
ALMOST SURE CLASSIFICATION OF DENSITIES

Luc Devroye

School of Computer Science

McGill University

Montreal, Canada H3A 2A7
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§1. Introduction

Let F be a class of densities on the real line. Assume that the sequence of i.i.d. random variables

X1, X2, . . . is drawn according to some density f which may, or may not belong to F . The question is if it

is possible to detect from a sample whether the underlying density is a member of the class F . Examples of

F include the class of all normal densities, the class of all densities bounded by 5, the class of all unimodal

densities, or the class of densities supported on [0, 5] which are Lipschitz with a Lipschitz constant less than

2. We investigate the discernibility of such properties.

A classification rule is a sequence {Tn} of functions Tn : Rn → {0, 1} so that upon observing the

sample X1, . . . , Xn, one guesses that the unknown density f is in F iff Tn(X1, . . . , Xn) = 1. A class F is

called almost surely discernible, or simply discernible, if there exists a classification rule such that for any

density f

P

{
Tn(X1, . . . , Xn) 6= I{f∈F} for only finitely many n

}
= 1.

(Here I denotes the indicator function.) In other words, we require that the classification rule make the

right decision eventually, almost surely, for any density. A classification rule {Tn} with the above property

is called consistent. Obviously, F is discernible if and only if its complement Fc is discernible.

The above definition of discernibility was introduced by Dembo and Peres (1994). More precisely, Dembo

and Peres call two classes of densities F and G discernible if there exists a classification rule such that, based

on an i.i.d. sample, for any f ∈ F ∪ G the rule makes at most finitely many mistakes almost surely. In

this paper we restrict our attention to the special case G = Fc. Dembo and Peres base their definition on

similar notions appearing in the early work of Hoeffding and Wolfowitz (1958) and LeCam and Schwartz

(1960). Other related work is by Kulkarni and Zeitouni (1995) who studied a similar, though slightly weaker

definition of discernibility. Their definition, based on previous work of Cover (1973) and Koplowitz (1977),

is asymmetric. If f /∈ F they allow the classification rule to fail for some very small subclass of densities.

Under their definition, Kulkarni and Zeitouni propose a general classification procedure. This, however,

cannot be used to prove discernibility under the symmetric definition studied here.

The problem we are looking at here is basically a composite hypothesis testing problem. The Dembo-

Peres definition we chose to adopt is merely one of the several meaningful possibilities. In fact, the variety

of similar definitions introduced in the literature often leads to seemingly contradictory results. A property

of a density may be testable according to one definition and not testable according to another. One such

example is unimodality of the density. One of the examples we show below is that the class of all unimodal

densities is discernible. This is in contrast with a result of Donoho (1988) who, working with a stronger

notion of testability, showed that unimodality is not testable. Preferring one definition over another may

depend on the particular application one has in mind, or simply may be a matter of taste.
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This paper points out that many common assumptions one finds nowadays in papers simply are not

discernible. For example, the class of compact support densities is not discernible. Similarly, the class of

densities with continuous first derivative is not discernible. Integrability conditions such as
∫
f2 < ∞ can

also not be detected in the sense used in this paper. On the other hand, discernible classes include the

class of all unimodal densities, all monotone densities on the halfline, and all convex densities on a halfline.

Several general theorems in this respect are provided. For example, closed classes with an L1 minimax risk

over F that tends to zero are discernible.

Even though we provide several explicit and non-obvious constructions of classification rules, our primary

interest is in determining which classes are discernible, and we do not aim to construct hypothesis tests which

are optimal in some classical sense. The reader will certainly find room for obvious improvements. Whenever

possible, we try to give the simplest possible consistent classification rule.

Even though we work with densities on the real line, basically all results may be reproduced for mul-

tivariate densities in Rd. Since the multivariate problem does not need new ideas, we stay with the simple

case of d = 1.

The paper is organized as follows. In Section 2 simple sufficient conditions of discernibility are obtained

for classes of the form {f : Ψ(f) ≤ c} where Ψ is a functional and c is a known constant. Theorem 2, one

of the main results of the paper, is presented in Section 3. The theorem states that closed classes (in L1)

are discernible if there exists a density estimate whose L1 error converges uniformly in the class. Sections 4,

5, 6, and 7 contain several applications of Theorem 2. In these sections various general sufficient conditions

are derived for Theorem 2. Many important specific classes are shown to be discernible. In Section 8 an ad

hoc analysis is carried out to prove discernibility of certain smoothness and monotonicity classes which do

not satisfy the conditions of Theorems 1 and 2. The proof of Theorem 2 is given in Section 9. In Section 10

a general sufficient condition is obtained for non-discernibility and several examples and shown. Section 11

presents further negative examples.

§2. Classes defined by functionals

In this section we derive some sufficient conditions for discernibility for classes which are defined in

terms of some functional of the density. A functional Ψ assigns an (extended) real number to every density.

Examples include Ψ(f) =
∫
f2; Ψ(f) =

∫
f log f ; Ψ(f) = ess sup f ; or Ψ(f) =

∫
(f ′

2
/f).

Theorem 1. Let Ψ be a functional defined for all densities, and consider a class F = {f : Ψ(f) ≤ c}, where
c is a constant. Assume that there exists an estimate Ψn = Ψn(X1, . . . , Xn) of Ψ(f) and a sequence an → 0

such that for all densities f ,
∞∑

n=1

P {Ψn > Ψ(f) + an} < ∞,

and Ψn → Ψ(f) almost surely. (Note: the convergence of (Ψn −Ψ)+ must thus be uniform, but not that of

(Ψ−Ψn)+.) Then F is discernible.

Remark 1. An explicit classification rule based on Theorem 1 can only be constructed if an is explicitly

known. We will provide several examples following the proof.
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Remark 2. In contrast to Theorem 1, the class F = {f : Ψ(f) < ∞} = ∪c∈R{f : Ψ(f) ≤ c} of densities

for which Ψ(f) is finite is often not discernible, even if the conditions of Theorem 1 are satisfied. Examples

are presented in Sections 10 and 11.

Proof. Consider the classification rule

Tn(X1, . . . , Xn) =
{
1 if Ψn ≤ c+ an,
0 otherwise.

If the common density f of the Xi’s is in the class F then the probability of making a mistake is

P {Tn = 0} = P {Ψn > c+ an} ≤ P {Ψn > Ψ(f) + an} ,
which is summable by assumption, so the Borel-Cantelli lemma implies that the number of mistakes remains

finite almost surely. If, on the other hand, f /∈ F , then Ψ(f) > c, so since Ψn → Ψ(f) almost surely, for

sufficiently large n, Ψn > c+ an, and therefore the number of mistakes is finite in this case as well.

Example 1: The class of densities supported in [−c, c]. As a first simple example, let c > 0 be a

fixed and known constant, and consider the class Fc of densities supported in the interval [−c, c]. This class

is discernible. To prove this, define Ψ(f) = ess sup{|x| : f(x) > 0}, and Ψn = maxi≤n |Xi|. The classification
rule Tn(X1, . . . , Xn) = IΨn≤c is easily shown to be consistent. However, ignoring the existence of this obvious

classification rule, we may also apply Theorem 1. Clearly, Ψn → Ψ(f) almost surely. Furthermore, for any

ǫ > 0, P {Ψn > Ψ(f) + ǫ} = 0, and therefore the condition of Theorem 1 is satisfied for any positive sequence

an → 0.

