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Universitat Politècnica de Catalunya

pedro.delicado@upc.edu

Adolfo Hernández
Dept. de Estad́ıstica e Investigación Operativa II (Métodos de Decisión),

Universidad Complutense de Madrid
a.hernandez@emp.ucm.es
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Abstract

Given n independent, identically distributed random vectors in R
d,

drawn from a common density f , one wishes to find out whether the sup-

port of f is convex or not. In this paper we describe a decision rule which

decides correctly for sufficiently large n, with probability 1, whenever f is

bounded away from zero in its compact support. We also show that the

assumption of boundedness is necessary. The rule is based on a statis-

tic that is a second-order U -statistic with a random kernel. Moreover,

we suggest a way of approximating the distribution of the statistic un-

der the hypothesis of convexity of the support. The performance of the

proposed method is illustrated on simulated data sets. As an example of

its potential statistical implications, the decision rule is used to automati-

cally choose the tuning parameter of ISOMAP, a nonlinear dimensionality

reduction method.
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1 Introduction

Let X be a random vector with distribution µ on R
d having density f . The

support of µ is defined as

S =
⋂

C⊂Rd closed set:µ(C)=1

C . (1)

(We also call S the support of the density f .) Let X1, . . . , Xn be independent
random vectors drawn from the distribution µ. In this paper we investigate the
problem of testing whether the support S is a convex set or not. In other words,
we consider the hypothesis testing problem in which the null and alternative
hypotheses are

{

H0 : S is a convex set,
H1 : S is not a convex set.

Instead of the classical Neyman-Pearson framework (i.e., minimizing the type II
error while controlling the type I error), we are interested in finding tests—or,
perhaps more adequately, decision rules—that decide correctly when the sample
size is large. Formally, a decision rule is a sequence of functions Tn :

(

R
d
)n →

{0, 1}. Tn(X1, . . . , Xn) = 1 is interpreted as a guess that f has a convex support
while if Tn(X1, . . . , Xn) = 0, the decision rule suggests that the support is non-
convex. A decision rule is consistent for a density f if it is correct eventually
almost surely, that is, if

P
{

Tn(X1, . . . , Xn) 6= 1{f has convex support} for finitely many n
}

= 1 .

Estimating the support (and other level sets) of a density from an i.i.d. sam-
ple has received considerable attention (see Báıllo, Cuevas, and Justel (2000),
Báıllo and Cuevas (2001), Cadre (2006), Biau, Cadre, and Pelletier (2008),
Cuevas and Fraiman (1997), Cuevas and Rodŕıguez-Casal (2004), Cuevas and
Fraiman (2009), Cuevas (2009), Rodŕıguez-Casal (2007), Pateiro-López and
Rodŕıguez-Casal (2009), Mason and Polonik (2009), Polonik (1995), Rigollet
and Vert (2009), Scott and Nowak (2006), Steinwart, Hush, and Scovel (2006),
Tsybakov (1997), Vert and Vert (2006), Willett and Nowak (2007) for an in-
complete but representative list of recent papers). However, as far as we know,
no test has been proposed to decide whether the support of a density is convex
or not. Apart from its intrinsic interest, such a test has applications in the au-
tomatic choice of the tuning parameters of isomap (isometric feature mapping;
Tenenbaum, de Silva, and Langford (2000)), a celebrated nonlinear dimension-
ality reduction method, as described in Section 5. In fact, it is this application
that motivated our interest in the problem.

The main objective of this paper is to investigate the possibility of con-
structing consistent decision rules for the convexity of the support. We show
that consistent decision rules (i.e., rules that decide correctly eventually almost
surely) exist whenever f is bounded away from zero on its support and some
other mild regularity conditions are satisfied. The rule, proposed in Section 2, is
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based on a statistic which is the average, over all pairs of points (Xi, Xj), of the
distance of the closest data point to the mid-point (Xi +Xj)/2. We show that
under the null hypothesis this average value converges to zero, in probability,
while under the alternative, it stays bounded away from zero. This makes it
possible to define a consistent decision rule. The difficulty of the analysis is
that the proposed statistic is not a U -statistic since every summand depends
not only on Xi and Xj but on all other data.

In Section 3 it is shown that it is impossible (in a well-defined sense described
below) to design a decision rule that behaves asymptotically correctly for all
bounded densities of bounded support. This shows that an assumption like the
density being bounded away from zero on its support is necessary for consistent
decision rules.

In Section 4, using the terminology of hypothesis testing, we describe some
heuristics to approximate the distribution of the proposed statistic under the
hypothesis of convexity of the support. Such approximations are essential in
practice when the threshold for accepting or rejecting the null hypothesis needs
to be adjusted for a given problem at a fixed sample size. We present numerical
examples for illustration. Finally Section 5 illustrates by a numerical example
how the decision rule is applied successfully in the automatic choice of the tuning
parameter of ISOMAP.

2 A decision rule for the convexity of the sup-

port of a distribution

Let X1, . . . , Xn be i.i.d. vectors drawn from the probability distribution µ on
R

d. We assume that µ is absolutely continuous with respect to the Lebesgue
measure, with density f . Suppose that f has a support S ⊂ R

d and that there
exists a constant c > 0 such that for every x ∈ S, f(x) ≥ c. In this section we
propose a test for the convexity of S. The main result of the section is that the
decision rule is consistent, that is, regardless of whether S is convex or not, the
rule decides correctly for sufficiently large sample sizes. For this we also need
some mild regularity conditions detailed below.

The basic idea of the proposed test is the fact that a closed set S ⊆ R
d is

convex if and only if for all x, y ∈ S, the mid-point (x+ y)/2 is also in S. Thus,
if the support S of f is convex, it is reasonable to expect that for each pair of
observations (Xi, Xj), there is some other data point Xh close to the mid-point
(Xi+Xj)/2. On the other hand, if the support is not convex then we expect to
have a large number of pairs (Xi, Xj) such that the closest point to (Xi+Xj)/2
is far away. Based on this intuition, we introduce the statistic

Un =
1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

min
h=1,...,n

γ(Xi, Xj , Xh) =
1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

γ(Xi, Xj , Xh(1)(i,j))

where γ(Xi, Xj , Xh) = ‖Xh − (Xi +Xj)/2‖d and denotes the index h for which
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‖Xh − (Xi +Xj)/2‖ is smallest. Observe that γ(Xi, Xj , Xh(1)(i,j)) ≤ ∆d
S , where

∆S denotes the diameter of S.
Un resembles a U -statistic (see, e.g., Serfling (1980), Chapter 6) as it is a

sum, over all pairs of points, of a function depending on the pair. However,
Un is not a U -statistic because the kernel γ(Xi, Xj , Xh(1)(i,j)) depends not only
on (Xi, Xj) but also on the rest of points Xh, which makes its analysis more
complex. U -statistics with a random kernel were investigated by Schick (1997),
but these results are not applicable to Un as Schick deals with random kernels
k̂n(Xi, Xj ;X1, . . . , Xn) that converge (as n → ∞) in some sense to a non-
random kernel kn(Xi, Xj) for which the standard results on U -statistics apply.
This is not the case for the kernel γ defining Un.

