (5)

Even though we lose the sub-Gaussian tail behavior, the estimator is independent of the
required confidence level.

Given such a powerful mean estimator, it is natural to propose an empirical risk min-
imizer that selects a function from the class F that minimizes Catoni’s mean estimator.
Formally, define

f̂ = argmin
f∈F

µ̂f

where again, for the sake of simplicity we assume that the minimizer exists. (Otherwise
one may select an appropriate approximate minimizer and all arguments go through in a
trivial way.)

Once again, as a first step of understanding the excess risk m bf −m∗, we may use the
simple bound

m bf −m∗ =
(
m bf − µ̂ bf

)
+
(
µ̂ bf −m∗

)
≤ 2 sup

f∈F
|mf − µ̂f | .

When F is a finite class of cardinality, say |F| = N , Catoni’s bound may be combined, in
a straightforward way, with the union-of-events bound. Indeed, if the estimators µ̂f are
defined with parameter

α =

√√√√ 2 log(N/δ)

n
(
v + 2v log(N/δ)

n(1−(2/n) log(N/δ))

) ,

then, with probability at least 1− 2δ,

sup
f∈F
|mf − µ̂f | ≤

√
2v log(N/δ)

n(1− (2/n) log(N/δ))
.

Note that this bound requires that supf∈F Var (f(X)) ≤ v, that is, the variances are uni-
formly bounded by a known value v. Throughout the paper we work with this assumption.
However, this bound does not take into account the structure of the class F and it is useless
when F is an infinite class. Our strategy to obtain meaningful bounds is to use chaining
arguments. However, the extension is nontrivial and the argument becomes more involved.
The main results of the paper present performance bounds for empirical minimization of
Catoni’s estimator based on generic chaining.

Remark. (median-of-means estimator.) Catoni’s estimator is not the only one with
sub-Gaussian deviations for heavy-tailed distributions. Indeed, the median-of-means esti-
mator, proposed by Nemirovsky and Yudin [23] (and also independently by Alon, Matias,
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and Szegedy [2]) has similar performance guarantees as (4). This estimate is obtained by
dividing the data in several small blocks, calculating the sample mean within each block,
and then taking the median of these means. Hsu and Sabato [13] and Minsker [22] intro-
duce multivariate generalizations of the median-of-means estimator and use it to define an
analyze certain statistical learning procedures in the presence of heavy-tailed data. The
sub-Gaussian behavior is achieved under various assumptions on the loss function. Such
conditions can be avoided here. As an example, we detail applications of our results the-
orems in Section 4 for three different classes of loss functions. An important advantage of
the median-of-means estimate over Catoni’s estimate is that the parameter of the estimate
(i.e., the number of blocks) only depends on the confidence level δ but not on v and there-
fore no prior upper bound of the variance v is required to compute this estimate. Also, the
median-of-means estimate is useful even when the variance is infinite and only a moment
of order 1 + ε exists for some ε > 0 (see Bubeck, Cesa-Bianchi, and Lugosi [10]). Lerasle
and Oliveira [15] consider empirical minimization of the median-of-means estimator and
obtain interesting results in various statistical learning problems. However, to establish
metric-entropy bounds for minimization of this mean estimate remains to be a challenge.

The rest of the paper is organized as follows. In Section 2 we state and discuss the main
results of the paper. Section 3 is dedicated to the proofs. In Section 4 we describe some
applications to regression under the absolute and squared losses and k-means clustering.
Finally, in Section 5 we present some simulation results both for regression and k-means
clustering. Some of the more technical arguments are relegated to the Appendix.

2 Main results

The bounds we establish for the excess risk depend on the geometric structure of the class
F under different distances. The L2(P ) distance is defined, for f, f ′ ∈ F , by

d(f, f ′) =
(
E
[(
f(X)− f ′(X)

)2])1/2

and the L∞ distance is
D(f, f ′) = sup

x∈X

∣∣f(x)− f ′(x)
∣∣ .

We also work with the (random) empirical quadratic distance

dX(f, f ′) =

(
1
n

n∑
i=1

(f(Xi)− f ′(Xi))2

)1/2

.

Denote by f∗ a function with minimal expectation

f∗ = argmin
f∈F

mf .
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Next we present two results that bound the excess risk m bf −mf∗ of the minimizer f̂ of
Catoni’s risk estimate in terms of metric properties of the class F . The first result involves
a combination of terms involving the γ2 and γ1 functionals under the metrics d and D
while the second is in terms of quantiles of γ2 under the empirical metric dX.

Theorem 1. Let F be a class of non-negative functions defined on a set X and let
X,X1, . . . , Xn be i.i.d. random variables taking values in X . Assume that there exists
v > 0 such that supf∈F Var (f(X)) ≤ v. Let δ ∈ (0, 1/3). Suppose that f̂ is selected from
F by minimizing Catoni’s mean estimator with parameter α < 1. Then there exist a uni-
versal constant L ≤ 384 log(2) such that, with probability at least 1 − 3δ and for n large
enough, the risk of f̂ satisfies

m bf −mf∗ ≤ 6
(
αv +

2 log(δ−1)
nα

)
+ log(δ−1)

(
8L√
n
γ2(F , d) +

4L
3n
γ1(F , D)

)
.

Theorem 2. Assume the hypotheses of Theorem 1. Set Γδ such that P {γ2(T, dX) > Γδ} ≤
δ
2 . Then there exist a universal constant K such that, with probability at least 1 − 3δ and
for n large enough, the risk of f̂ satisfies

m bf −mf∗ ≤ 6
(
αv +

2 log(δ−1)
nα

)
+KΓδ

√
log(2

δ )
n

.

In both theorems above, the choice of α only influences the term αv+ 2 log(δ−1)/(nα).
By taking α =

√
2 log(δ−1)/(nv), this term equals

2

√
2v log(δ−1)

n
.

This choice has the disadvantage that the estimator depends on the confidence level. By
taking α =

√
2/(nv), one obtains the term√

2v
n

(1 + log(δ−1)) .

Observe that the main term in the second part of the bound of Theorem 1 is(
log

1
δ

)
L√
n
γ2(F , d)

which is comparable to the bound (2) obtained under the strong condition of f(X) being
uniformly bounded. All other terms are of smaller order. Note that this part of the bound
depends on the “weak” distribution-dependent L2(P ) metric d. The quantity γ1(F , D) ≥
γ2(F , d) also enters the bound of Theorem 1 though only multiplied by 1/n. The presence
of this term requires that F is bounded in the L∞ distance D which limits the usefulness

6



of the bound. In Section 4 we illustrate the bounds on two applications to regression
and k-means clustering. In these applications, in spite of the presence of heavy tails, the
covering numbers under the distance D may be bounded in a meaningful way. Note that no
such bound can hold for “ordinary” empirical risk minimization that minimizes the usual
empirical means (1/n)

∑n
i=1 f(Xi) because of the poor performance of empirical averages

in the presence of heavy tails.
The main merit of the bound of Theorem 2 is that it does not require that the class

F has a finite diameter under the supremum norm. Instead, the quantiles of γ2(F , dX)
enter the picture. In Section 4 we show it through the example of L2 regression how these
quantiles may be estimated.