Example 2: The class of densities bounded by c. Let c > 0, and consider the class Fc of all

densities such that ess sup f ≤ c. Then Fc is discernible. To prove this statement, we apply Theorem 1 with

Ψ(f) = ess sup f . The estimate of the functional Ψ(f) is Ψn = Ψ(fn) = supx fn(x), where fn is the kernel

estimate of f defined by

fn(x) =
1

nh

n∑

i=1

I{|x−Xi|≤h/2},

where we choose the smoothing factor h to be h = n−1/3. First we check the property involving an. For any

ǫ > 0 and for every n,

sup
f∈F

P {Ψn > Ψ(f) + ǫ} = sup
f∈F

P

{
sup
x

fn > ess sup f + ǫ

}

≤ sup
f∈F

P

{
sup
x

(
1

nh

n∑

i=1

I{|x−Xi|≤h/2} −
1

h

∫ x+h/2

x−h/2
f(z)dz

)
> ǫ

}

≤ sup
f∈F

[
P

{
sup
x

(
1

n

n∑

i=1

I{Xi≤x} −
∫ x

−∞
f(z)dz

)
>

hǫ

2

}

+ P

{
sup
x

(∫ x

−∞
f(z)dz − 1

n

n∑

i=1

I{Xi≤x}

)
>

hǫ

2

}]

≤ 2e−nh2ǫ2/2

= 2e−n1/3ǫ2/2,

where the last inequality follows from Massart’s (1990) sharpened version of the Dvoretzky-Kiefer-Wolfowitz

theorem. Therefore, we may take an = n−1/7 in Theorem 1. To complete the proof, we need to show that

for any density,

sup
x

fn(x) → ess sup f almost surely.
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It is clear from the argument above that for any f , lim supnΨn ≤ Ψ(f) almost surely. On the other hand,

observe that for any f , by the Lebesque density theorem (see, e.g., Wheeden and Zygmund, 1977), for every

B < ess sup f there exists an x0 ∈ R and a δ0 > 0 such that for all δ < δ0,
∫ x0+δ/2
x0−δ/2

f(z)dz > Bδ. Then if n

is so large that h = n−1/3 < δ0, then for any ǫ > 0,

P {fn(x0) < B − ǫ} ≤ P

{
1

n

n∑

i=1

I{|x0−Xi|≤h/2} <

∫ x0+h/2

x0−h/2
f(z)dz − ǫh

}

≤ e−2nǫ2h2 = e−2n1/3ǫ2

by Hoeffding’s inequality (1963). This, together with the Borel-Cantelli lemma proves that, almost surely,

lim infnΨn ≥ Ψ(f), concluding the proof.

Example 3: The class of densities whose integrated square is at most c. Let c > 0, and define

the class

Fc =

{
f :

∫
f2 ≤ c

}
.

The estimator of Ψ(f) =
∫
f2 may be Ψn =

∫
f2n or Ψn = (2/n)

∑n
i=n/2+1 fn/2(Xi), where fn is a kernel or

histogram estimate of f . For the sake of simplicity, we take Ψn =
∑

i N
2
i /(n

2h), where Ni, i ∈ Z, are the

cardinalities of the intervals [ih, ih + h). Observe that changing one Xj and replacing it by X ′
j , causes at

most two Ni’s to change by one. Therefore, the change in Ψn is at most 2/(nh). By McDiarmid’s inequality

(McDiarmid, 1989),

P{|Ψn − E{Ψn}| > ǫ} ≤ 2 exp(−nh2ǫ2/2) .

If nh2/ logn → ∞, the probability on the left-hand-side is summable, uniformly over all f . In particular,

Ψn → Ψ(f) almost surely (even if Ψ(f) = ∞) if E{Ψn} → Ψ(f). Denote Ai = [hi, h(i + 1)), pi =
∫
Ai

f .

Then

E{Ψn} =

∑
i(npi)

2 + npi(1− pi)

n2h

=

∫
g2h +

∑
i pi(1− pi)

nh

(where gh(x) = pi/h, x ∈ Ai is a density)

=

∫
g2h + o(1) .

Assume h → 0 as n → ∞. By the Lebesgue density theorem (Wheeden and Zygmund, 1977), gh → f at

almost all x when h → 0. Thus, by Fatou’s lemma, lim infn→∞ E{Ψn} ≥
∫
lim infh→0 g

2
h =

∫
f2. This

remains valid even if
∫
f2 = ∞. Furthermore, by Jensen’s inequality,

∫
g2h ≤

∫
f2. Collecting all this shows

that for all f , Ψn → Ψ(f) almost surely if h → 0, nh2/ logn → ∞. Furthermore, if we take an = 1/n1/5,

then for all f ,

P{Ψn > Ψ(f) + an} ≤ P{Ψn − E{Ψn} > an/2} (if 1/nh < an/2)

≤ 2 exp(−nh2/8n2/5)

and this is summable in n if we take, say, h = n−1/5. By Theorem 1, the class of densities is thus discernible

by the classification rule Ψn ≤ c+ 1/n1/5.

Example 4: The class of densities f with
∫
f r ≤ c, where r > 1 is a fixed constant. The details

for this extend those of the previous example, and are left to the reader.
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§3. Classes with vanishing minimax risk

Next we derive another general sufficient condition for discernibility. We recall that a density estimate

fn is a real-valued measurable function of x ∈ R and the data X1, . . . , Xn:

fn(x) = fn(x,X1, . . . , Xn).

fn is called strongly universally consistent if for every density f ,

lim
n→∞

∫
|fn − f | = 0 almost surely.

Note that strongly universal consistent estimates exist (see, e.g., Devroye and Györfi, 1985). A density

estimate fn is uniformly convergent on F if

lim
n→∞

sup
f∈F

E

∫
|fn − f | = 0 .

Also, we say that F is closed (in the L1 space of densities) if for any density g /∈ F there exists an ǫ > 0 and

an open ball Bg,ǫ = {f :
∫
|f − g| < ǫ} such that Bg,ǫ ∩ F = ∅.

Theorem 2. Let F be a closed class of densities. If there exists a density estimate fn that is uniformly

convergent on F , then F is discernible. And any closed subclass G ⊆ F is discernible.

The proof of Theorem 2 is postponed to Section 9.

As the following Lemma shows, apart from the closedness of the class, we require the convergence to

zero of the minimax expected L1 error of the class.

Lemma 1. The following are equivalent:

A.

lim
n→∞

inf
fn

sup
f∈F

E

∫
|fn − f | = 0 .

B. There exists a density estimate fn such that

lim
n→∞

sup
f∈F

E

∫
|fn − f | = 0 .

Proof. B implies A. A implies B because A says that for each k, we may find density estimates fn,k and

numbers nk such that for n ≥ nk, supf∈F E
∫
|fn,k − f | < 1/k. Without loss of generality, nk ↑. Define

gn = fn,k, nk ≤ n < nk+1, and use gn in part B.

It is well-known (Devroye, 1983) that very large classes do not satisfy this latter condition. However

many positive examples are also known. The theorem also points out that we do not have to explicitly

construct fn—a proof of existence suffices. Note however that the actual density estimate used to test

membership in the class F may be very different from the uniformly consistent fn. A construction follows

from the proof below. The reason we need a special construction is that fn may not be stable or concentrated

enough to provide good almost sure behavior over an entire sequence.

Example 5: Finite classes of densities. As the kernel estimate is universally consistent if we take the

smoothing factor h such that h → 0 and nh → ∞ (nhd → ∞ in Rd), it is clear from Theorem 2 that we can
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always construct a consistent classification rule for the class F = {f}. In fact, any finite class of densities is

discernible.

§4. Discernibility via kernel estimates

The next lemma states that to verify the minimax condition, it suffices to establish it for a kernel estimate

in which the bandwidth may depend upon the (unknown) density. It removes the burden of construction of

minimax optimal or near-optimal densities. Recall that the kernel estimate of a density is

fnh(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
,

where h > 0 is a bandwidth and K : R → R is a kernel function usually chosen to satisfy
∫
K = 1. Note

that all kernels used in practice satisfy the condition of the following Lemma.