In Propositions 1 and 2 below we show that, under a certain regularity
condition, if the support is not convex, Un stays bounded away from zero almost
surely, while for convex S, its expectation converges to zero at a rate (log n/n)1/d

and it is concentrated around its mean. Thus, it makes sense to define the
following rule:

accept H0 if and only if Un ≤ τn

where τn → 0 but slower than (log n)/
√
n. Indeed, this test is guaranteed to

make the correct decision eventually, almost surely, whenever f is bounded from
above and from below on its support. The regularity condition we require is the
following.

Assumption 1. Assume that the topological boundary ∂S of S has zero Lebesgue

measure.

Since the density f is supposed to be bounded away from zero on its support,
the assumption is equivalent to saying that f is such that for almost every
x ∈ S there exists ǫ > 0 such that essinfy:‖y−x‖<ǫ f(y) > 0, see Lemma 3 in the
appendix for the proof of this simple fact.

The regularity assumption, together with the assumption that f is bounded
away from zero on its support, exclude some pathological cases in which the
statistical problem of deciding whether the support is convex is not only dif-
ficult, but also of questionable meaning. For example, Assumption 1 excludes
cases such as a uniform density on a Cantor set of positive measure. As an-
other illustration, consider the following example of a density over the real
line. Let r1, r2, . . . be an enumeration of all rational numbers. Then the set
A = ∪n≥1(rn − 2−(n+2), rn + 2−(n+2)) has Lebesgue measure at most 1/2 and
we may define µ as the uniform distribution over A. Then the support S of µ is
R (in particular, S is convex), yet the density vanishes everywhere except for a
set of measure 1/2. Our regularity assumptions exclude such pathological cases.

The next performance guarantee is the main result of this section:

Theorem 1. Suppose that f satisfies Assumption 1 and that there exist con-

stants 0 < c < C such that c ≤ f(x) ≤ C for all x ∈ S. Consider the test which

accepts H0 if and only if Un ≤ τn and suppose that τn is chosen such that

lim
n→∞

τn = 0 and lim
n→∞

τnn
1/2

log n
= ∞ .
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Then regardless of whether S is convex or not, with probability one, there exists

an index N such that for all n > N the test always decides correctly.

Remark. Of course, the density f is not uniquely defined as its value can
be changed on a set of zero Lebesgue measure. The boundedness condition for
f in the theorem should be interpreted such that f has a version that satis-
fies this condition. More precisely, we assume that esssupx∈S f(x) ≤ C and
essinfx∈S f(x) ≥ c. This comment applies throughout the whole paper.

The theorem is an immediate consequence of Propositions 1 and 2 below. As
it is shown in Section 3, the condition of f being bounded away from zero cannot
be dropped. However, we conjecture that the condition that f is bounded from
above is not necessary.

Note that our choice of the function γ is far from being the only possibility
that gives rise to a consistent decision rule. In particular, the d-th power of
the norm may be replaced by any other positive power. However, the proposed
choice has some advantages that we exploit in Section 4 in defining a bootstrap
approximation of the distribution of Un under the null hypothesis.

First we establish the asymptotic behavior of Un under both the null and
alternative hypotheses. We treat the simpler case, when S is not convex, first:

Proposition 1. (asymptotic properties of Un under H1.) Suppose that

Assumption 1 is satisfied and that f is bounded away from zero on its support

S. If S is not convex, then lim infn→∞ Un > 0 almost surely.

Proof. For z ∈ R
d and r > 0, denote by N(z, r) the open ball of radius r

centered at z.
Suppose that S is not convex. Then there exist x, y ∈ S such that (x +

y)/2 /∈ S. (The fact that we may take the mid-point of x and y follows from
closedness of S.) Since S is closed, (x + y)/2 has a neighborhood entirely
outside of S. Also, by Assumption 1, S equals the closure of the set A = {x :
∃δ > 0 : essinfy∈N(x,δ) f(y) > 0} (see Lemma 4 in the appendix). This implies
that there exist x′, y′ ∈ A and ǫ > 0 such that N(x′, ǫ) ∪ N(y′, ǫ) ⊂ A and
N((x′+ y′)/2, 2ǫ)∩S = ∅. (Indeed, if x ∈ A then we may take x′ = x otherwise
any x′ ∈ A sufficiently close to x will do. y′ is chosen similarly.) By assumption,
there exists a constant c > 0 such that for every x ∈ A, f(x) ≥ c. By the law of
large numbers, with probability one, there exists an index N such that for all
n > N ,

1

n

n
∑

i=1

1{Xi∈N(x′,ǫ)} ≥ c

2
ǫdvd and

1

n

n
∑

i=1

1{Xi∈N(y′,ǫ)} ≥ c

2
ǫdvd ,

where vd is the volume of the d-dimensional unit Euclidean ball. On the other
hand, clearly, if Xi ∈ N(x′, ǫ) and Xj ∈ N(y′, ǫ), γ(Xi, Xj , h

(1)(i, j)) ≥ ǫd.
Since N(x′, ǫ) and N(y′, ǫ) are disjoint, if n ≥ N , the number of such pairs
(Xi, Xj) is at least (ncǫ

dvd)
2/4 and therefore

lim inf
n→∞

Un ≥ (cǫdvd)
2ǫd

2
> 0 almost surely .
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The next result shows that under the null hypothesis, the expected value
of Un goes to zero at a rate (log n/n)1/d and it is very unlikely to exceed its
expectation by more than log n/

√
n. This result, combined with the Borel-

Cantelli lemma, implies that for any sequence τn such that τnn
1/d/ log n → ∞,

with probability one, Un < τn for all sufficiently large n.

Proposition 2. (asymptotic properties of Un under H0.) Suppose that

Assumption 1 is satisfied and that there exist constants 0 < c < C such that

c ≤ f(x) ≤ C for all x ∈ S. If S is convex, then there exists a constant K
depending on c, C, and S such that, for all n and q ≥ 2,

EUn ≤ K

(

log n

n

)1/d

and E
[

(Un − EUn)
q
+

]

≤
(

Kq3/2
log n√

n

)q

,

where (·)+ denotes positive part.

Proof. Note first that convexity of S and Assumption 1 imply that the open set
A = {x : ∃δ > 0 : essinfy∈N(x,δ) f(y) > 0} ⊂ S is also convex. (To see this,
consider x, y ∈ A and λ ∈ (0, 1). Since A is open and S is convex, λx+(1−λ)y
has a neighborhood entirely included in S. Since f is at least c at every point
of S, this implies that λx+ (1− λ)y ∈ A.)

Since f is assumed to be bounded away from zero on A which is convex, A
must also be bounded. Since S equals the closure of A (again by Lemma 4 in
the appendix), S is compact.

Since A is open, there exists an x ∈ A and δ > 0 such that N(x, δ) is
contained A. By translating S if necessary, we may assume, without loss of
generality, that N(0, δ) ⊂ A. We may also assume, without loss of generality,
that ∆A, the diameter of A (and S), is equal to 1.

For all ǫ > 0, define the ǫ-interior of A by

Aǫ = {x ∈ A : B(x, ǫ) ⊂ A}

where B(x, ǫ) is the closed ball of radius ǫ centered at x. Note that Aǫ is
non-empty, open, and convex whenever ǫ ≤ δ.