3 Proofs

The proofs of Theorems 1 and 2 are based on showing that the excess risk can be bounded
as soon as the supremum of the empirical process {Xf (µ) : f ∈ F} is bounded for any
fixed µ ∈ R, where for any f ∈ F and µ ∈ R, we define Xf (µ) = r̂f (µ)− rf (µ) with

rf (µ) =
1
α

E [φ(α(f(X)− µ))]

and

r̂f (µ) =
1
nα

n∑
i=1

φ(α(f(Xi)− µ)) .

The two theorems differ in the way the supremum of this empirical process is bounded.
Note first that, by the definition of Catoni’s estimator, µ̂f ≥ infi f(Xi). In particular,

µ̂f ≥ 0 for all f ∈ F . Let Aα(δ) = αv + 2 log(δ−1)/(nα).
Once again, we may assume, essentially without loss of generality, that the minimum

exists. In case of multiple minimizers we may choose one arbitrarily. The main result in
[11] states that for any δ > 0 such that α2v + 2 log(δ−1)/n ≤ 1, with probability at least
1− 2δ,

|µ̂f∗ −mf∗ | ≤ Aα(δ) . (6)

3.1 A deterministic version of µ̂f

We begin with a variant of the argument of Catoni [11]. It involves a deterministic version
µf of the estimator defined, for each f ∈ F , as the unique solution of the equation rf (µ) =
0.

In Lemma 4 below we show that µf is in a small (deterministic) interval centered at
mf . First we recall a fact from [11] in the next proposition. For any f ∈ F , µ ∈ R, and
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ε > 0, define

B+
f (µ, ε) = (mf − µ) +

α

2
(mf − µ)2 +

α

2
v + ε ,

B−f (µ, ε) = (mf − µ)− α

2
(mf − µ)2 − α

2
v − ε

and let
µ+
f (ε) = mf + αv + 2ε , µ−f (ε) = mf − αv − 2ε .

As a function of µ, B+
f (µ, ε) is a quadratic polynomial such that µ+

f (ε) is an upper bound
of the smallest root of B+

f (µ, ε). Similarly, µ−f (ε) is a lower bound of the largest root
of B−f (µ, ε). Implicitly we assumed that these roots always exist. This is not always
the case but a simple condition on α guarantees that these roots exists. In particular,
1 − α2v − 2αε ≥ 0 guarantees that B+

f (µ, ε) = 0 and B−f (µ, ε) = 0 have at least one
solution. This condition will always be satisfied by our choice of ε and α.

In our notation, Proposition 2.2 in [11] is equivalent to the following.

Proposition 3. Let δ > 0 and µ ∈ R. For any f ∈ F , the events

Ω−f (µ, δ) =
{
B−f

(
µ,

log δ−1

nα

)
≤ r̂f (µ)

}
Ω+
f (µ, δ) =

{
r̂f (µ) ≤ B+

f

(
µ,

log δ−1

nα

)}
both hold with probability at least 1− δ.

Let ε = log δ−1

nα and define

Ωf∗(δ)
def= Ω−f (µ−f∗(ε), δ) ∩ Ω+

f (µ+
f∗(ε), δ) .

If α2v + 2 log δ−1

n ≤ 1, (6) holds on the event Ωf∗(δ). (Just replace ε by log δ−1

nα in the
expression of µ+

f∗(ε) and µ−f∗(ε).) Since µ̂f∗ is the unique zero of r̂f∗(µ), it is squeezed into
the interval [µ−f∗(ε) , µ

+
f∗(ε)] centered at mf∗ and of size 2Aα(δ). Note that P {Ωf∗(δ)} ≥

1− 2δ.
Still following ideas of [11], the next lemma bounds rf (µ) by the quadratic polynomials

B+ and B−. The lemma will help us compare the zero of rf (µ) to the zeros of these
quadratic functions.

Lemma 4. For any fixed f ∈ F and µ ∈ R,

B−f (µ, 0) ≤ rf (µ) ≤ B+
f (µ, 0) , (7)

and therefore mf − αv ≤ µf ≤ mf + αv. In particular,

B−bf (µ, 0) ≤ r bf (µ) ≤ B+bf (µ, 0) .
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For any µ such that r bf (µ) ≤ ε, if 1− α2v − 2αε ≥ 0, then

m bf ≤ µ+ αv + 2ε . (8)

Proof. Writing Y for α(f(X)− µ) and using the fact that φ(x) ≤ log(1 + x+ x2/2) for all
x ∈ R,

exp (αrf (µ)) ≤ exp
(

E
[
log(1 + Y +

Y 2

2
)
])

≤ E
[
1 + Y +

Y 2

2

]
≤ 1 + α(mf − µ) +

α2

2
[v + (mf − µ)2]

≤ exp(αB+
f (µ, 0)) .

Thus, we have rf (µ)−B+
f (µ) ≤ 0. Since this last inequality is true for any f , supf (rf (µ)−

B+
f (µ)) ≤ 0 and the second inequality of (7) is proved. The other part can be treated with

the same argument.
If r bf (µ) ≤ ε then B−bf (µ, 0) ≤ ε which is equivalent to B−bf (µ, ε) ≤ 0. If 1− α2v − 2αε ≥ 0

then a solution of B−bf (µ, ε) = 0 exists and since r bf (µ) is a non-increasing function, µ is

above the largest of these two solutions. This implies µ−bf (ε) ≤ µ which gives inequality
(8).

The last inequality (8) is the key tool to ensure that the risk m bf of the minimizer f̂
can be upper bounded as soon as r̄ bf is. It remains to find the smallest µ and ε such that
r̄f (µ) is bounded uniformly on F .

3.2 Bounding the excess risk in terms of the supremum of an empirical
process

The key to all proofs is that we link the excess risk to the supremum of the empirical
process Xf (µ) = r̂f (µ)− rf (µ) as f ranges through F for a suitably chosen value of µ. For
fixed µ ∈ R and δ ∈ (0, 1), define the 1− δ quantile of supf∈F |Xf (µ)−Xf∗(µ)| by Q(µ, δ),
that is, the infimum of all positive numbers such that

P

{
sup
f∈F
|Xf (µ)−Xf∗(µ)| ≤ Q(µ, δ)

}
≥ 1− δ .