Lemma 2. Assume that gn is a kernel estimate with kernel K of polynomial kernel complexity (Devroye

and Lugosi, 1997), and with bandwidth hn = hn(f). Then, if

lim
n→∞

sup
f∈F

E

∫
|gn − f | = 0 ,

it follows that there exists a density estimate fn such that

lim
n→∞

sup
f∈F

E

∫
|fn − f | = 0 ,

Proof. This follows from the inequalities of Devroye and Lugosi (1996, 1997), where a data-dependent

bandwidth is constructed guaranteeing that the kernel estimate fn with that bandwidth satisfies E
∫
|fn−f | ≤

C infh E
∫
|fnh − f | +D

√
log n/n for universal constants D and C not depending upon f , and all n. Here

fnh is the kernel estimate with deterministic bandwidth h.

The lemma above allows us to further deduce sufficient conditions for our classes F , while avoiding

explicit constructions of density estimates for them.

Lemma 3. If F and G are disjoint classes of densities that G and F ∪ G are both discernible, then so is F .

If F and G are discernible, then so are F ∪ G and F ∩ G.

Proof. We run a classification rule for G, which based on a sample of size n yields the decision Yn. Then

we run a classification rule on the same sample for membership in F ∪ G, and call the decision Zn. We

decide that the unknown density is in F when Zn = 1 and Yn = 0. This makes a finite number of errors

with probability one. The second statement does not require disjointness: we decide F ∪ G if Wn + Yn ≥ 1,

where Wn is the decision for F . Again, only a finite number of errors are made with probabilty one. Finally

we decide F ∩ G if WnYn = 1.

Example 6: Scale/translation classes. As a first example, let F be any subset of the scale/translation

class of densities f((· − µ)/σ)/σ, where f is a fixed density, µ ∈ R and σ > 0. Then, in any kernel estimate,

take hn = σ/
√
n, and note that with this choice, the expected L1 error is the same for all µ and σ. Therefore,
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by Lemma 2, the L1 minimax risk tends to zero for this scale/translation class and hence for F . Therefore,

F is discernible whenever it is closed. In particular, we can test whether a normal density has a rational

σ = p/q, with p > 0 and 0 < q ≤ 500. And normality is discernible, as is any scale/translation class (by

closedness).

Example 7: Nonlinear transformation classes. As a second example, let F be the class of all densities

for random variables T (X), where X > 0 has density f , and T (x) = (xa−1)/a, a > 0 or T (x) = log(x) (case

a = 0) (the Box-Cox transformations). Then F is discernible. To see this, transform the data by T−1(·),
and use a kernel estimate for f with bandwidth hn = 1/

√
n. Then note that the inequality in the proof

of Lemma 2 has been extended to include the joint data-based choice of h and the Box-Cox parameter a

(Devroye, Lugosi and Udina, 2000). Therefore, using the fact that L1 errors are invariant under monotone

transformations of the input, we conclude there exists a density estimate for which the expected L1 error

tends to zero uniformly over all values of a. As the density of T (X) has no limit in the class of densities

when a → ∞, we see that F is closed, and conclude that F is discernible.

Example 8: Parametric classes. Consider a countable class F = {φk, 1 ≤ k ≤ ∞} of densities φ∞
and φk (k < ∞), with φk → φ∞, where convergence is meant in the L1 sense. This class is closed in the

collection of all densities. Also, its L1 minimax error tends to zero. To see this, consider the kernel estimate

with bandwidth hn = 1/
√
n. Then the expected L1 error is easily bounded as follows: let f and g be two

densities, and let fn and gn be two kernel estimates based upon two samples of size n, both using the same

kernel and bandwidth. Then there exists a coupling of the samples such that

E

∫
|fn − gn| ≤

(
1 +

∫
|K|
)∫

|f − g|

(Devroye, 1985). We take K such that
∫
|K| = 1. So, given ǫ > 0, let Kǫ be the collection of indices k < ∞

such that
∫
|φk−φ∞| > ǫ. Then, with fnk denoting the kernel estimate mentioned above (with n for sample

size, and k for φk), we have, letting gn denote the kernel estimate (with the same kernel and bandwidth as

fnk) based on a sample of size n from φ∞,

sup
k

E

∫
|fnk − φk|

≤ max
k∈Kǫ

E

∫
|fnk − φk|+ sup

k 6∈Kǫ

(
E

∫
|fnk − gn|+ E

∫
|gn − φ|+

∫
|φk − φ|

)

≤ max
k∈Kǫ

E

∫
|fnk − φk|+ E

∫
|gn − φ∞|+ 3 sup

k 6∈Kǫ

∫
|φk − φ∞|

≤ o(1) + 3ǫ .

Thus, F is discernible. (This fact may also be derived as a consequence of Theorem 3 stated below.) By

arguments as above, the class G consisting of all scaled/or translated densities from F is also discernible. To

see why this example is powerful, let Xk denote a random variable with the gamma density xk−1e−x/Γ(k),

x > 0, k > 0, k integer. Let Yk = (Xk − k)/
√
k be the normalized random variable. Then, as is well-

known, the density of Yk tends to the normal (0, 1) density in L1 as k → ∞. As argued above, the class

F of all the densities of Yk, merged with the standard normal density, is discernible. If we consider the

scale/translation enlargement G of F , we obtain all gamma densities, possibly linearly transformed, with

integer shape parameter plus all normal densities. It too is discernible. Finally, a small additional argument

shows that the shape parameter does not have to be restricted at all. Thus, parametric classes in general,

when merged with their limit densities, are in most instances discernible. When the limits are not included,

the question is different, but Lemma 3 provides help. To illustrate this, let F be the class of all scaled

and translated gamma densities, and G be the class of all normal densities. Then, as argued above, both

F ∪ G and G are discernible, so F is. Lemma 3 is thus useful for the removal of limit classes of parametric
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collections. Finally, let F be the class of all gamma densities, not translated or scaled. This class does not

contain any densities as limits, and is thus closed. Hence it is discernible.

§5. Discernibility via total boundedness

A class F of densities is said to be totally bounded if for every ǫ > 0, there exists a finite number Nǫ of

densities fk, 1 ≤ k ≤ Nǫ such that the L1 balls of radius ǫ centered at the fk’s cover F . (Note that in this

definition, it is irrelevant whether we additionally ask that the fk’s belong to F : both definitions would be

equivalent.) That is, for every f ∈ F , there exists k ≤ Nǫ such that
∫
|f − fk| ≤ ǫ. The smallest possible

value of logNǫ for F is called the Kolmogorov entropy of F . Yatracos (1985) (see also Devroye, 1987, p. 90)

has constructed a minimum distance estimate fn with the property

sup
f∈F

E

{∫
|fn − f |

}
≤ 5ǫ+

4 +
√
128Nǫ√
2n

.

Define ǫk = 1/k + inf{ǫ > 0 : 128 logNǫ <
√
k}. By total boundedness, ǫk → 0 as k → ∞. Thus,

sup
f∈F

E

{∫
|fn − f |

}
≤ 5ǫn +

4 +
√
128Nǫn√
2n

≤ o(1) +
4√
2n

+
8

n1/4
.

Thus, applying Theorem 2, we immediately have

Theorem 3. Let F be a closed totally bounded class of densities. Then F is discernible.

Example 9: bounded unimodal densities. Let F be any closed class of unimodal densities bounded by

B with support on [0, 1]. Then F is discernible. In particular, the class of all concave densities with support

on [0, 1] is discernible.

Example 10: Lipschitz densities. Let F be the class of Lipschitz densities on [0, 1] with Lipschitz

constant not exceeding C. Then F or any closed subclass of it is discernible.

Example 11: Finite mixtures. Let F be the class of convex mixtures of k fixed densities. Clearly, this

class is closed. Also, by creating a finite grid for the possible convex weights, it is trivial to see that this

class is totally bounded. Thus, F is discernible.