To bound the expected value, note first that for all ǫ ≤ δ,

EUn = E

[

min
h=1,...,n

γ(X1, X2, Xh)

]

= E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]

1{X1 or X2∈A\Aǫ}

]

+E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]

1{X1,X2∈Aǫ}

]

. (2)

Since γ(X1, X2, Xh) ≤ 1, the first term on the right-hand side may be bounded
by

P {X1 or X2 ∈ A \Aǫ} ≤ 2P {X1 ∈ A \Aǫ} ≤ 2C Vol (A \Aǫ)
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0

θ

θ

x

C(x,θ)

Figure 1: A cone of angle θ.

where Vol denotes the d-dimensional Lebesgue measure. To bound the volume of
the boundary region, first observe that since S is the closure of A, Vol (A \Aǫ) =
Vol (S \Aǫ). Next we show that there exists a constant κS > 0, depending on
S, such that for all ǫ < δ/4, S ⊂ Aǫ ⊕ N(0, κSǫ) where ⊕ denotes Minkowski
sum. This may be seen as follows: since N(0, δ) ⊂ A, every x ∈ S \Aǫ is not in
N(0, δ/2). Let

θ(x) = inf {θ > 0 : N(0, δ/2) ⊂ x+ C(−x, θ)}

denote the infimum of the angle of any cone centered at x that includes N(0, δ)
where for x ∈ R

d, a cone of angle θ is defined as

C(x, θ) =

{

y ∈ R
d :

xT y

‖x‖‖y‖ ≥ cos(θ)

}

(see Figure 1). Since S is compact and θ(x) is positive and continuous, θ =
infx∈S\Aǫ

θ(x) > 0. Let x ∈ A\Aǫ and define y = ax where a = sup{α ∈ (0, 1) :
N(αx, ǫ) ⊂ x + C(−x, θ(x))}. In words, y is the point on the segment joining
x and 0 such that N(y, ǫ) “just fits” in the cone x + C(−x, θ(x)), see Figure
2. (Such a point exists by the definition of θ(x) and since ǫ < δ/4.) Note that
N(y, ǫ) lies in the convex hull of {x} ∪ N(0, δ) and therefore, by convexity of
A, N(y, ǫ) ⊂ A. Since A is open, this implies that B(y, ǫ) ⊂ A and therefore
y ∈ Aǫ.

Consider now any straight line containing x and tangent to N(y, ǫ) at, say,
point z. The right-angle triangle formed by x, y, and z is such that its hy-
potenuse is the segment [x, y], and its leg [y, z] has length ǫ. Since the angle of the
triangle at vertex x equals θ(x), we have that ‖x−y‖ ≤ ǫ/ sin(θ(x)) ≤ ǫ/ sin(θ).
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S

0

δ/2

x

θ(x)y

z

ǫ

Figure 2: The point y in the proof of Proposition 2.

Therefore, we may take κS = 1/ sin(θ). Therefore, for all ǫ < δ/κS ,

Vol(S) = Vol(A) ≤ Vol(Aǫ ⊕N(0, κSǫ))

≤ Vol

(

Aǫ ⊕
κSǫ

δ − κSǫ
Aǫ

)

(since N(0, δ − κSǫ) ⊂ Aǫ)

= Vol

((

1 +
κSǫ

δ − κSǫ

)

Aǫ

)

(since Aǫ is convex)

= Vol(Aǫ)

(

1 +
κSǫ

δ − κSǫ

)d

≤ Vol(Aǫ)

(

1 +
4dκS

δ
ǫ

)

if ǫ ≤ min

(

δ

2κS
,

2δ

d2d−2

)

,

where the last inequality follows from Taylor’s theorem. Thus,

Vol (A \Aǫ) = Vol(A)−Vol(Aǫ) ≤ Vol(Aǫ)
4dκS

δ
ǫ ≤ Vol(S)

4dκS

δ
ǫ

Hence, we have shown that the first term on the right-hand side of (2) may be
bounded as

E

[

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]

1{X1 or X2∈A\Aǫ}

]

≤ K1ǫ

where K1 = 2C Vol(S) 4dκS

δ is a constant depending on S and C only.
It remains to bound the second term on the right-hand side of (2). To this
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end, suppose ǫ ≤ δ. In the event that X1, X2 ∈ Aǫ,

E

[

min
h=1,...,n

γ(X1, X2, Xh) | X1, X2

]

=

∫ 1

0

P

{

min
h=1,...,n

γ(X1, X2, Xh) > t | X1, X2

}

dt

≤
∫ 1

0

P {γ(X1, X2, X3) > t | X1, X2}n−2
dt

≤ ǫ+
(

1− cvdǫ
d
)n−2

(since P {γ(X1, X2, X3) ≤ t | X1, X2} ≥ cvdǫ
d when X1, X2 ∈ Aǫ)

≤ ǫ+ e−cvdǫ(n−2) .

Summarizing, we have proved that, for all ǫ ≤ min
(

δ
2 ,

2δ
d2d−2

)

,

EUn ≤ (K1 + 1)ǫ+ e−cvdǫ
d(n−2) .

Choosing ǫ = (log n/((n− 2)cvd))
1/d

completes the proof of the bound for the
expected value of Un.

To bound the higher moments of Un, we apply a general moment inequality
for functions of independent random variables of Boucheron, Bousquet, Lugosi,
and Massart (2005, Theorem 3) which states that, for every q ≥ 2,

E
[

(Un − EUn)
q
+

]

≤ (κq)q/2E





(

n
∑

k=1

(Un − Un,k)
2

)q/2




where κ =
√
e/(2

√
e− 2) < 1.271 and

Un,k =
1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

γ(Xi, Xj , Xhk
(1)

(i,j))

with hk
(1)(i, j) ∈ {1, . . . , n} \ {k} defined as h(1)(i, j) but with Xk omitted from

the sample.
Thus, we need to study the effect of removing the point Xk from the sample

on the value of Un. Clearly,

Un − Un,k =
1
(

n
2

)

∑

j:j 6=k

γ(Xk, Xj , Xh(1)(k,j))

+
1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

(

γ(Xi, Xj , Xh(1)(i,j))− γ(Xi, Xj , Xhk
(1)

(i,j))
)

The first term on the right-hand side is non-negative and bounded by 2/n. At
the same time, every term in the second sum on the right-hand is in [−1, 0] and
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is not zero only if h(1)(i, j) = k. This implies that

(Un − Un,k)
2 ≤ max







4

n2
,





1
(

n
2

)

∑

(i,j):i<j,i6=k,j 6=k

1{h(1)(i,j)=k}





2





.

Thus, denoting by Nk =
∑

(i,j):i<j,i6=k,j 6=k 1{h(1)(i,j)=k} the number of pairs

(Xi, Xj) of points in the sample for which Xk is the closest point to (Xi+Xj)/2,
we have

E
[

(Un − EUn)
q
+

]

≤ (κq)q/2





(

4

n

)q/2

+
1
(

n
2

)qE





(

n
∑

k=1

N2
k

)q/2








≤ (κq)q/2

(

(

4

n

)q/2

+
nq/2

(

n
2

)qE

[

max
k=1,...,n

Nq
k

]

)

.

Thus, it suffices to find suitable upper bounds for the moments of maxk Nk. To
this end, note that since Nk ≤

(

n−1
2

)

, for all t > 0,

E

[

max
k=1,...,n

Nq
k

]

≤
(

n− 1

2

)q

P

{

max
k=1,...,n

Nq
k > (nt)q

}

+ (nt)q

≤ n2q+1
P {N1 > nt}+ (nt)q .