First we need a few simple facts summarized in the next lemma.

Lemma 5. Let µ0 = mf∗ + Aα(δ). Then on the event Ωf∗(δ), the following inequalities
hold:
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1. r̂ bf (µ0) ≤ 0

2. rf∗(µ0) ≤ 0

3. −r̂f∗(µ0) ≤ 2Af∗(δ)

Proof. We prove each inequality separately.

1. First note that on Ωf∗(δ) equation (6) holds and we have µ̂ bf ≤ µ̂f∗ ≤ µ0 and
µ̂f∗ ≤ µ0. By definition µ̂f∗ ≥ µ̂ bf . Since r̂ bf is a non-increasing function of µ,
r̂ bf (µ0) ≤ r̂ bf (µ̂ bf ) = 0.

2. By (7), µf∗ ≤ mf∗ + αv ≤ mf∗ + αv + 2 log(δ−1)
nα = µ0. Since rf∗ is a non-increasing

function, rf∗(µ0) ≤ rf∗(µf∗) = 0.

3. r̂f∗ is a 1-Lipschitz function and therefore

|r̂f∗(µ0)| = |r̂f∗(µ̂f∗)− r̂f∗(µ0)| ≤ |µ̂f∗ − µ0|
≤ |µ̂f∗ −mf∗ |+ |mf∗ − µ0|
≤ 2Af∗(δ)

which gives −r̂f∗(µ0) ≤ 2Af∗(δ).

We will use Lemma 4 with µ0 introduced in Lemma 5.
With the notation introduced above, we see that with probability at least 1− δ,

r bf (µ0) = r̂ bf (µ0) + rf∗(µ0)− r̂f∗(µ0) +
∣∣∣r bf (µ0)− r̂ bf (µ0)− rf∗(µ0) + r̂f∗(µ0)

∣∣∣
≤ r̂ bf (µ0) + rf∗(µ0)− r̂f∗(µ0) + sup

f∈F
|rf (µ0)− r̂f (µ0)− rf∗(µ0) + r̂f∗(µ0)|

≤ r̂ bf (µ0) + rf∗(µ0)− r̂f∗(µ0) +Q(µ, δ) .

This inequality, together with Lemma 5, implies that with probability at least 1− 3δ,

r bf (µ0) ≤ 2Af∗(δ) +Q(µ, δ) .

Now using Lemma 4 under the condition 1− α2v − 4αAf∗(δ)− 2αQ(µ, δ) ≥ 0 we have

m bf −mf∗ ≤ αv + 5Af∗(δ) + 2Q(µ, δ)

≤ 6
(
αv +

2 log(δ−1)
nα

)
+ 2Q(µ, δ) , (9)

with probability at least 1 − 3δ. The condition 1 − α2v − 4αAf∗(δ) − 2αQ(µ, δ) ≥ 0 is

implied (since α ≤ 1) by 6
(
αv + 2 log(δ−1)

nα

)
+ 2Q(µ, δ) ≤ 1 which will be seen to hold for

sufficiently large n.
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3.3 Bounding the supremum of the empirical process

Theorems 1 and 2 both follow from (9) by two different ways of bounding the quantile
Q(µ, δ) of supf∈F |Xf (µ) − Xf∗(µ)|. He we present these two inequalities. Both of them
use basic results of “generic chaining”, see Talagrand [27]. Theorem 1 follows from (9) and
the next inequality:

Proposition 6. Let µ ∈ R and α > 0. There exist a universal constant L < 384 log 2 such
that for any δ ∈ (0, 1),

Q(µ, δ) ≤ log(δ−1)
(

4L√
n
γ2(F , d) +

2L
3n
γ1(F , D)

)
.

The proof is an immediate consequence of Theorem 13 and (14) in the Appendix and
the following lemma.

Lemma 7. For any µ ∈ R, α > 0, f, f ′ ∈ F , and t > 0,

P
{
|Xf (µ)−Xf ′(µ)| > t

}
≤ exp

(
− nt2

2(4d(f, f ′)2 + 2D(f,f ′)t
3 )

)

where the distances d,D are defined at the beginning of Section 2.

Proof. Observe that n(Xf−Xf ′) is the sum of the independent zero-mean random variables

Ci(f, f ′) =
1
α
φ(α(f(Xi)−µ))− 1

α
φ(α(f ′(Xi)−µ))−

[
1
α

E [φ(α(f(X)− µ))]− 1
α

E
[
φ(α(f ′(X)− µ))

]]
.

Note that since the truncation function φ is 1-Lipschitz, we have Ci(f, f ′) ≤ 2D(f, f ′).
Also,

n∑
i=1

E[Ci(f, f ′)2] ≤ 4
n∑
i=1

E
[(

(f(Xi)− µ)− (f ′(Xi)− µ)
)2] = 4nd(f, f ′)2

The lemma follows from Bernstein’s inequality (see, e.g., [9, Theorem 2.10]).

Similarly, Theorem 2 is implied by (9) and the following. Recall the notation of Theorem
2.

Theorem 8. Let µ ∈ R, α > 0, and δ ∈ (0, 1). There exists a universal constant K ≤
384
√

32 log(2) such that

Q(µ, δ) ≤ KΓδ

√
log(2

δ )
n

.
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Proof. The proof is based on a standard symmetrization argument. Let (X ′1, . . . , X
′
n) be

independent copies of (X1, . . . , Xn) and define

Zi(f) =
1
α
φ(α(f(Xi)− µ))− 1

α
φ(α(f(X ′i)− µ)) .

Introduce also independent Rademacher random variables (ε1, . . . , εn). For any f ∈ F ,
denote by Z(f) = 1

n

∑n
i=1 εiZi(f). Then by Hoeffding’s inequality, for all f, g ∈ F and for

every t > 0,

P(ε1,...,εn) {|Z(f)− Z(g)| > t} ≤ 2 exp
(
− nt2

2dX,X′(f, g)2

)
(10)

where P(ε1,...,εn) denotes probability with respect to the Rademacher variables only (i.e.,

conditional on the Xi and X ′i) and dX,X′(f, g) =
√

1
n

∑n
i=1(Zi(f)− Zi(g))2 is a random

distance.
Denote by r̂′f (µ) the independent copy of r̂f (µ) that depends only on the random vector

(X ′1, . . . , X
′
n). Let λ > 0 be a parameter that we optimize later.