Example 12: Uniform modulus of continuity. Let F be a closed class of densities on [0, 1] with

uniformly bounded modulus of continuity: for all δ > 0,

sup
f∈F

sup
x,y:‖y−x‖≤δ

|f(y)− f(x)| < ∞ .

Then F is totally bounded (Lorentz, 1966; see also Devroye, 1987, p. 98) and thus discernible.

§6. Discernibility via Yatracos’ minimum distance estimates

Next we give another simple sufficient condition for discernibility via Theorem 2. Recall that given a

class of sets A, the vc dimension V of A is defined as the largest positive integer k for which there exist k

points x1, . . . , xk such that

|{A ∩ {x1, . . . , xk} : A ∈ A}| = 2k.

If there is no such largest k, then we say that V = ∞. If V < ∞, then A is called a vc class.
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Theorem 4. Let F be a closed class of densities, and assume that the class of sets

A = {x : f(x) > g(x); f, g ∈ F}

is a vc class. Then F is discernible.

Proof. By Theorem 2, it suffices to prove that there exists a density estimate fn which is uniformly

convergent in F . Consider now the minimum distance estimate proposed by Yatracos (1988):

fn = argmin
f∈F

sup
A∈A

∣∣∣∣
∫

A
f − µn(A)

∣∣∣∣ ,

where µn(A) = (1/n)
∑n

i=1 IA(Xi) is the empirical measure of A based on the random sample. Yatracos

showed (see also Devroye, Györfi, and Lugosi, 1996, p. 278) that

sup
f∈F

E

∫
|fn − f | ≤ 4E sup

A∈A

∣∣∣∣
∫

A
f − µn(A)

∣∣∣∣ .

The well-known Vapnik-Chervonenkis inequality (Vapnik and Chervonenkis, 1971) implies that

E

{
sup
A∈A

∣∣∣∣
∫

A
f − µn(A)

∣∣∣∣
}

≤ 8

√
V logn+ 3

2n

(see also Devroye, Györfi, and Lugosi, 1996), which finishes the proof.

Example 13: Exponential mixtures. Let k be a fixed positive integer, and consider the class F of all

mixtures of k exponential densities (that is, translations and scales of e−x, x ≥ 0. Then Theorem 4 may be

applied to show that F is discernible. It suffices to show that the class

A = {x : f(x) > g(x); f, g ∈ F}

is a vc class. A member set in this class is thus of the form
{
x :

2k∑

i=1

aie
−bixI[x>ci]

> 0

}

where ai, ci ∈ R and bi > 0 are free parameters. We claim that each set in this class is the union of at most

ℓ
def
= (2k + 1)(k + 1) intervals. Since the class of unions of ℓ intervals is a vc class, we are done. Therefore,

the classification rule described above may be used to test whether a density is a k-mixture of exponentials.

We may similarly test for k-mixtures of normals and indeed many other parametric families. The interval-

counting argument is as follows: clearly, we have at most k + 1 intervals defined by the thresholds ci. It

suffices to show that on each of these intervals, a set of the form {x :
∑2k

i=1 aie
−bix > 0} defines at most

2k+1 intervals. But this is well-known (Lemma 25.2 of Devroye, Györfi and Lugosi, 1996). Hence the claim.

§7. Smoothness and monotonicity classes

In this section, we remove the burden of checking the conditions of Theorem 2, and provide easy-to-verify

sufficient conditions for classes of densities to be discernible. We begin with a subclass F of the monotone

densities f on [0,∞) with finite value f(0).

10



Theorem 5. Let F be a closed subclass of the monotone densities f with finite modal value m(f). Assume

that

sup
f∈F

(∫ √
f

)2
3
(m(f))

1
3 < ∞ .

Then F is discernible.

Proof. Theorem 5 follows from Theorem 2 and Lemmas 1 and 2 if, for f ∈ F , we can establish uniform L1

error bounds for the kernel estimate fnh with uniform kernel K on [−1, 1]. To this end, we use the typical

argument (see Devroye and Györfi, 1985). From the proof below, it will become apparent that the position

of the mode is unimportant, and thus we may assume without loss of generality that the mode occurs at

zero, and thus that m(f) = f(0). Let ∗ be the convolution operator.

E

∫
|fnh − f | ≤

∫
|Efnh − f |+

∫ √
E(fnh − Efnh)2

=

∫
|f ∗Kh − f |+

∫ √
(1/n)V(Kh(x−X1))

≤
∫

|f ∗Kh − f |+
∫ √

(1/n)E{K2
h(x−X1)} .

For x > h, observe that |f ∗Kh(x)−f(x)| ≤ f(x−h)−f(x+h), and that for x < h, |f ∗Kh(x)−f(x)| ≤ f(0).

Furthermore, E{K2
h(x −X1)} ≤ f(max(0, x− h))/(2h). Using these estimates, we obtain

E

∫
|fnh − f | ≤ hf(0) +

∫ 3h

h
f + h

√
f(0)

2nh
+

∫ √
f√

2nh

≤ 3hf(0) + h

√
f(0)

2nh
+

∫ √
f√

2nh

=
4(
∫ √

f)
2
3 (f(0))

1
3

(2n)
1
3

+
(
∫ √

f)
1
3 (f(0))

1
6

(2n)
2
3

when we take h3/2 =
∫ √

f/(f(0)
√
2n). Therefore, we have uniform convergence to zero whenever

sup
f∈F

(∫ √
f

)2
3
(f(0))

1
3 < ∞ .

By Lemma 2 and Theorem 2, Theorem 5 follows.

Let us extend the previous Theorem to include densities of bounded variation. We recall that a density

f is of bounded variation if we may find an increasing function f1 and a decreasing function f2 such that

f = f1 + f2, such that the total variation

V(f) def
= inf

f1,f2:f=f1+f2,f1↑,f2↓
sup
y>x

(f1(y)− f1(x)) + sup
y>x

(f2(x) − f2(y)) < ∞ .

Theorem 6. Let F be a closed subclass of the densities of bounded variation, and assume that

sup
f∈F

(V(f))13
(∫ √

f

)2
3
< ∞ .

Then F is discernible.

11



Proof. We argue as in the proof of Theorem 5, and apply Lemma 2 and Theorem 2. Let fnh be the kernel

estimate. If f = f1 + f2 is the bounded variation decomposition of f , with f1 ↑ and f2 ↓, and K is the

uniform kernel on [−1, 1], then

|f ∗Kh − f | ≤ f1(x + h)− f1(x) + f2(x− h)− f2(x)

and

|f ∗Kh − f | ≤ 2hV(f) .
Also,

∫ √
E{K2

h(x−X1)}
n

≤
∫ √

f(x+ h) + f(x− h)

2hn
dx ≤

√
2

nh

∫ √
f

so that

E {|fnh − f |} ≤ 2hV(f) +
√

2

nh

∫ √
f =

4

(2n)1/3

(∫ √
f

)2
3
(V(f))

1
3

if we take h3/2 =
∫ √

f/(
√
2nV(f)).

Example 14: log-concave densities. A very important subclass of the densities is the class of log-

concave densities: log f is concave. We claim that any closed subclass of the log-concave densities is dis-

cernible. Consider that this class includes all beta densities with both parameters greater than or equal to 1,

all gamma densities with shape parameter greater than or equal to one, all exponential power distributions

with shape parameter at least one, the normal densities, and a host of other densities. It is known that

these densities are unimodal and that if the mode occurs at z, a rescaling of the random variable to place

the mode at zero with modal value one results in a density g with g(u) ≤ e1−|u| (Devroye, 1984). As the

product in Theorem 5 is scale and translation invariant, and the log-concave inequality is absolute, we see

that, except for the monotonicity, all conditions of Theorem 5 are fullfilled. It is left as a trivial exercise

to extend Theorem 5 to this class of densities. Thus, we have a very simple condition for establishing the

discernibility of large subclasses of the famous parametric families. And as the class of log-concave densities

is closed, we can indeed test log-concavity.