Next we write

N1 =
1

2

n
∑

i=2

N1,i

where N1,i =
∑n

j:j 6=i 1{h(1)(i,j)=k} is the number of points j 6= i such that
h(1)(i, j) = k. Then

P {N1 > nt} ≤ nmax
i>1

P {N1,i > t}

It remains to bound P {N1,i > t}. We do this by conditioning on the value of
X1 = x1 and consider two different cases: the first, somewhat simpler, case is
when x1 falls in the ǫn-interior of A (with ǫn defined below). The case when X1

is closer than ǫn to the boundary can be handled by a similar argument, though
one should proceed with some care.

Let ǫn = ((K2q log n)/n)
1/d

for some constant K2 specified below. Recall
that Aǫn denotes the ǫn-interior of A.

Case 1: x1 ∈ Aǫn

By Lemma 5.5 in Devroye, Györfi, and Lugosi (1996), Rd can be covered by

ρd =

⌈

(

1 + 2/
√

2−
√
3
)d
⌉

cones of angle π/6, that is, there exist ρd points

z1, . . . , zρd
such that ∪ρd

i=1C(zi, π/6) = R
d.

Now consider ρd cones of angle π/6 centered at x1 that cover Rd. Consider
the data points falling in each cone and mark the nearest neighbor of x1. Let
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X1

X
(NN)
j

Z
(NN)
j

Figure 3: Nearest neighbors X
(j)
NN in each cone, their projection Z

(j)
NN to the

sphere of radius R, and the convex polytope P defined by the bisecting hyper-
planes.

X
(1)
NN , . . . , X

(ρd)
NN denote these nearest neighbors. Let R = maxj=1,...,ρd

‖x1 −
X

(j)
NN‖ be the distance of x1 and the farthest of these nearest neighbors and

define, for each j = 1, . . . , ρd,

Z
(j)
NN = x1 +R

X
(j)
NN − x1

∥

∥

∥
X

(j)
NN − x1

∥

∥

∥

as the projection of X
(j)
NN to the surface of the ball centered at x1, of radius R.

Now for each j = 1, . . . , ρd, let

Hj =
{

x ∈ R
d : ‖x− x1‖ ≤ ‖x− Z

(j)
NN‖

}

be the half-space containing x1 defined by the bisecting hyperplane between

x1 and Z
(j)
NN . The intersection P = ∩ρd

j=1Hj defines a convex polytope with
ρd facets, see Figure 3. The key observation is that if h(1)(i, j) = 1 for a pair

(Xi, Xj), then (Xi +Xj)/2 ∈ P , otherwise one of the X
(j)
NN would be closer to

(Xi +Xj)/2 than x1.
It is easy to see (and this is the second key observation) that P ⊂ B(x1, R)

where B(x1, R) is the closed ball of radius R centered at x1. Thus, for every j 6= i
such that h(1)(i, j) = 1, we have (Xi +Xj)/2 ∈ B(x1, R) which is equivalent to
saying that

Xj ∈ B(Xi + 2(x1 −Xi), 2R) .

Thus,

N1,i ≤
∑

j≥2:j 6=i

1{Xj∈B(Xi+2(x1−Xi),2R)} . (3)
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We use the decomposition

P{N1,i > t | X1 = x1} ≤ P {N1,i > t | R < ǫn, X1 = x1}+P {R ≥ ǫn | X1 = x1}

Note that given R < ǫn, by (3), N1,i is dominated by a binomial random variable
with parameters n − 1 and µ(B(Xi + 2(x1 − Xi), 2ǫn)) ≥ cvd(2ǫn)

d where vd
is the volume of the d-dimensional unit Euclidean ball. Therefore, choosing
t = 2(n−1)cvd(2ǫn)

d, and setting c1 = log(4/e)cvd2
d+1, by a standard estimate

for the tail of the binomial distribution,

P
{

N1,i > 2(n− 1)cvd(2ǫn)
d | R < ǫn, X1 = x1

}

≤ e−c1(n−1)ǫdn .

It remains to bound P{R ≥ ǫn | X1 = x1}. Clearly,

P{R ≥ ǫn | X1 = x1} = P

{

max
j=1,...,ρd

‖x1 −X
(j)
NN‖ ≥ ǫn

}

≤
ρd
∑

j=1

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn | X1

}

.

Since x1 ∈ Aǫn , we have infx/∈A ‖x1 − x‖ > ǫn, and therefore

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn

}

= E

[

(1− µ(B(x1, ǫn) ∩ Cj))
n−1
]

Since x1 is at least ǫn away from the complement of A and the density f is
bounded from below by c on A,

µ(B(x1, ǫn) ∩ Cj) ≥
cvd
ρd

ǫdn

Therefore,

P

{

‖x1 −X
(j)
NN‖ ≥ ǫn

}

≤
(

1− c2ǫ
d
n

)n−1 ≤ e−c2(n−1)ǫdn

where c2 = cvd/ρd.
Putting everything together, we have

P{R ≥ ǫn | X1 = x1} ≤ ρde
−c2(n−1)ǫdn

and therefore

P{N1,i > t | X1 = x1} ≤ e−c1(n−1)ǫdn + ρde
−c2(n−1)ǫdn .

Case 2: x1 /∈ Aǫn

It remains to handle the case when x1 is not in the ǫn-interior of A. Suppose
that n is so large that ǫn < δ/2. The key observation is that there exists
α ∈ (0, π/12] such that for all x1 ∈ A, there exists a cone C1 centered at x1, of
angle α such that C1 ∩B(x1, ǫn) ⊂ A. (This follows by a similar argument that

12



x1

S

Cj

Figure 4: When Cj ∩B(x1, ǫn) is contained in S then it is very likely to contain
a data point. If the angle of the cones is less than π/12, the convex set defined
by the intersection of S with the bisecting half-spaces is contained in B(x1, ǫn).

we have used earlier: first note that every x1 ∈ A\Aǫn is not in B(0, δ/2)—recall
that B(0, δ) ⊂ A. By convexity, the smallest cone centered at x1 that includes
B(0, δ/2) satisfies the required property. The smallest angle of all such cones
over x1 ∈ A \Aǫn is bounded away from zero by compactness of S.)

Now fix x1 ∈ A ∩Ac
ǫn . Cover R

d by a minimal number of cones C1, . . . , CN

centered at x1 of angle α such that one of the cones C1 is such that C1 ∩
B(x1, ǫn) ⊂ A. (Note that Nα ≤ (1 + 1/(sin(α/2)))d − 1.) Observe that if each
cone Ci with Ci ∩B(x1, ǫn) ⊂ A contains at least one data point then for every
pair (Xi, Xj) such that h(1)(i, j) = 1, (Xi +Xj)/2 ∈ B(x1, ǫn) ∩ A (see Figure
4). Then the same argument as in the case of x1 ∈ Aǫn carries over with the
only difference that instead of cones of angle π/6 now we have cones of angle α
and we obtain that there exists a constant K, depending on c and α such that

P{N1,i > t | X1 = x1} ≤ Ke−Knǫdn .

Since the above estimate holds independently of what x1 is, we have established
that

P{N1,i > t} ≤ Ke−Knǫdn .