P

{
sup
f∈F
|Xf −Xf∗ | ≥ t

}
≤ E

[
eλ supf∈F |(brf (µ)−E[brf (µ)])−(brf∗ (µ)−E[brf∗ (µ)])|

]
e−λt

≤ EX

[
e
λEX′

h
supf∈F

˛̨̨
(brf (µ)−br′f (µ))−(brf∗ (µ)−br′

f∗ (µ))
˛̨̨i]

e−λt

≤ EX,X′

[
e
λ supf∈F

˛̨̨
(brf (µ)−br′f (µ))−(brf∗ (µ)−br′

f∗ (µ))
˛̨̨]
e−λt

= EX,X′
[
Eε
[
eλ supf∈F | 1n

Pn
i=1 εi[Zi(f)−Zi(f∗)]|

]]
e−λt

Using (15) in the Appendix with distance
dX,X′√
n

and (10), we get

P

{
sup
f∈F
|Xf −Xf∗ | ≥ t

}
≤ EX,X′

[
e
λ22L2γ2(T,

dX,X′√
n

)2
]
e−λt

≤ EX,X′

[
e
λ22L2

n
γ2(T,dX,X′ )

2

]
e−λt .

A few more calculations are able to reduce the random entropy on the couple (X,X′) to

12



the random entropy only on X. Since x 7→ 1
αφ(αx) is Lipschitz with constant 1,

dX,X′(f, g)

=

(
1
nα

n∑
i=1

(
φ(α(f(Xi)− µ))− φ(α(f(X ′i)− µ))− φ(α(g(Xi)− µ)) + φ(α(g(X ′i)− µ))

)2)1/2

≤
√

2

(
1
n

n∑
i=1

(f(Xi)− g(Xi))2

)1/2

+
√

2

(
1
n

n∑
i=1

(f(X ′i)− g(X ′i))
2

)1/2

This implies
γ2(T, dX,X′) ≤

√
2(γ2(T, dX) + γ2(T, dX′))

and therefore

EX,X′

[
e
λ22L2

n
γ2(T,dX,X′ )

2

]
≤ EX

[
e
λ216L2

n
γ2(T,dX)2

]
.

Hence,

P

{
sup
f∈F
|Xf −Xf∗ | ≥ t

}
≤ EX,X′

[
e
λ216L2

n
γ2(T,dX)2

]
e−λt (11)

Recall that, by definition, Γδ is such that P {γ2(T, dX) > Γδ} ≤ δ
2 . Thus,

P

{
sup
f∈F
|Xf −Xf∗ | ≥ t

}
≤ δ

2
+ e

λ216L2

n
Γ2
δe−λt

Optimization in λ with t = 4
√

2LΓδ
√

log( 2
δ

)

n gives

P

{
sup
f∈F
|Xf −Xf∗ | ≥ t

}
≤ δ

as desired.

4 Applications

In this section we describe two applications of Theorems 1 and 2 to simple statistical
learning problems. The first is a regression estimation problem in which we distinguish
between L1 and L2 risks and the second is k-means clustering.

13



4.1 Empirical risk minimization for regression

4.1.1 L1 regression

Let (Z1, Y1), . . . , (Zn, Yn) be independent identically taking values in Z × R where Z a
bounded subset of (say) Rd. Suppose G is a class of functions Z → R bounded in the L∞
norm, that is, ∆ def= supg,g′∈G supz∈Z |g(z)− g′(z)| <∞. First we consider the setup when
the risk of each g ∈ G is defined by the L1 loss

R(g) = E|g(Z)− Y |

where the pair (Z, Y ) has the same distribution of the (Zi, Yi) and is independent of them.
Let g∗ = argming∈G R(g) be a minimizer of the risk (which, without loss of generality, is
assumed to exist). The statistical learning problem we consider here consists of choosing
a function ĝ from the class G that has a risk R(ĝ) not much larger than R(g∗).

The standard procedure is to pick ĝ by minimizing the empirical risk (1/n)
∑

i=1 |g(Zi)−
Yi| over g ∈ G. However, if the response variable Y is unbounded and may have a heavy
tail, ordinary empirical risk minimization is may fail to provide a good predictor of Y as
the empirical risk is an unreliable estimate of the true risk.

Here we propose choosing ĝ by minimizing Catoni’s estimate. To this end, we only
need to assume that the second moment of Y is bounded by a known constant. More
precisely, assume that EY 2 ≤ σ2 for some σ > 0. Then supg∈G Var (|g(Z)− Y |) ≤ σ2 +

supg∈G supz∈Z |g(z)|2 def= v is a known and finite constant.
Now for all g ∈ G and µ ∈ R, define

r̂g(µ) =
1
nα

n∑
i=1

φ(α(|g(Xi)− Yi| − µ))

where φ is the truncation function defined in (3). Define R̂(g) as the unique value for which
r̂f (R̂(g)) = 0. The empirical risk minimizer based on Catoni’s risk estimate is then

ĝ = argmin
g∈G

R̂(g) .

By Theorem 1, the performance of ĝ may be bounded in terms of covering numbers of the
class of functions F = {f(z, y) = |g(z)− y| : g ∈ G} based on the distance

D(f, f ′) = sup
z∈Z,y∈R

∣∣|g(z)− y| − |g′(z)− y|
∣∣ ≤ sup

z∈Z

∣∣g(z)− g′(z)
∣∣ .

Thus, the covering numbers of F under the distance D may be bounded in terms of the
covering numbers of G under the L∞ distance. We obtain the following.
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Corollary 9. Consider the setup described above. Let α > 0, δ ∈ (0, 1) and Af∗(δ) =
αv+ 2 log δ−1

nα . There exists a universal constant C such that, with probability at least 1−3δ,

R(ĝ)−R(g∗) ≤ 6Af∗(δ) + C

(
log

1
δ

)(
1√
n

∫ ∆

0

√
logN∞(G, ε)dε+O

(
1
n

))
.

Note that the bound essentially has the same form as (1) but to apply (1) it is crucial
that the response variable Y is bounded or at least has sub-Gaussian tails. We get this
under the weak assumption that Y has a bounded second moment (with a known upper
bound). The price we pay is that covering numbers under the distance dX are now replaced
by covering numbers under the supremum norm.

4.1.2 L2 regression

Here we consider the same setup as in Section 4.1.1 but now the risk is measured by the
L2 loss. The risk of each g ∈ G is defined by the L2 loss

R(g) = E(g(Z)− Y )2 .

Note that Theorem 1 is useless here as the difference |R(g) − R(g′)| is not bounded by
the L∞ distance of g and g′ anymore and the covering numbers of F under the metric D
are infinite. However, Theorem 2 gives meaningful bounds. Let g∗ = argming∈G R(g) and
again we choose ĝ by minimizing Catoni’s estimate.