Example 15: concave densities. Consider the class of all concave densities on their support. Clearly,

this class is closed. Furthermore, if the mode is forced to be at zero and of modal value one, then any

density in this class is bounded by one, and of support contained in [−2, 2]. By an argument as for the

log-concave densities, this class is discernible (regardless of the support!), and indeed any closed subclass of

it is discernible as well.

One could refine the bounds of the proof of Theorem 5 and indeed use higher-order kernels to obtain

results for subclasses related to Akhiezer classes of densities. In this manner, we may deal with convex

subclasses of the monotone densities, and classes for which the r-th derivative f (r) is monotone.

Example 16: Lipschitz densities. A class F of Lipschitz (1) densities with Lipschitz constant C(f) < ∞
and support s(f) is discernible if F is closed and

sup
f∈F

C(f)s2(f) < ∞ .

To see this, apply Theorem 6, and note that V(f) ≤ C(f)s(f), and
∫ √

f ≤
√
s(f)

∫
f =

√
s(f).

Example 17: Unimodal densities. Let F be a class of unimodal densities with modal value m(f) and

variance σ2(f). Then this class is discernible if F is closed and

sup
f∈F

m(f)(1 + σ2(f)) < ∞ .

12



To see this, note that V(f) ≤ 2m(f) and assuming without loss of generality that the mean is at the origin,

∫ √
f =

∫ √
(1 + x2)f√
1 + x2

≤
√∫

(1 + x2)f

√∫
1

1 + x2
=
√
π(1 + σ2(f)) .

Examples of such classes include the gamma densities with shape parameter 1 or larger, the symmetric beta

densities with shape parameter 1 or larger, and the unimodal densities f ≤ A/(1 + x4), with A < ∞ fixed

and given.

§8. Ad hoc analysis: unimodality and convexity

Surprisingly, there are classes whose minimax risk and whose complement’s minimax risk does not tend

to zero, and yet they are discernible. We have already encountered such classes in Section 2. In this section

we construct explicit classification rules to prove that the following classes are discernible: the monotone

densities on [0,∞), the monotone densities on an interval of the real line, the unimodal densities with mode

at 0, and the unimodal densities. To keep the material limited, we will only provide an explicit proof for

the class of monotone densities on [0,∞). We recall from Devroye (1983) that the minimax risk of this class

does not tend to zero. To construct an explicit ad hoc classification rule, consider a histogram estimate with

bins [0, h), [h, 2h), [2h, 3h), . . .. Let Ni denote the number of data points in [ih, (i + 1)h). The classification

rule is the following: take h = 1/n1/7. Then

decide non-monotone if max
i≥0

(Ni+1 −Ni) > n2/3 ;

decide monotone otherwise.

Theorem 7. The classification rule above makes almost surely a finite number of errors for the membership

in the class of monotonically decreasing densities on [0,∞).

Proof. First, assume that f is indeed monotone on [0,∞). We bound P{Ni+1 − Ni > t} by standard

methods: For each i ≥ 0, define pni = P{X1 ∈ [ih, (i + 1)h)}. Introduce N ′
i such that (N ′

i , Ni) are two

components of a multinomial random vector with total count n and success probabilities pni each. Then

P{Ni+1 −Ni > t} ≤ P{N ′
i −Ni > t}

≤ P{N ′
i − npni > t/2}+ P{Ni − npni < −t/2}

= P{|Ni − npni| > t/2}

≤ 2e−
t2

2n ,

by Hoeffding’s inequality (Hoeffding, 1963). Thus,

P

{
max
i≥0

(Ni+1 −Ni) > n2/3
}

≤ P

{
max
i≥n

Ni > n2/3
}
+ 2ne−n1/3/2

≤
∑

i≥n

P

{
Ni > n2/3

}
+ 2ne−n1/3/2

≤
∑

i≥n

P

{
binomial(n, 1/(i+ 1)) > n2/3

}
+ 2ne−n1/3/2

13



(because pni ≤ 1/(i+ 1) by monotonicity)

≤
∑

i≥n

(
n

(i+ 1)n2/3

)n2/3

· i+ 1

i
+ 2ne−n1/3/2

(because P{binomial(n, p) ≥ t} ≤
(n
t

)
pt/(1− p) ≤ (np/t)t/(1− p), t integer)

= O

(
e−n1/3/3

)
.

In the above chain, we assumed without loss of generality that n2/3 is integer-valued. As this is summable

in n, the Borel-Cantelli lemma implies that we will make finitely many errors almost surely.

Next assume that f is not monotone. Thus, there exist Lebesgue points 0 < y < z with the property

that f(y) = f(z) − 3δ for some δ > 0. As these are Lebesgue points, we know that there exists an ǫ > 0

such that for any interval I of length |I| < ǫ containing y,
∫
I f(x)dx < |I|(f(y) + δ), and similarly for z:∫

I f(x)dx > |I|(f(z)− δ). The number of intervals [ih, (i+1)h) separating z from y is at most 2+ (z− y)/h.

Let h < ǫ, and let i range over the intervals covering [y, z]. The difference between the last pni and the first

pni is at least δh, so that the maximal differential pn,i+1−pn,i for i and i+1 both among the given intervals

is at least δh/(2+ (z− y)/h) ≥ δh2/2(z− y)
def
= 3ch2 for n large enough (and thus h small enough). Let j be

an index for which pn,j+1 − pn,j ≥ 3ch2. If we decide that f is monotone, then we have Nj+1 −Nj ≤ n2/3,

however. Thus, the probability of erring is not more than

P{Nj+1 −Nj ≤ n2/3} ≤ P{Nj+1 − npn,j+1 − (Nj − npnj) ≤ n2/3 − 3cnh2}
= P{Nj+1 − npn,j+1 − (Nj − npnj) ≤ n2/3 − 3cn5/7}
≤ P{Nj+1 − npn,j+1 − (Nj − npnj) ≤ −2cn5/7}

(for n large enough)

≤ P{Nj+1 − npn,j+1 < −cn5/7}+ P{Nj − npnj > cn5/7}

≤ 2e−2c2n3/7

by Hoeffding’s inequality. By the Borel-Cantelli lemma, we once again make finitely many errors almost

surely.

For monotonicity on any right-infinite interval, we apply the same classification rule, starting with the

second occupied interval from the left. For unimodality, we find the interval of maximal cardinality, and apply

monotonicity tests of opposite polarity on both sides of that maximal interval. The details are uninteresting.

It is also worth noting that we can test for convexity. In particular, if i and j are the indices of the leftmost

and rightmost intervals in a grid of intervals of width h that are occupied, then the classification rule with

h = 1/n1/7 that decides against convexity if maxi<k<j−2(2Nk+1 − Nk+2 − Nk) > n2/3 errs finitely often

with probability one, for any density. In fact, one can in this manner test membership in any Akhiezer class.

§9. Proof of Theorem 2

The proof of the theorem is split into two lemmas, the first of which is directly applicable to prove

discernibility in many cases.
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Lemma 4. Let F be a closed class of densities. If there exists a sequence of positive numbers bn → 0 and a

density estimate gn such that gn is strongly universally consistent, moreover for every f ∈ F
∞∑

n=1

P

{∫
|gn − f | > bn

}
< ∞,

then F is discernible.

Proof. Consider the classification rule

Tn(X1, . . . , Xn) =

{
1 if inff∈F

∫
|gn − f | ≤ bn,

0 otherwise.