Putting everything together, we obtain that there exists a constant K (possibly
different from the one above) such that

E
[

(Un − EUn)
q
+

]

≤ Kqqq/2
(

n−q/2 + nq/2+2e−Knǫdn + nq/2ǫdqn

)

.

Choosing ǫn = K ′ ((q log n)/n)
1/d

for a sufficiently large K ′, the upper bound
becomes

E
[

(Un − EUn)
q
+

]

≤ Kqq3q/2
logq n

nq/2

as desired.
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3 On the non-discernibility of support convexity

The purpose of this section is to show that without the assumption that the
density is bounded away from zero on its support, Theorem 1 is not true. With-
out further assumptions, it is impossible to decide whether the support of a
density is convex. In order to formalize this statement, we recall the notion
of discernibility introduced by Dembo and Peres (1994) (see also Devroye and
Lugosi (2002)).

Let F and G be two disjoint sets of densities on R
d. Let X1, . . . , Xn be

independent random vectors drawn according to a density f ∈ F ∪G. Based on
these data, one tries to decide whether f ∈ F or not. Recall from Section 1 that a
decision rule is a sequence of functions Tn :

(

R
d
)n → {0, 1}. Tn(X1, . . . , Xn) = 1

means that the rule guesses that f ∈ F while if Tn(X1, . . . , Xn) = 0, the decision
rule thinks that f ∈ G. A decision rule is consistent if, for every f ∈ F ∪ G it is
correct eventually almost surely, that is, if

P
{

Tn(X1, . . . , Xn) 6= 1{f∈F} for finitely many n
}

= 1 .

We say that the pair (F ,G) is discernible if there exists a consistent decision
rule.

Theorem 1 shows that if F is the class of densities that are bounded, bounded
away from zero, and have convex support and G is the class of bounded densi-
ties, bounded away from zero with non-convex support (in both cases satisfying
Assumption 1), then the pair (F ,G) is discernible.

The main result of this section implies that the sets of all uniformly bounded
densities with convex and non-convex support are not discernible. In other
words, every decision rule must fail infinitely often for some density. Thus,
the assumption of boundedness (from below) of the densities is necessary in
Theorem 1 or at least needs to be replaced by another assumption. This is true
even if we only consider densities on R with support in [0, 1]:

Theorem 2. Let F be the class of all densities on R bounded by 2 with support

[0, 1], satisfying Assumption 1 and let G be the class of all densities on R bounded

by 2, satisfying Assumption 1, whose support is a non-convex subset of [0, 1].
Then the pair (F ,G) is not discernible.

A general impossibility theorem that gives sufficient conditions for a pair
(F ,G) to be non-discernible was given by Devroye and Lugosi (2002, Theorem
8). However, their theorem does not seem to apply here and we need a sepa-
rate proof. We crucially use the following basic and well-known fact (see, e.g.,
Devroye and Györfi (2002)): if X and Y are real random variables with density
f and g, respectively, then there exists a coupling (i.e., a joint distribution of
(X,Y ) with marginal densities f, g) such that P{X 6= Y } = (1/2)

∫

|f − g|.
Proof of Theorem 2: To prove the theorem, we assume that the pair (F ,G)
is discernible, that is, there exists a consistent decision rule Tn. We construct
sub-classes A ⊂ F and B ⊂ G such that for any consistent decision rule Tn, there
is a density φ in the L1-closure of A∪B such that if X1, X2, . . . are distributed
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as φ then, with probability at least 1/2, Tn changes decision infinitely many
times, thus arriving at a contradiction.

Consider the following subclasses: let B = {gk : k = 1, 2, . . .} be the set of
densities on [0, 1] with non-convex support defined by

gk(x) =















2 if x ∈
(

∑k
i=1 2

−i,
∑k

i=1 2
−i + 2−(k+2)

)

0 if x ∈
(

∑k
i=1 2

−i + 2−(k+2),
∑k

i=1 2
−i + 2−(k+1)

)

1 otherwise.

We also define the set A = {fj,k : j, k = 1, 2, . . .} of densities with full support
[0, 1] by

fk,j(x) =















2− 2−j if x ∈
(

∑k
i=1 2

−i,
∑k

i=1 2
−i + 2−(k+2)

)

2−j if x ∈
(

∑k
i=1 2

−i + 2−(k+2),
∑k

i=1 2
−i + 2−(k+1)

)

1 otherwise.

Assume that there exists a consistent decision rule Tn. Then for any density
f ∈ A, and almost all ω, there exists an integer N(ω) such that

Tn(X1, . . . , Xn) = 1 if n > N(ω)

and for any density f ∈ B, and almost all ω there exists an integer N(ω) such
that

Tn(X1, . . . , Xn) = 0 if n > N(ω).

Let δk = 2−k−2, k = 1, 2, . . .. Let φ1 ∈ A be arbitrary. For concreteness, we

may take φ1 = f1,1. Let X
(1)
1 , X

(1)
2 , . . . be independent random variables with

density φ1. Since Tn is consistent, there exists an integer N1 such that

P

{

Tn(X
(1)
1 , . . . , X(1)

n ) = 1 for all n ≥ N1

}

> 1− δ1

(see, e.g., Royden (1968, p. 70, Problem 23.a)). Choose ǫ1 > 0 such that
(1− ǫ1)

N1 > 1− δ1, and choose a density φ2 ∈ B with non-convex support such
that φ2(x) = φ1(x) for all x ≤ 1−ǫ1. For example, φ2 = gk2

with k2 ≥ log2(1/ǫ1)
will do. Then

∫

|φ1 − φ2| ≤ 2ǫ1.
Since φ2 ∈ B, there exists an integer N2 > N1 such that

P

{

Tn(X
(2)
1 , . . . , X(2)

n ) = 0 for all n ≥ N2

}

> 1− δ2 .

Next we choose ǫ2 > 0 such that (1 − ǫ2)
N2 > 1 − δ2, and consider a convex-

support density φ3 ∈ A which agrees with φ2 = gk2
for all x ≤ ∑k2

i=1 2
−i

and
∫

|φ2 − φ3| ≤ 2ǫ2. We may take φ3 = fk2,j3 for any j3 such that j3 ≥
log2(2

−(k2+2)/ǫ2).
We may continue this procedure such that φm ∈ A for all odd m and φm ∈ B

for all even m, and N1 < N2 < · · · are chosen such that

P

{

Tn(X
(m)
1 , . . . , X(m)

n ) = 1{m is odd} for all n ≥ Nm

}

> 1− δm .
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The sequence of densities φm converges in L1 to a density φ such that
∫

|φm −
φ| < 2ǫm and φ agrees with φm for all x ≤∑km−1

i=1 2−i (which converges to 1 as
m → ∞).

Now let X1, X2, . . . be independent random variables drawn according to the
density φ. Then, according to the coupling mentioned before the proof, there
exist random variables

X
(1)
1 , . . . , X

(1)
N1

, X
(2)
1 , . . . , X

(2)
N2

, X
(3)
1 , . . . , X

(3)
N3

, . . .

such that X
(m)
i is distributed according to φm,

X
(1)
1 , . . . , X

(1)
N1

, X
(2)
N1+1, . . . , X

(2)
N2

, X
(3)
N2+1, . . . , X

(3)
N3

, . . .

are independent, and P{Xi 6= X
(m)
i } < ǫm for all i ≤ Nm.