Here we need to assume that EY 4 ≤ σ2 for some σ > 0. Then supg∈G Var
(
(g(Z)− Y )2

)
≤

σ2 + supg∈G supz∈Z |g(z)|4 def= v is a known and finite constant.
By Theorem 2, the performance of ĝ may be bounded in terms of covering numbers of

the class of functions F = {f(z, y) = (g(z)− y)2 : g ∈ G} based on the distance

dX(f, f ′) =

(
1
n

n∑
i=1

(
(g(Zi)− Yi)2 − (g′(Zi)− Yi)2

)2)1/2

Note that∣∣(g(Zi)− Yi)2 − (g′(Zi)− Yi)2
∣∣ = |g(Zi)− g′(Zi)||2Yi − g(Zi)− g′(Zi)|
≤ 2|g(Zi)− g′(Zi)|(|Yi|+ ∆)
≤ 2d∞(g, g′)(|Yi|+ ∆) ,

and therefore

dX(f, f ′) ≤ 2d∞(g, g′)

√√√√ 1
n

n∑
i=1

(|Yi|+ ∆)2

≤ 2
√

2d∞(g, g′)

√√√√∆2 +
1
n

n∑
i=1

Y 2
i .
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By Chebyshev’s inequality,

P

{
1
n

n∑
i=1

Y 2
i − E

[
Y 2
]
> t

}
≤

Var
(
Y 2
)

nt2
≤ σ2

nt2

thus 1
n

∑n
i=1 Y

2
i > E

[
Y 2
]

+
√

2σ2

nδ with probability at most δ
2 and

dX(f, f ′) > 2
√

2d∞(g, g′)

√
∆2 + E [Y 2] +

√
2σ2

nδ

occurs with a probability bounded by δ
2 . Then Theorem 2 applies with

Γδ = 2
√

2

√
∆2 + E [Y 2] +

√
2σ2

nδ
γ2(G, d∞) .

Corollary 10. Consider the setup described above. Let α > 0, δ ∈ (0, 1) and Af∗(δ) =
αv+ 2 log δ−1

nα . There exists a universal constant C such that, with probability at least 1−3δ,

R(ĝ)−R(g∗) ≤ 6Af∗(δ) + C

√
log
(

2
δ

)√
∆2 + E [Y 2] + 2σ2/(nδ)

n

∫ ∆

0

√
logN∞(G, ε)dε .

4.2 k-means clustering under heavy tailed distribution

In k-means clustering—or vector quantization—one wishes to represent a distribution by a
finite number of points. Formally, let X be a random vector taking values in Rd and let P
denote the distribution of X. Let k ≥ 2 be a positive integer that we fix for the rest of the
section. A clustering scheme is given by a set of k cluster centers C = {y1, . . . , yk} ⊂ Rd

and a quantizer q : Rd → C. Given a distortion measure ` : Rd × Rd → [0,∞), one wishes
to find C and q such that the expected distortion

Dk(P, q) = E`(X, q(X))

is as small as possible. The minimization problem is meaningful whenever E`(X, 0) < ∞
which we assume throughout. Typical distortion measures are of the form `(x, y) = ‖x−y‖α
where ‖·‖ is a norm on Rd and α > 0 (typically α equals 1 or 2). Here, for concreteness and
simplicity, we assume that ` is the Euclidean distance `(x, y) = ‖x− y‖ though the results
may be generalized in a straightforward manner to other norms. In a way equivalent to
the arguments of Section 4.1.2, the results may be generalized to the case of the quadratic
distortion `(x, y) = ‖x − y‖2. In order to avoid repetition of arguments, the details are
omitted.
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It is not difficult to see that if E‖X‖ <∞, then there exists a (not necessarily unique)
quantizer q∗ that is optimal, that is, q∗ is such that for all clustering schemes q,

Dk(P, q) ≥ Dk(P, q∗)
def= D∗k(P ) .

It is also clear that q∗ is a nearest neighbor quantizer, that is,

‖x− q∗(x)‖ = min
yi∈C
‖x− yi‖ .

Thus, nearest neighbor quantizers are determined by their cluster centers C = {y1, . . . , yk}.
In fact, for all quantizers with a particular set C of cluster centers, the corresponding
nearest neighbor quantizer has minimal distortion and therefore it suffices to restrict our
attention to nearest neighbor quantizers.

In the problem of empirical quantizer design, one is given an i.i.d. sample X1, . . . , Xn

drawn from the distribution P and one’s aim is to find a quantizer qn whose distortion

Dk(P, qn) = E [‖X − qn(X)‖|X1, . . . , Xn]

is as close to D∗k(P ) as possible. A natural strategy is to choose a quantizer–or equivalently,
a set C of cluster centers–by minimizing the empirical distortion

Dk(Pn, q) =
1
n

n∑
i=1

‖Xi − q(Xi)‖ =
1
n

n∑
i=1

min
j=1,...,k

‖Xi − yj‖ ,

where Pn denotes the standard empirical distribution based on X1, . . . , Xn. If E‖X‖ <∞,
then the empirically optimal quantizer asymptotically minimizes the distortion. More
precisely, if qn denotes the empirically optimal quantizer (i.e., qn = argminqDk(Pn, q)),
then

lim
n→∞

Dk(P, qn) = D∗k(P ) with probability 1,

see Pollard [24, 26] and Abaya and Wise [1] (see also Linder [17]). The rate of convergence
of Dk(P, qn) to D∗k(P ) has drawn considerable attention, see, e.g., Pollard [25], Bartlett,
Linder, and Lugosi [5], Antos [3], Antos, Györfi, and György [4], Biau, Devroye, and Lugosi
[7], Maurer and Pontil [20], and Levrard [16]. Such rates are typically studied under the
assumption that X is almost surely bounded. Under such assumptions one can show that

EDk(P, qn)−D∗k(P ) ≤ C(P, k, d)n−1/2

where the constant C(P, k, d) depends on esssup ‖X‖, k, and the dimension d. (The value
of the constant has mostly be investigated in the case of quadratic loss `(x, y) = ‖x− y‖2
but most proofs may be modified for the case studied here.

However, little is known about the finite-sample performance of empirically designed
quantizers under possibly heavy-tailed distributions. In fact, there is no hope to extend the
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results cited above for distributions with finite second moment simply because empirical
averages are poor estimators of means under such general conditions.