In other words, based on the data X1, . . . , Xn, we compute the density estimate gn, and project it in the L1

distance on the class F . If the distance between gn and the class is greater than bn, then we say that the

unknown density is not in the class. Now it is easy to see that this classification rule is consistent, since if

the Xi’s are drawn from a density f ∈ F then

P{Tn fails} = P

{
inf
g∈F

∫
|gn − g| > bn

}
≤ P

{∫
|gn − f | > bn

}
.

By assumption these probabilities are summable over n = 1, 2, . . ., so the Borel-Cantelli lemma implies that,

almost surely, Tn fails at most for finitely many n.

On the other hand, if f /∈ F , then by closedness of the class F , there exists an ǫ > 0 such that

infg∈F
∫
|f − g| > ǫ. However, since gn is strongly universally consistent and bn → 0, eventually, almost

surely, inff∈F
∫
|gn − f | > ǫ/2 > bn, and therefore the classification rule does not fail.

In many cases there exists a simple estimate which satisfies the condition of Lemma 4. For example, if

F is the class of all densities supported on [a, b] such that ess supx,y |f(x)− f(y)|/|x− y| ≤ c, then the kernel

estimate with an appropriate non-data-dependent bandwidth will do. However, even simple cases as the

class of all normal densities, any such kernel estimate fails to provide a uniform rate of convergence within

F . In this specific case it is possible to define a data-dependent bandwidth with the desired property (see

Devroye, 1989). However, to finish the proof of Theorem 2, we need a universal construction, provided in

the lemma below:

Lemma 5. If for some sequence an → 0 there exists a density estimate fn with supf∈F E
∫
|fn − f | ≤ an,

then there exists another sequence bn → 0 and a density estimate gn such that gn is strongly universally

consistent, and for all f ∈ F
∞∑

n=1

P

{∫
|gn − f | > bn

}
< ∞.

Remark 2. The proof below shows that one may always take bn = 3a
⌊(n/2)1/3⌋

+ 3(n/2)−1/12 + 4n−1/3,

so bn only depends on an but not on the class F . However, in most cases this is a suboptimal choice. The

estimate gn defined below is merely a part of a general proof of existence. In most concrete cases much

superior estimates exist. Also, in fact, we show that supf∈F
∑∞

n=1 P
{∫

|gn − f | > bn
}
< ∞.
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Proof. First, we “stabilize” fn to make sure that the L1 error
∫
|fn − f | is always concentrated around its

mean, and then combine it with a consistent estimate to achieve strong universal consistency. We define the

stabilized density estimate f̂n as follows:

f̂n(x,X1, . . . , Xn) =
1⌊
n
N

⌋
⌊ n
N ⌋∑

k=1

fN (x,X(k−1)N+1, . . . , XkN ),

where N = ⌊n1/3⌋. In other words, we chop up the data into about n2/3 equal blocks, construct the estime

on all blocks, and take their average. McDiarmid’s inequality (1989) assures that if by changing the value

of one data point but leaving all others intact the L1 error does not change by much, then it is close to its

mean with large probability. In our case,
∣∣∣∣
∫

|f̂n(x,X1, . . . , Xn)− f(x)|dx−
∫

|f̂n(x,X1, . . . , X
′
i, . . . , Xn)− f(x)|dx

∣∣∣∣

≤
∣∣∣∣
∫

f̂n(x,X1, . . . , Xn)−
∫

f̂n(x,X1, . . . , X
′
i, . . . , Xn)dx

∣∣∣∣

≤ 1⌊
n
N

⌋
∫

|fN (x,X(k−1)N+1, . . . , XkN )− fN (x,X(k−1)N+1, . . . , X
′
i, . . . , XkN )|dx

(if the index i is in the k-th block)

≤ 2⌊
n
N

⌋ ,

where the last inequality follows from the fact that we may assume that the estimate fN is always a density

(i.e., nonnegative and integrates to one, since otherwise with standard operations one may always construct

such an estimate by not increasing the L1 error, see Devroye (1987)), and that the L1 distance between any

two densities is at most 2. Thus, McDiarmid’s inequality implies that for any t > 0,

P

{∫
|f̂n − f | − E

∫
|f̂n − f | > t

}
≤ e−t2/2n(1/⌊ n

N ⌋)2 ≤ e−t2n1/3/8.

if n ≥ 3. Thus, for example, by taking t = n−1/12 and using the simplified notation a′n = a
⌊n1/3⌋

+ n−1/12,

for any f ∈ F ,

P

{∫
|f̂n − f | > a′n

}
≤ e−n1/6/8.

The second step is to extend f̂n so that it becomes universally consistent. Without loss of generality

we may assume again that f̂n is indeed a density. Let ξn be an arbitrary strongly universally consistent

density estimate. We proceed as follows: Split the available data into two equal parts X1, . . . , Xn/2 and

Xn/2+1, . . . , Xn. Based on the first half construct the estimates f̂n/2 and hn/2. Define the “Yatracos set”

(see Yatracos (1985) or Devroye and Lugosi (1997))

An/2 =
{
x : f̂n/2(x) > ξn/2(x)

}
,

and use the second half of the data to calculate the empirical probability

µn/2(An/2) =
2

n

n∑

j=n/2+1

I{Xj∈An/2}
.

The density estimate gn is defined by

gn =





f̂n/2 if

∣∣∣∣∣µn/2(An/2)−
∫

An/2

f̂n/2

∣∣∣∣∣ <
∣∣∣∣∣µn/2(An/2)−

∫

An/2

ξn/2

∣∣∣∣∣;

ξn otherwise.
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We need to show that gn is universally consistent, and within F is has a uniform rate of convergence. We

start with the case f ∈ F . Define cn = 2a′n/2+4n−1/3. If
∫
|f̂n/2−ξn/2| ≤ cn then by the triangle inequality

∫
|gn − f | ≤

∫
|f̂n/2 − f |+ cn.

Otherwise, if
∫
|f̂n/2 − ξn/2| = 2

(∫
An/2

f̂n/2 −
∫
An/2

ξn/2

)
> cn, observing that

∣∣∣∣∣

∫

An/2

f −
∫

An/2

f̂n/2

∣∣∣∣∣ ≤
1

2

∫
|f̂n/2 − f |

by Scheffé’s theorem, we have gn = f̂n/2 whenever
∣∣∣∣∣µn/2(An/2)−

∫

An/2

f

∣∣∣∣∣ <
cn
4

− 1

2

∫
|f̂n/2 − f |.

Summarizing the two cases, we see that for all f ∈ F ,

P

{∫
|gn − f | > a′n/2 + cn

}
≤ P

{∫
|gn − f | >

∫
|f̂n/2 − f |+ cn

}
+ e−(n/2)1/6/8

≤ P

{∣∣∣∣∣µn/2(An/2)−
∫

An/2

f

∣∣∣∣∣ >
cn
4

−
a′n/2

2

}
+ 2e−(n/2)1/6/8

(by the above argument)

= P

{∣∣∣∣∣µn/2(An/2)−
∫

An/2

f

∣∣∣∣∣ > n−1/3

}
+ 2e−(n/2)1/6/8

≤ e−n1/3 + 2e−(n/2)1/6/8

(by Hoeffding’s inequality, 1963).

Therefore, taking bn = a′n/2 + cn, we have that, indeed, for every f ∈ F ,

∞∑

n=1

P

{∫
|gn − f | > bn

}
< ∞.

Now it remains to show that gn is strongly universally consistent. This may be done in a similar way: If∫
|f̂n/2 − ξn/2| ≤ 2

(∫
|ξn/2 − f |+ n−1/3

)
then by the triangle inequality,

∫
|gn − f | ≤ 3

∫
|ξn/2 − f |+ 2n−1/3.