Then

P

{

X1 = X
(1)
1 , . . . , XN1

= X
(1)
N1

}

≥ (1− ǫ1)
N1 > 1− δ1 ,

and therefore
P {TN1

(X1, . . . , XN1
) = 1} > 1− 2δ1 .

Similarly, for each m,

P

{

X1 = X
(m)
1 , . . . , XNm

= X
(m)
Nm

}

≥ (1− ǫ1)
Nm−1 > 1− δm−1 ,

and therefore

P
{

TNm
(X1, . . . , XNm

)) = 1{m is odd} for all m = 1, 2, . . .
}

> 1−
∞
∑

m=1

2δm =
1

2
.

Hence, with probability 1/2, the decision rule changes its decision infinitely
often, concluding the proof.

4 Data-based heuristics for calibrating the deci-

sion rule

Theorem 1 shows consistency of the rule that decides that the support is convex
if and only if Un ≤ τn and it provides an asymptotic criterion to select τn.
Nevertheless this result is not directly applicable in practice: if the sequence τn
verifies the assumptions in Theorem 1 then so does τ∗n = kτn for any positive k,
but it can be the case that Un ≤ τn whereas Un > τ∗n for a fixed n. In order to
address this question, we find it convenient to use the standard terminology of
hypothesis testing where the null hypothesis is that the underlying distribution
has convex support.

Therefore, an objective way of selecting τn is needed so that it is possible to
control the probability of either of the two possible errors: Deciding that the
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support is not a convex set when indeed it is (type I error), and deciding that
the support is convex when it is not the case (type II error).

The main difficulty is that the optimal value of the threshold τn depends on
the unknown set S and the distribution µ. Therefore a mechanism is required to
obtain a value for τn = τn(S, µ) that should be valid for any S and µ in a large
class of distributions. The situation is similar to that appearing in the usual
practice in bootstrap methods, where the distribution of a given statistic T is
unknown and moreover it depends on the specific distribution of the data under
study. In this context bootstrap methods are used to approach the specific
distribution of T for every particular case.

We present a bootstrap-type approximation of the distribution of Un under
the hypothesis of support convexity (this procedure is also referred as calibration
of the null distribution of Un). We provide a heuristic justification that this
approximation is valid both when the support is actually convex and when it is
not (Lemmas 1 and 2). This approximation allows us to control the significance
level (the probability of type I error), to give approximate values of power (1
minus the probability of type II error, when the significance level is fixed) and to
define approximate p-values (the probability that the distribution approximating
that of Un under the null hypothesis gives to values greater than or equal to
the observed value of Un). The approximate p-value acts as a score of how
plausible the support convexity hypothesis is. Our proposal has been empirically
validated with a simulation study shown throughout the section. A rigorous
proof that the proposed bootstrap-type approximation works (that is, it provides
a sequence of probability distributions converging weakly to the same limit
distribution as Un, when n goes to infinity) is beyond the scope of this paper
and it probably deserves a separate contribution.

Lemma 1. Let µ be a probability distribution on R
d with density f and compact

support S ⊂ R
d. Assume that there exist constants 0 < c < C such that

c ≤ f(x) ≤ C for all x ∈ S. Let X1, . . . , Xn be i.i.d. vectors drawn from µ. Fix

a pair of observations Xi and Xj such that a = (Xi+Xj)/2 is in the interior of

the support S. Let h(1)(i, j) be defined as above, h(1)(i, j) = argminh ‖Xh − a‖,
and introduce

h(2)(i, j) = argmin
h 6=h(1)(i,j)

‖Xh − a‖.

Let G(k) = γ(Xi, Xj , Xh(k)(i,j)), k = 1, 2, be the two smallest elements of the

ordered sample of Gh = γ(Xi, Xj , Xh), h = 1, . . . , n. Assume that f is con-

tinuous at a. Then, conditioning on (Xi, Xj), nG(1) and n(G(2) − G(1)) con-

verge in distribution, as n → ∞, to an exponential distribution with expected

value (f(a)vd)
−1

, where vd is the volume of the d-dimensional unit Euclidean

ball. Moreover nG(1) and n(G(2) −G(1)) are asymptotically independent, given

(Xi, Xj).

Proof. Let D(1) = ‖a−Xh(1)(i,j)‖ = G
1/d
(1) . For 0 < s < ‖Xi −Xj‖/2 such that
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B(a, s) ⊆ S,

P{D(1) > s|Xi, Xj} = P{‖Xh − a‖ > s : h = 1, . . . , n|Xi, Xj}
= (1− µ(B(a, s)))

n−2

=
(

1− f(a)vds
d + o(sd)

)n−2
,

as s goes to zero. Observe that f(a) < ∞ because a ∈ S. Therefore, for
0 < t < n‖Xi −Xj‖d/2d,

P{nG(1) > t|Xi, Xj} = P
{

nDd
(1) > t|Xi, Xj

}

= P{D(1) > (t/n)1/d|Xi, Xj}

=

(

1− (f(a)vdt+ o(1))
1

n

)n−2

→ e−f(a)vdt as n → ∞,

and the first part of the lemma is proved.

We prove now the result for k = 2. Let D(2) = ‖a−Xh(2)(i,j)‖ = G
1/d
(2) . Then,

reasoning as before, for 0 < s+ d1 < ‖Xi −Xj‖/2 such that B(a, s+ d1) ⊆ S,

P{D(2) > s+ d1|D(1) = d1, Xi, Xj}
= P{‖Xh − a‖ > s+ d1 : h = 1, . . . , n, h 6= h(1)(i, j)|Xi, Xj}
= (1− µ(B(a, s+ d1) \B(a, d1)))

n−3

= (1− f(a)vd( (s+ d1)
d − dd1

)

+o(sd)
)n−3

,

as s goes to zero. Then, for 0 < t < n‖Xi − Xj‖d/2d − ndd1 and defining

d1 = g
1/d
1 ,

P
{

n(G(2) −G(1)) > t|G(1) = g1, Xi, Xj

}

= P
{

n(G(2) − dd1) > t|D(1) = d1, Xi, Xj

}

= P
{

G(2) > dd1 + t/n|D(1) = d1, Xi, Xj

}

= P

{

Dd
(2) > dd1 + t/n|D(1) = d1, Xi, Xj

}

= P

{

D(2) >
(

dd1 + t/n
)1/d

∣

∣

∣D(1) = d1, Xi, Xj

}

= P

{

D(2) > d1 +
[

(

dd1 + t/n
)1/d − d1

]∣

∣

∣D(1) = d1, Xi, Xj

}

= (1− f(a)vdt/n+ o(t/n))
n−3

=

(

1− (f(a)vdt+ o(1))
1

n

)n−3

→ e−f(a)vdt as n → ∞,
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as it was stated. The asymptotic independence between G(2) and G(1) follows
from the observation that the conditional distribution of G(2) given that G(1) =
g1 does not depend on the value g1.

Motivated by Lemma 1, we may define the statistic

U (2)
n =

1
(

n
2

)

n
∑

i=1

n
∑

j=i+1

(

γ(Xi, Xj , Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

.