In the recent paper of Telgarsky and Dasgupta [28], bounds on the excess risk under
conditions on higher moments have been developed. They prove a bound of O(n−1/2+2/p)
for the excess distortion where p is the number of moments of ‖X‖ that are assumed to
be finite. Here we show that there exists an empirical quantizer q̂n whose excess distortion
Dk(P, q̂n)−D∗k(P ) is of the order of n−1/2 (with high probability) under the only assumption

that E
[
‖X‖2

]
is finite. This may be achieved by choosing a quantizer that minimizes

Catoni’s estimate of the distortion.
The proposed empirical quantizer uses two parameters that depend on the (unknown)

distribution of X. For simplicity, we assume that upper bounds for these two parameters
are available. (Otherwise either one may try to estimate them or, as the sample size grows,
use increasing values for these parameters. The details go beyond the scope of this paper.)

One of these parameters is the second moment Var (‖X‖) and let V be an upper bound.
The other parameter ρ > 0 is an upper bound for the norm of the possible cluster centers.
The next lemma offers an estimate.

Lemma 11. (Linder [17].) Let 2 ≤ m ≤ k be the unique integer such that D∗k = · · · =
D∗m < D∗m−1 and define ε = (D∗k−1 − D∗k)/2. Let (y1, . . . , ym) be a set of cluster centers
such that the distortion of the corresponding quantizer is less than D∗m + ε. Let Br = {x :
‖x‖ ≤ r} denote the closed ball of radius r > 0 centered at the origin. If ρ > 0 is such that

• ρ
10P (B ρ

10
) > 2E ‖X‖

• P (B2ρ/5) > 1− ε2

4E[‖X‖2]

then for all 1 ≤ j ≤ k, ‖yj‖ ≤ ρ.

Now we are prepared to describe the proposed empirical quantizer. Let Cρ be the set of
all collections C = {y1, . . . , yk} ∈ (Rd)k of cluster centers with ‖yj‖ ≤ ρ for all j = 1, . . . , k.
For each C ∈ Cρ, denote by qC the corresponding quantizer. Now for all C ∈ Cρ, we
may calculate Catoni’s mean estimator of the distortion D(P, qC) = E‖X − qC(X)‖ =
E minj=1,...,k ‖Xi − yj‖ defined as the unique value µ ∈ R for which

1
nα

n∑
i=1

φ

(
α

(
min

j=1,...,k
‖Xi − yj‖ − µ

))
= 0

where we use the parameter value α =
√

2/nkV . Denote this estimator by D̂(Pn, qC)
and let q̂n be any quantizer minimizing the estimated distortion. An easy compactness
argument shows that such a minimizer exists.

The main result of this section is the following bound for the distortion of the chosen
quantizer.
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Theorem 12. Assume that Var (‖X‖) ≤ V < ∞ and n ≥ d. Then, with probability at
least 1− δ,

D(P, q̂n)−D(P, q∗) ≤ C
(

log
1
δ

)(√
V k

n
+

√
dk

n

)
+O

(
1
n

)
,

where the constant C only depends on ρ.

Proof. The result follows from Theorem 1. All we need to check is that Var (minj=1,...,k ‖X − yj‖)
is bounded by 2kV and estimate the covering numbers of the class of functions

Fρ =
{
fC(x) = min

y∈C
‖x− y‖ : C ∈ Cρ

}
.

The variance bound follows simply by the fact that for all C ∈ C,

Var
(

min
j=1,...,k

‖X − yj‖
)
≤

k∑
i=1

Var (‖X − yi‖) ≤
k∑
i=1

2Var (‖X‖) ≤ 2kV .

In order to use the bound of Theorem 1, we need to bound the covering numbers of the
class Fρ under both metrics d and D. We begin with the metric

D(fC , fC′) = sup
x∈Rd

|fC(x)− fC′(x)| .

Bz(ε, d) refers to the ball under the metric d of radius ε centered at z. Let Z be a subset
of Bρ such that

BBρ := {Bz(ε, d2) : z ∈ Z}

is a covering of the set Bρ by balls of radius ε under the Euclidean norm. Let C ∈ Cρ
and associate to any yi ∈ C one of the centers in Z such that ‖yi − zi‖ ≤ ε. If there is
more than one possible choice for zi, we pick one of them arbitrarily. We denote by qC′

the nearest neighbor quantizer with codebook C ′ = (zi)i. Finally, let Si = q−1
C′ (zi). Now

clearly, ∀i, ∀x ∈ Si

fC(x)− fC′(x) = min
1≤j≤k

‖x− yj‖ − min
1≤j≤k

‖x− zj‖

= min
1≤j≤k

‖x− yj‖ − ‖x− zi‖

≤ ‖x− yi‖ − ‖x− zi‖ ≤ ε

and symmetrically for fC′(x)− fC(x). Then fC ∈ BfC′ (ε,D) and

BFρ := {BfC (ε,D) : C ∈ Zk}
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is a covering of Fρ. Since Z can be taken such that |Z| = Nd2(Bρ, ε) we end with

Nd(Fρ, ε) ≤ ND(Fρ, ε) ≤ Nd2(Bρ, ε)k .

By standard estimates on the covering numbers of the ball Bρ by balls of size ε under the
Euclidean metric,

Nd2(Bρ, ε) ≤
(

4ρ
ε

)d
(see, e.g., Matousek [19]). In other words, there exists a constant Cρ that depends only on
ρ such that

γ2(Fρ, d) ≤
∫ 2ρ

0

√
logNd(Fρ, ε)dε ≤ Cρ

√
kd

and γ1(Fρ, D) ≤
∫ 2ρ

0
logND(Fρ, ε)dε ≤ C ′ρkd

Theorem 1 may now be applied to the class Fρ.

5 Simulation Study

In this closing section we present the results of two simulation exercises to assess the
performance of the estimators developed in this work.

5.1 L2 Regression

The first application is an L2 regression exercise. Data are simulated from a linear model
with heavy-tailed errors and the L2 regression procedure based on Catoni’s risk minimizer
introduced in Section 4.1.2 is used for estimation. The procedure is benchmarked against
regular (“vanilla”) L2 regression based on the minimization of the empirical L2 loss.