Otherwise, by Scheffé’s theorem,
∫
An/2

f̂n/2 −
∫
An/2

ξn/2 >
∫
|ξn/2 − f |+ n−1/3 and

∣∣∣∣∣

∫

An/2

f −
∫

An/2

ξn/2

∣∣∣∣∣ ≤
1

2

∫
|ξn/2 − f |.

Therefore, gn = ξn/2 whenever ∣∣∣∣∣µn/2(An/2)−
∫

An/2

f

∣∣∣∣∣ <
1

2
n−1/3.

Therefore, in all cases, since the L1 distance is bounded by 2,
∫

|gn − f | ≤ 3

∫
|ξn/2 − f |+ 2n−1/3 + 2I{∣∣∣∣µn/2(An/2)−

∫
An/2

f

∣∣∣∣≥(1/2)n−1/3
}.
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By the strong universal consistency of ξn and Hoeffding’s inequality, all terms on the right-hand side converge

to zero almost surely. This concludes the proof of Lemma 5 and Theorem 2.

§10. Non-discernible classes

In this section we establish sufficient conditions for the nondiscernibility of a class of densities, and show

several examples of nondiscernible classes.

We first generalize the definition of discernibility: if X is a class of densities, then we say that F is

discernible with respect to X if there exists a consistent classification rule to decide whether f ∈ F ∩X
or f ∈ Fc ∩ X . Clearly, if F is not discernible with respect to X , then F is not discernible (with respect to

the class of all densities).

It will be convenient to work, instead of densities, with the inverse of their corresponding cumulative

distribution function: Any density f is uniquely determined by a monotonically increasing function G :

(0, 1) → (−∞,∞) defined by G = F−1, where F (x) =
∫ x
−∞ f(z)dz. If U1, U2, . . . is a sequence of independent

uniform [0, 1] random variables, then G(U1), G(U2), . . . is a sequence of i.i.d. random variables with density

f . This is the coupling between samples from different distributions which will be used in the proof below.

Theorem 8. Let F ,X be classes of densities. Denote the class of all inverse distribution functions corre-

sponding to densities in X by A, and to those in F ∩X by G. Assume that there exist two sets of functions

B ⊂ G and C ⊂ A − G with the following property:

(1) there exists a family of subsets Sǫ of (0, 1) indexed by real numbers ǫ ∈ (0, 1) such that λ(Sǫ) ≤ ǫ (λ

denotes the Lebesgue measure);

(2) if ǫ1 > ǫ2 then Sǫ1 ⊇ Sǫ2 ;

(3) for any ǫ ∈ (0, 1) and G ∈ B there exists a H ∈ C such that G(x) = H(x) for all x /∈ Sǫ.

(4) for any ǫ ∈ (0, 1) and H ∈ C there exists a G ∈ B such that G(x) = H(x) for all x /∈ Sǫ.

Then F is not discernible with respect to X .

Proof. Let U1, U2, . . . be an i.i.d. sequence of uniform [0, 1] random variables, from which we obtain all

samples for all distributions by the inverse distribution function transformation. We may represent this

sequence by the probability element ω. Assume that there exists a consistent classification rule Tn. Then for

any density f ∈ F ∩ X , and almost all ω (i.e., with probability one) there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 1 if n > N(ω)

and for any density f ∈ Fc ∩ X , and almost all ω there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 0 if n > N(ω).

We will construct a density such that, with probability more than 1/2, Tn(X1, . . . , Xn) = 0 for infinitely

many n and Tn(X1, . . . , Xn) = 1 for infinitely many n, which is a contradiction.

We use the coupling defined in the introduction of this section. Let δk = 2−k−2, k = 1, 2, . . ., and let

G1 ∈ B be arbitrary. Then there exists an integer N1 such that

P {Tn(G1(U1), . . . , G1(Un)) = 1 for all n ≥ N1} > 1− δ1
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(see, e.g., Royden, 1968, p. 70, Problem 23.a). Choose ǫ1 > 0 such that (1− ǫ1)
N1 > 1− δ1, and consider a

function G2 ∈ C which agrees with G1 on (0, 1)− Sǫ1 . Then

P
{
G1(U1) = G2(U1), . . . , G1(UN1

) = G2(UN1
)
}
> 1− δ1,

and

P
{
Tn(G2(U1), . . . , G2(UN1

)) = 1
}
> 1− 2δ1.

Now similarly, since G2 ∈ C, there exists an integer N2 > N1 such that

P {Tn(G2(U1), . . . , G2(Un)) = 0 for all n ≥ N2} > 1− δ2.

Next we choose ǫ2 > 0 such that (1 − ǫ2)
N2 > 1 − δ2, and consider a function G3 ∈ B which agrees with

G2 on (0, 1)− Sǫ2 . We continue this procedure such that Gk ∈ B for odd k and Gk ∈ C for even k, and Gk

agrees with Gk−1 on (0, 1)− Sǫk−1
, where (1 − ǫk−1)

Nk−1 > 1− δk−1, and Nk is chosen such that

P

{
Tn(Gk(U1), . . . , Gk(Un)) = I{k is odd} for all n ≥ Nk

}
> 1− δk.

Then it follows from assumption (2) that the sequence of these functions G1, G2, . . . converges pointwise to

some function G ∈ A. Also,

P

{
TNk

(G(U1), . . . , G(UNk
)) = I{k is odd} for all k = 1, 2, . . .

}
> 1−

∞∑

k=1

2δk =
1

2
,

and the proof is finished.

Example 18: Boundedness of the support of a density is not discernible. Let F be the class

of all densities whose support is bounded. Then Theorem 8 implies that F is not discernible. To see

this, simply take Sǫ = (1 − ǫ, 1), and let B be the family of inverse distribution functions corresponding

to positive bounded random variables with a density, and let C be the family corresponding to positive

unbounded random variables with a density. Then clearly, functions in B are bounded and functions in C
are unbounded, and for any bounded function G ∈ B and ǫ ∈ (0, 1) there exists an unbounded H ∈ C such

that G and H agree on (0, 1− ǫ) and vice versa, and therefore the condition of Theorem 8 is satisfied. It is

also easy to see that one cannot construct consistent classification rules for boundedness of the support with

respect to the following classes: all continuous densities, all Lipschitz densities, and all unimodal densities. In

particular, unimodality is discernible, but not bounded support once it is known that a density is unimodal.

Example 19: Boundedness of a density is not discernible. Let F be the class of all densities with

ess sup f < ∞. Then F is not discernible. We show this, via Theorem 8, by proving that F is not discernible

with respect to X , the class of all monotonically decreasing densities on [0,∞) that are continuous on

(0,∞). Then all inverse distribution functions G ∈ A corresponding to densities in X are concave increasing

functions with G(0) = 0, G′(0) ≥ 0, and lim inft↓0G
′(t) = ∞ if and only if the density is unbounded. Take

Sǫ = (0, ǫ), and continue a function G for an unbounded density on [0, ǫ] by a parabola through (0, 0) and

(ǫ,G(ǫ)) with derivative G′(ǫ) at ǫ (which corresponds to a G for a bounded continuous and monotonically

decreasing density on [0,∞)). Similarly, continue a function G for a bounded density on [0, ǫ) by a quadratic

Bezier spline (Farin, 1993) having derivative ∞ at 0, G′(ǫ) at ǫ, and with control point at (0, a), where a is

the place where the line through (ǫ,G(ǫ)) with derivative G′(ǫ) crosses the y-axis. It is clear that all four

conditions of Theorem 8 are satisfied, and therefore F is not discernible with respect to X .