Lemma 1 establishes that, under the hypothesis of support convexity, each term

in the sum defining U
(2)
n ,

G(2) −G(1) =
(

γ(Xi, Xj , Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

,

has the same asymptotic conditional distribution as the corresponding term in
the sum defining Un,

G(1) = γ(Xi, Xj , Xh(1)(i,j)).

Therefore it is reasonable to expect that the asymptotic distributions of Un

and U
(2)
n coincide. However, we have not proved that the joint distributions of

{γ(Xi, Xj , Xh(1)(i,j)), 1 ≤ i < j ≤ n} and

{(

γ(Xi, Xj , Xh(2)(i,j))− γ(Xi, Xj , Xh(1)(i,j))
)

, 1 ≤ i < j ≤ n
}

asymptotically coincide, as Lemma 1 states this result only for marginals. This

is sufficient to conclude that the expectations of Un and U
(2)
n asymptotically

coincide but we cannot make such a statement about the distributions of these
statistics.

We have carried out some simulations to compile evidence that, under the hy-

pothesis of support convexity, the statistics nUn and nU
(2)
n have similar asymp-

totic distributions. Consider the different two-dimensional noisy S-shape data
sets plotted in Figure 5. They are obtained as follows. Consider two adjacent
circumferences both with radius R > 3/4. Take an arch of length 1.5π in each
of them in such a way that their union forms a differentiable one-dimensional
curve of length 3π. Smaller values of the radius R correspond to sharper curves.
A flat segment with length 3π corresponds to R = ∞. To generate a random
point around such a S-shape curve, we generate a random position uniformly
distributed over the curve. Then we add an orthogonal deviation from this posi-
tion, distributed as a truncated normal with zero mean and standard deviation
σ = 0.15, truncated at [−4σ, 4σ].

Consider now data following a noisy S-shaped pattern with radius R = ∞
(that is, a line segment) so that support is a convex set. For sample sizes n ∈
{100, 250, 500, 1000}, we have generated 500 data sets. The statistics nUn and

nU
(2)
n have been calculated for each sample. The first row of Table 1 shows the

p-values of the two-sample Kolmogorov-Smirnov test comparing distributions

of nUn and nU
(2)
n (see, for instance, Hollander and Wolfe (1999, Chapter 5)).
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Figure 5: Example of a convex and 5 non-convex configurations of points: Dif-
ferent two-dimensional S-shaped patterns, with different sharpness. These pat-
terns consist of two circular arches of radius R, with R = 1, 1.5, 3, 6, 24,∞,
with a constant length equal to 3π/2. The bigger the value of R the closer the
configuration to convexity, that is achieved for R = ∞.

Test Statistics n = 100 n = 250 n = 500 n = 1000

2-sample KS Un and U
(2)
n <1e-10 .0038 .4131 .0587

Normality Un <1e-10 .0504 .1529 .1729

Normality U
(2)
n <1e-4 .0676 .0010 .6275

Table 1: p-values of the two-sample Kolmogorov-Smirnov test and the Lilliefors

normality test for 500 pairs of observations of statistics nUn and nU
(2)
n .

For large sample sizes the null hypothesis that both statistics have the same
distribution can not be rejected. We also have tested the normality of nUn and

nU
(2)
n using the Lilliefors normality test (see, for instance, Hollander and Wolfe

(1999, Chapter 11)). The corresponding p-values are shown in Table 1. It seems
that asymptotic normality is admissible even if U -statistic theory is not directly
applicable to these statistics.

In order to establish results under the hypothesis of non-convexity, we need
an additional regularity assumption for the support. Given a ∈ R

d \ S let

πS(a) = {x ∈ S : ‖x− a‖ = min
y∈S

‖y − a‖}

be the set of closest points in S to a. When πS(a) has a unique point, we call it
aS . Erdős (1945) proved that the set of points a ∈ R

d − S with more than one
point in πS(a) has null Lebesgue measure. The required regularity condition is
as follows:

(A) For any a ∈ R
d \ S such that πS(a) = {aS} there exist constants η > 0
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and ν ≥ 1, both depending on a and S, such that, when s → 0, s > 0,

Vol (B(a, ‖a− aS‖+ s) ∩ S) = ηsν + o(sν).

Condition (A) is satisfied for many regular sets S, convex or not. For instance,
let S = [−1, 1]3 ⊂ R

3 and a = (1 + δ, 0, 0). Then aS = (1, 0, 0), ‖a − aS‖ = δ
and, for small δ and s (such that s+δ ≤ ‖a− (1, 1, 0)‖), the solid B(a, δ+s)∩S
is a spherical cap (portion of a sphere cut off by a plane) and its volume is (see,
e.g., Li (2011))

Vol (B(a, δ + s) ∩ S) =
π

3
s2(3δ + 2s) = πδs2 + o(s2),

and (A) is verified with η = πδ and ν = 2. For the volume Vd(δ, s) of the
corresponding d-dimensional hyperspherical cap, Li (2011) gives the following
formula:

Vd(δ, s) =
1

2
vd(δ + s)dI1−{δ/(δ+s)}2

(

d+ 1

2
,
1

2

)

,

where Ix(a, b) is the regularized incomplete beta function, defined for 0 ≤ x ≤ 1,
a > 0, b > 0, as

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt,

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt is the beta function. It is easy to check

that Ix(a, b) = xa/(aB(a, b)) + o(xa), when a → 0, and that 1− {δ/(δ + s)}2 =
2s/δ + o(s), when s → 0. Therefore, when s → 0,

Vd(δ, s) =
1

2
vd(δ + s)d

(

2(2/δ)(d+1)/2

(d+ 1)B((d+ 1)/2, 1/2)
s(d+1)/2 + o(s(d+1)/2)

)

=
2vd(2δ)

(d−1)/2

(d+ 1)B((d+ 1)/2, 1/2)
s(d+1)/2 + o(s(d+1)/2).

So ν = (d+ 1)/2 in this case.
In the following example in R

2 the value of η depends on the shape of S.
Consider S = {(x, y) ∈ R

2 : 0 ≤ x ≤ 1,−xα ≤ y ≤ xα}, for α > 1/2. For δ > 0,
let a = (−δ, 0). Then aS = (0, 0), ‖a− aS‖ = δ and

2

α+ 1
sα+1
0 ≤ Vol (B(a, δ + s) ∩ S) ≤ 2

α+ 1
sα+1,

where s0 > 0 is such that (δ + s)2 = (δ + s0)
2 + s2α0 . For α > 1/2 it can be

proved that lims→0(s/s0) = 1. Then

Vol (B(a, δ + s) ∩ S) =
2

α+ 1
sα+1 + o(sα+1).

Now we state the result analogous to Lemma 1 when the support S is not
convex and the middle point a = (Xi +Xj)/2 is not in S.
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Lemma 2. Let µ be a probability distribution on R
d with density f and compact

support S ⊂ R
d. Assume that there exist constants 0 < c < C such that

c ≤ f(x) ≤ C for all x ∈ S. Let X1, . . . , Xn be i.i.d. vectors drawn from µ.
Assume that S is not convex and fix a pair of observations Xi and Xj such that

a = (Xi+Xj)/2 6∈ S. Then, with probability one, there is only one closest point

in S to a. Let aS be such a point and assume that f is continuous at aS.
Assume additionally that condition (A) is verified. Let G(1) and G(2) be

defined as in Lemma 1. Then, conditioning on (Xi, Xj), as n → ∞, G(1)

converges in probability to ‖a−aS‖d and n(G(2)−G(1)) converges in distribution

to an exponential distribution with expected value

d‖a− aS‖d−ν

f(aS)ην
.