The simulation exercise is designed as follows. We simulate (Z1, Y1), (Z2, Y2), ..., (Zn, Yn)
i.i.d. pairs of random variables in R4 ×R. Each component of the Zi vector is drawn from
a uniform distribution with support [−1, 1] while Yi is generated as

Yi = ZTi θ + εi ,

where the parameter vector θ is (0.25,−0.25, 0.50, 0.70)′ and εi is drawn from a Student’s
t distribution with d degrees of freedom. As it is well known, the degrees of freedom
parameter determines the highest finite moment of the Student’s t distribution. Moments
of order k ≥ d do not exist. We are interested in finding the value of θ which minimizes
the L2 loss

E
∣∣Y − ZTi θ∣∣2 .
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The parameter θ is estimated using the Catoni and the vanilla L2 regressions. Let R̂C(θ)
denote the solution of the equation

r̂θ(µ) =
1
nα

n∑
i=1

ψ
(
α
(∣∣Yi − ZTi θ∣∣2 − µ)) = 0 ,

then the Catoni L2 regression estimator is defined as

θ̂C = arg min
θ
R̂C(θ) .

The vanilla L2 regression estimator is defined as the minimizer of the empirical L2 loss,

θ̂V = arg min
θ
R̂V (θ) = arg min

θ

1
n

n∑
i=1

∣∣Yi − ZTi θ∣∣2 ,

which is the classic least squares estimator. The estimated risk of the Catoni and vanilla
estimators are denoted as R̂C(θ̂C) and R̂V (θ̂V ) respectively.

Expected risk is the natural index to assess the precision of the estimators

RC = E|Y − ZT θ̂Cn |2
RV = E|Y − ZT θ̂Vn |2

.

We estimate the expected risk by simulation. For each replication of the simulation exercise,
we estimate the empirical risk of the estimators using an i.i.d. sample (Z ′1, Y

′
1), ..., (Z ′m, Ym)

that is independent of the one used for estimation,

R̃C = 1
m

∑m
i=1 |Y ′i − Z

′T
i θ̂

C
n |2

R̃V = 1
m

∑m
i=1 |Y ′i − Z

′T
i θ̂

V
n |2

. (12)

The simulation experiment is replicated for different values of the tail parameter d
ranging from 2 to 4 and different values of the sample size n ranging from 25 to 200. For
each combination of the degrees of freedom parameter d and sample size n the experiment
is replicated 10‘000 times.

Figure 1 displays the Monte Carlo estimate of RC and RV as functions of the tail
parameter d when the sample size n is equal to 50. The left panel reports the level
of the indices while the right panel reports the percentage improvement of the Catoni
procedure over the benchmark. When the tails are not excessively heavy (high values
of d) the difference between the procedures is small. As the tails become heavier (small
values of d) the risk of both procedures increases. Importantly, the Catoni estimator
becomes progressively more efficient as the tails become heavier. The improvement is
roughly 10% of the benchmark when the the tail parameter is close to 2. Detailed results
for different values of n are reported in Table 1. The pattern documented in the pictures
holds for different values of n but the advantages of the Catoni approach are stronger when
the sample size n is smaller. Overall the Catoni L2 regression estimator never performs
significantly worse than the benchmark and it is substantially better when the tails of the
data become heavier and data are scarce.
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Figure 1: L2 Regression Parameter Estimation.

(a) (b)

The figure plots the risk of the Catoni and vanilla L2 regression parameter estimators (a) and the percentage

improvement of the Catoni procedure relative to the vanilla (b) as a function of the tail parameter d for a sample

size n equal to 50.

Table 1: Relative Performance of the Catoni L2 Parameter Estimator.

d n=25 n=50 n=75 n=100 n=150 n=200
2.01 15.50 10.50 4.40 3.70 3.40 1.90
2.25 9.80 4.50 3.30 4.00 1.70 1.10
2.50 8.20 2.60 2.40 2.50 1.00 1.00
2.75 7.20 3.30 2.10 1.80 1.10 0.80
3.00 5.40 2.70 2.30 1.40 0.80 0.70
3.25 4.90 2.20 1.60 1.20 0.80 0.60
3.50 3.60 1.90 1.30 1.00 0.70 0.50
3.75 2.90 1.70 1.20 0.80 0.60 0.40
4.00 2.90 1.40 1.00 0.70 0.50 0.30

The table reports the improvement of the Catoni L2 parameter estimator relative to the vanilla procedure as a

function of the tail parameter d and sample size n.
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5.2 k-means

In the second experiment we carry out a k–means clustering exercise. Data are simulated
from a heavy-tailed mixture distribution and then cluster centers are chosen by minimizing
Catoni’s estimate of the L2 distortion. The performance of the algorithm is benchmarked
against the vanilla k–means algorithm procedure where the distortion is estimated by
simple empirical averages.

The simulation exercise is designed as follows. An i.i.d. sample of random vectors
X1, ..., Xn in R2 is drawn from a four-component mixture distribution with equal weights.
Each mixture component is a bivariate Student’s t distribution with d degrees of freedom
and independent coordinates. The k–means algorithm based on Catoni as well as the
standard (“vanilla”) k–means algorithm are used to estimate the cluster centers, which are
denoted respectively as q̂C and q̂V .

Analogously to the previous exercise, we summarize the performance of the clustering
procedures using their expected distortion of the algorithms, that is

RC = Dk(P, q̂Vn )
RV = Dk(P, q̂Vn )

.

We estimate the expected distortion by simulation. We compute the empirical distortion
of the quantizers using an i.i.d. sample X ′1, ..., X

′
m of vectors that is independent of the

ones used for estimation, that is,

R̃C = Dk(P ′m, q̂
V
n ) = 1

m

∑m
i=1 minj=1,...,k

∣∣∣∣X ′i − q̂Vn (X ′i)
∣∣∣∣2

R̃V = Dk(P ′m, q̂
C
n ) = 1

m

∑m
i=1 minj=1,...,k

∣∣∣∣X ′i − q̂Cn (X ′i)
∣∣∣∣2 . (13)

The experiment is replicated for different values of the tail parameter d ranging from 2
to 4 and different values of the sample size n ranging from 25 to 200. For each combination
of tail parameter d and sample size n the experiment is replicated 10‘000 times.

Figures 2 displays the Monte Carlo estimate of RC and RV as a function of the degree
of freedom d for n = 50. The left panel reports the absolute estimated risk while the right
panel reports the percentage improvement of the Catoni procedure over the benchmark.
The overall results are analogous to the ones of the L2 regression application. When the tails
of the mixture are not excessively heavy (high values of d) the difference in the procedures is
small. As the tails become heavier (small values of d) the risk of both procedure increases,
but the Catoni algorithm becomes progressively more efficient. The percentage gains for
the Catoni procedure are above 15% of the benchmark when the tail parameter is close to
2. Tables 2 report detailed results for different values of n. Overall, the Catoni k–means
algorithm never performs worse than the benchmark and it is substantially better when
the tails of the mixture become heavier and the sample size is small.

23



Figure 2: k–means Quantizer Estimation.