Example 20: Square integrability of a density is not discernible. Consider the class F of all

densities f for which
∫
f2dx < ∞. Then the same argument as in the previous example shows that F is not

discernible with respect to X , the class of monotonically decreasing densities on [0,∞) that are continuous on

(0,∞) (and thus have possibly an infinite peak at the origin). For the construction involving continuations,

just note that a density with
∫
f2 = ∞ is continued on [0, ǫ) as in Example 19 by a bounded density (which
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necessarily has
∫
f2 < ∞). The other continuation argument is trickier and requires a density whose behavior

near the origin is as c/2
√
x (and thus is not square integrable), and whose distribution function G evolves as

c
√
x. By choice of c, such a continuation exists that meets the requirements of continuity and monotonicity

as well.

Example 21: Continuity of a density is not discernible. Let F be the class of densities such that

each f ∈ F has a version which is continuous at 0. This class is not discernible. To see this, we apply

Theorem 8 in the following setup: X is the class of all strictly monotonically increasing densities on [0, 1],

continuous on (0,∞), with f(1) = 1 and f(x) = (2 − x)+, x > 1. Taking again Sǫ = (0, ǫ), it is easy to

see that conditions (3) and (4) of Theorem 8 are satisfied, which implies the non-discernibility of F with

respect to X . Indeed, we apply the same extension arguments from the previous examples, and note that

the distribution functions G should be convex and increasing on [0, 1], with continuous derivatives there, and

with G′(0) = 0 if and only if f is continuous at 0 (and f(0) = 0). Thus, within the class, we may always

continue a G with G′(0) > 0 on [0, ǫ] by one having G′(0) = 0 using a quadratic Bezier spline having the

specified derivatives at 0 and ǫ. Similarly, a function G with G′(0) = 0 may be continued on [0, ǫ) by a

quadratic Bezier spline B having B′(0) = G(ǫ)/(2ǫ) > 0 and B′(ǫ) = G′(ǫ). It should be easy to generalize

and conclude that the class of densities with
∫
f r < ∞ (for fixed r > 1) is not discernible with respect to

the decreasing densities on [0, 1]. The same goes for conditions like
∫
f loga(1 + f) < ∞ for any a > 0, and

indeed many other functionals.

Example 22: Lipschitz continuity of a density is not discernible. Let F be the class of densities

such that each f ∈ F has a version which is Lipschitz at 0. This class is not discernible. To see this, we

consider X as in the previous example and ask additionally for continuity on the whole line (so that for each

density, f(0) = 0). We need to slightly modify the continuation argument. If G corresponds to a density

in F ∩ X , then, near the origin, G(x) ≤ Cx2 for some constant C. Such a G may be continued on [0, ǫ)

by another G behaving as cx3/2 near the origin, where c > 0 is picked appropriately, while maintaining the

other restrictions imposed by X . Note that the corresponding density behaves as
√
x near the origin, and is

thus not Lipschitz. If G corresponds to a density in Fc ∩ X , then, near the origin, we may continue G by

another function within X that behaves as Cx2 near the origin for an appropriately small but positive C.

Thus, within X , Lipschitz continuity at even one point is not discernible.

We leave it to the reader as a simple exercise now to verify that we cannot test whether E|X |a < ∞
for fixed a > 0 with respect to the class of bounded symmetric unimodal densities (by continuations of the

tails by finite support or heavy-tailed pieces). Similarly, the finiteness of a moment generating function at a

given point cannot be tested. It is also easy to see that the L1 ball Fǫ = {f :
∫
|f − f0| ≤ ǫ} centered at a

fixed density f0 is non-discernible.

§11. Non-discernibility of mixture classes

Consider the class X of densities which may be obtained as densities of random variables of the form

X = F (U,Z), where F : [0, 1] × {1, 2, . . .} → R is a fixed and known measurable function, U is a uniform

random variable on [0, 1], and Z is an arbitrary positive-integer-valued random variable, independent of U .

We assume that F is such that F (U,Z) has a density for all possible Z, and that for any two different

distributions of Z, F (U,Z) has different densities. Let F be the subclass of X containing all densities such

that Z has a finite support.
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Theorem 9. The class F defined above is not discernible with respect to X .

Proof. We proceed similarly as in Theorem 8. Just like there, we need a coupling between samples drawn

from different densities of X . A simple way of doing it is as follows: Let U1, V1, U2, V2, . . . be i.i.d. uniform

random variables on [0, 1]. Given a distribution (p1, p2, . . .) on the set of positive integers, let Zi = j if

and only if Vi ∈
[∑j−1

k=0 pk,
∑j

k=0 pk

)
. The sample drawn from a density f ∈ X is now X1, X2, . . ., where

Xi = F (Ui, Zi). The densities in F are characterized by the distributions (p1, p2, . . .) which have finite

support (i.e., only finitely many pi’s are nonzero). Call this class P . Similarly, the class X −F corresponds

to the class Q of distributions with infinite support.

Assume that the statement is false, and there exists a classification rule Tn such that for any f ∈ F ,

with probability one, there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 1 if n > N(ω),

and for any f ∈ X − F , with probability one, there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 0 if n > N(ω).

Let δk = 2−k−2, k = 1, 2, . . ..

Let (p
(1)
1 , p

(1)
2 , . . .) ∈ P be arbitrary. Then there exists an integer N1 such that

P

{
Tn(X

(1)
1 , . . . , X

(1)
n ) = 1 for all n ≥ N1

}
> 1− δ1,

where X
(1)
1 , . . . , X

(1)
n is the sample drawn from the corresponding density as described above. Next consider

another distribution (p
(2)
1 , p

(2)
2 , . . .) ∈ Q such that

P

{
X

(1)
1 = X

(2)
1 , . . . , X

(1)
n = X

(2)
n

}
> 1− δ1.

Such a distribution may be constructed by choosing ǫ1 > 0 such that (1 − ǫ1)
N1 > 1 − δ1, and defining

p
(2)
i = p

(1)
i for all i < m, where m is the largest integer such that p

(2)
m > 0, p

(2)
m = min(0, p

(1)
m − ǫ1), and

p
(2)
i = 2−(i−m+1)min(ǫ1, p

(1)
m ) for all i ≥ m.

This step may be iterated just like in Theorem 8, leading to the construction of a limiting density in

X − F for which, with probability greater than 1/2, the classification rule Tn fails for every odd n. The

proof is finished.

Example 23: Normal mixtures. It is not discernible whether a normal mixture density has finitely or

infinitely many components. This may be straightforwardly cast in the framework of Theorem 9: let X be

the class of all densities of the form

f(x) =
1√
2π

∞∑

i=1

pi
σi

e
−

(x−mi)
2

2σ2i ,

where p1, p2, . . . is a probability vector, σ1, σ2, . . . are positive numbers, and m1,m2, . . . are arbitrary real

numbers. Assume that all parameters except the pi’s are known, an that no two pairs (mi, σi) are identical.

This class is X . According to Theorem 9, the class F consisting of all densities of the above form such that

pi > 0 for only finitely many i’s is not discernible with respect to X . From this, it follows certainly that

the class of all finite mixtures of normal densities is not discernible (here, the parameters mi and σi are

unrestricted).
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Example 24: Characteristic functions with compact support. Let F be the class of all densities

whose characteristic function ϕ has bounded support. This class is not discernible. To see this, we take

densities fn with characteristic function (1 − |t|/n)+, and let X be the class of all mixtures of finitely or

infinitely many components fn. Then the class of finite mixtures of fn’s is not discernible with respect to

X , by Theorem 9.

Example 25: Characteristic functions with exponentially decreasing tails. Let F be the class

of all densities whose characteristic function ϕ drops off exponentially quickly, i.e., for which |ϕ(t)| ≤ Ce−a|t|

for positive constants C, a. This class is not discernible. To see this, we take Cauchy densities fn with

characteristic function e−|t|/n, and let X be the class of all mixtures of finitely or infinitely many components

fn. Then the class of finite mixtures of fn’s is not discernible with respect to X , by Theorem 9. However, for

any inifinite mixture, the mixture density does not have an exponentially decaying characteristic function.
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