(a) (b)

The figure plots the risk of the Catoni and vanilla k–means quantizer estimator (a) and the percentage improvement

of the Catoni procedure relative to the vanilla (b) as a function of the tail parameter d for a sample size n equal to

100.

Table 2: Relative Performance of the Catoni k–means Quantizer Estimator.

d n=25 n=50 n=75 n=100 n=150 n=200
2.01 21.30 15.90 11.30 9.50 8.20 8.40
2.25 15.90 14.20 10.40 9.80 8.70 7.80
2.50 13.20 12.20 8.80 8.50 6.90 6.30
2.75 11.50 10.80 5.50 5.00 6.00 6.20
3.00 10.40 9.80 6.40 5.80 4.90 3.50
3.25 9.20 4.40 1.30 2.50 0.70 3.30
3.50 7.50 1.10 0.90 0.80 1.10 0.60
3.75 8.20 1.80 1.60 0.90 0.40 0.50
4.00 4.70 1.00 1.00 0.80 0.60 0.40

The table reports the improvement of the Catoni k–means quantizer estimator relative to the vanilla procedure as a

function of the tail parameter d and sample size n.
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6 Appendix

6.1 A chaining theorem

The following result is a version of standard bounds based on “generic chaining”, see
Talagrand [27]. We include the proof for completeness.

Recall that if ψ is a non-negative increasing convex function defined on R+ with ψ(0) =
0, then the Orlicz norm of a random variable X is defined by

‖X‖ψ = inf
{
c > 0 : E

[
ψ

(
|X|
c

)]
≤ 1
}
.

We consider Orlicz norms defined by

ψ1(x) = exp(x)− 1 and ψ2(x) = exp(x2)− 1 .

It is easy to see that ‖X‖ψ1
≤ ‖X‖ψ2

always holds. Also note that, by Markov’s inequality,
‖X‖ψ1

≤ c implies that P{|X| > t} ≤ e−t/c and similarly, if ‖X‖ψ2
≤ c, then P{|X| > t} ≤

e−t
2/c2 . Then

X ≤ ‖X‖ψ1
log(δ−1) with probability at least 1− δ , (14)

X ≤ ‖X‖ψ2

√
log(δ−1) with probability at least 1− δ .

Recall the following definition (see, e.g., [27, Definition 1.2.3]). Let T be a (pseudo) metric
space. An increasing sequence (An) of partitions of T is called admissible if for all n =
0, 1, 2, . . . , #An ≤ 22n . For any t ∈ T , denote by An(t) the unique element of An that
contains t. Let ∆(A) denote the diameter of the set A ⊂ T . Define, for α = 1, 2,

γα(T, d) = inf
An

sup
t∈T

∑
n≥0

2n/α∆(An(t)) ,

where the infimum is taken over all admissible sequences.

Theorem 13. Let (Xt)t∈T be a stochastic process indexed by a set T on which two (pseudo)
metrics, d1 and d2, are defined such that T is bounded with respect to both metrics. Assume
that for any s, t ∈ T and for all x > 0,

P{|Xs −Xt| > x} ≤ 2 exp
(
−1

2
x2

d2
2 + d1x

)
.

Then for all t ∈ T ,∥∥∥∥sup
s∈T
|Xs −Xt|

∥∥∥∥
ψ1

≤ L (γ1(T, d1) + γ2(T, d2))

with L ≤ 384 log(2).
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Corollary 14. Assume that for any s, t ∈ T and for all x > 0,

P{|Xs −Xt| > x} ≤ 2 exp
(
− x2

2d2
2

)
.

Then for all t ∈ T , ∥∥∥∥sup
s∈T
|Xs −Xt|

∥∥∥∥
ψ2

≤ Lγ2(T, d2)

with L ≤ 384 log(2).

In particular, we obtain

E
[
eλ sups∈T |Xs−Xt|

]
≤ eλ22L2γ2(T,d2)2 . (15)

The proof of Theorem 13 uses the following lemma:

Lemma 15. ([30, lemma 2.2.10].) Let a, b > 0 and assume that the random variables
X1, . . . , Xm satisfy, for all x > 0,

P{|Xi| > x} ≤ 2 exp
(
−1

2
x2

b+ ax

)
.

Then ∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
ψ1

≤ 48
(
a log(1 +m) +

√
b
√

log(1 +m)
)
.

Proof of Theorem 13: Consider an admissible sequence (Bn)n≥0 such that for all t ∈ T ,∑
n≥0

2n∆1(Bn(t)) ≤ 2γ1(T, d1)

and an admissible sequence (Cn)n≥0 such that for all t ∈ T ,∑
n≥0

2n/2∆1(Cn(t)) ≤ 2γ2(T, d2)

Now we may define an admissible sequence by intersection of the elements of (Bn−1)n≥1

and (Cn−1)n≥1: set A0 = {T} and let

An = {B ∩ C : B ∈ Bn−1 & C ∈ Cn−1}

(An)n≥0 is an admissible sequence because each An is increasing and contains at most
(22n−1

)2 = 22n sets. Define a sequence of finite sets T0 = {t} ⊂ T1 ⊂ · · · ⊂ T such that
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Tn contains a single point in each set of An. For any s ∈ T , denote by πn(s) the unique
element of Tn in An(s). Now for any s ∈ Tk+1, we write

Xs −Xt =
∞∑
k=0

(
Xπk+1(s) −Xπk(s)

)
.

Then, using the fact that ‖·‖ψ1
is a norm and Lemma 15,∥∥∥∥sup

s∈T
|Xs −Xt|

∥∥∥∥
ψ1

≤
∞∑
k=0

∥∥∥∥ max
s∈Tk+1

|Xπk+1(s) −Xπk(s)|
∥∥∥∥
ψ1

≤ 48
∞∑
k=0

(
d1(πk+1(s), πk(s)) log(1 + 22k+1

) + d2(πk+1(s), πk(s))
√

log(1 + 22k+1)
)
.

Since (An)n≥0 is an increasing sequence, πk+1(s) and πk(s) are both in Ak(s). By construc-
tion, Ak(s) ⊂ Bk(s), and therefore d1(πk+1(s), πk(s)) ≤ ∆1(Bk(s)). Similarly, d2(πk+1(s), πk(s)) ≤
∆2(Ck(s)). Using log(1 + 22k+1

) ≤ 4 log(2)2k, we get∥∥∥∥max
s∈T
|Xs −Xt|

∥∥∥∥
ψ1

≤ 192 log(2)

[ ∞∑
k=0

2k∆1(Bk(s)) +
∞∑
k=0

2k/2∆1(Ck(s))

]
≤ 384 log(2) [γ1(T, d1) + γ2(T, d2)] .
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