Proof. Given Erdős’ result on the null Lebesgue measure of the set of points
with more than one closest point in S, this set has zero probability because
(Xi +Xj)/2 is absolutely continuous.

Now, let D(1) = ‖a−Xh(1)(i,j)‖ = G
1/d
(1) and s > 0. Then, arguing as in the

proof of Lemma 1 and using (A),

P{|D(1) − ‖a− aS‖| > s} = P{D(1) > ‖a− aS‖+ s}
= (1− µ(B(a, ‖a− aS‖+ s) ∩ S))

n

= (1− f(aS)ηs
ν + o(sν))

n

as s goes to zero. Therefore, for t > 0

P{n1/ν(D(1) − ‖a− aS‖) > t} = P

{

D(1) > ‖a− aS‖+ t/n1/ν
}

=
(

1− f(aS)η
(

t/n1/ν
)ν

+ o(1/n)
)n

→ e−f(aS)ηtν as n → ∞.

It follows that n1/ν(D(1) −‖a− aS‖) converges in distribution to a Weibull dis-
tribution with shape parameter ν. It follows that D(1) converges in probability

to ‖a−aS‖ and, by continuity of g(x) = xd/ν , that G(1) converges in probability

to ‖a− aS‖d and the first part of the lemma is proved.

Defining D(2) = ‖a−Xh(2)(i,j)‖ = G
1/d
(2) , proceeding again as in the proof of

Lemma 1 and using (A), for s > 0

P{D(2) > s+ d1|D(1) = d1}
= (1− µ {(B(a, s+ d1) \B(a, d1)) ∩ S})n−1

= (1− f(aS)η( (s+ d1)
ν − dν1 )+o(sν))

n−1
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as s goes to zero. Then, for t > 0

P

{

n(Dν
(2) −Dν

(1)) > t|D(1) = d1

}

= P

{

Dν
(2) > dν1 + t/n|D(1) = d1

}

= P

{

D(2) > {(dν1 + t/n)1/ν − d1}+ d1|D(1) = d1

}

= (1− f(aS)ηt/n+ o(1/n))
n−1

→ e−f(aS)ηt as n → ∞.

In the last equality we have used that

s =
(

(dν1 + t/n)1/ν − d1

)

=
1

ν
d
1−1/ν
1 t/n+ o(1/n)

as n goes to ∞. Then

sν =
(

(dν1 + t/n)1/ν − d1

)ν

= O(1/nν),

as n goes to ∞. Therefore o(sν) = o(1/n) because ν ≥ 1.
It follows that n(Dν

(2) − Dν
(1)), given D(1) = d1, converges in distribution

to D, an exponential random variable with expectation (f(aS)η)
−1

. Observe
that n(Dν

(2) − Dν
(1)) and D(1) are asymptotically independent, given (Xi, Xj).

It follows that n(Dν
(2)−Dν

(1)) also converges to D without conditioning on D(1).

To prove the asymptotic distribution of n(G(2) − G(1)) we need a minor
variation of the proof of Cram?r Delta Theorem provided in Arnold (1990).
Consider g(x) = xd/ν . Then n(G(2)−G(1)) = n(g(Dν

(2))−g(Dν
(1))). By Taylor’s

theorem,

n(G(2) −G(1))

= n
{

g(Dν
(1)) + g′(Dν

(1))(D
ν
(2) −Dν

(1)) + (Dν
(2) −Dν

(1))R(Dν
(2) −Dν

(1))− g(Dν
(1))
}

,

= g′(Dν
(1))

{

n(Dν
(2) −Dν

(1))
}

+
{

n(Dν
(2) −Dν

(1))
}

R(Dν
(2) −Dν

(1)),

where R(x) → R(0) = 0 as x → 0 (and then R(x) is continuous at 0). Observe
that

Dν
(2) −Dν

(1) =
1

n

(

n(Dν
(2) −Dν

(1))
)

→ 0 in probability as n → ∞

because n(Dν
(2) −Dν

(1)) → D weakly. Then the continuity of R(x) at 0 and the

Slutzky’s theorem (see, for instance, Arnold 1990, Theorem 6.8) give
{

n(Dν
(2) −Dν

(1))
}

R(Dν
(2) −Dν

(2)) → 0

in probability as n → ∞. Moreover g′(Dν
(1)) → g′(‖a− aS‖ν) by the continuity

of g′(x) = (d/ν)x(d/ν)−1 at (0,∞). It follows (again by the Slutzky’s theorem)
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that n(G(2)−G(1)) has the same limit distribution as g′(‖a−aS‖ν)n(Dν
(2)−Dν

(1)),
but

g′(‖a− aS‖ν)n(Dν
(2) −Dν

(1)) → g′(‖a− aS‖ν)D =
d

ν
‖a− aS‖d−νD weakly,

the limit distribution being an exponential distribution with expected value
d‖a− aS‖d−ν(f(aS)ην)

−1, and the proof concludes.

It follows from Lemma 2 that, given (Xi, Xj) with a = (Xi +Xj)/2 6∈ S,

nG(1) = nDd
(1)

=
{

n
1
d
− 1

ν

[

n
1
ν (D(1) − ‖a− aS‖)

]

+ n
1
d ‖a− aS‖

}d

=
{

n
1
d
− 1

ν Op(1) + n
1
d ‖a− aS‖

}d

= n‖a− aS‖d +Op(n
1
d
− 1

ν ).

Therefore, nG(1) goes to infinity (in probability) at rate n.

Lemma 2 suggests that for a non-convex support S and assuming (A), nU
(2)
n

should be bounded in probability (because nU
(2)
n is the average of n(n − 1)/2

random variables that are bounded in probability) but nUn should not be (be-
cause it is the average of n(n − 1)/2 random variables that go to infinity at
rate n). In fact, from Proposition 1 it follows that limn nUn = ∞ almost surely
when the support S is not convex.

To understand the intuitive meaning of Lemmas 1 and 2, let F conv
nUn

and F conv

nU
(2)
n

be the distributions of the two statistics under consideration, nUn and nU
(2)
n ,

respectively, when the support S is convex. For the case of non-convex support,
we call F non-conv

nUn
and F non-conv

nU
(2)
n

the distributions of the two corresponding statis-

tics. Lemma 1 establishes that F conv
nUn

and F conv

nU
(2)
n

are similar and 2 indicates that

F non-conv

nU
(2)
n

looks more like F conv
nUn

than F non-conv
nUn

. Therefore we propose to use the

distribution of the statistic nU
(2)
n to approximate that of nUn under the support

convexity hypothesis, whether the support is indeed convex or not.
The upper panel of Figure 6 shows the estimated density of the statistic

log nUn calculated on 500 samples (of size n = 500) generated according to each
of the six S-shaped supports shown in Figure 5. It can be clearly seen how the
distribution of nUn changes in a considerable way with the data pattern and
how its values get closer to 0 as the support gets closer to convexity.

The lower panel of Figure 6 shows estimated densities (from 500 values) of

log nU
(2)
n calculated over 500 samples (of size n = 500) generated according to

each of the six S-shaped configurations shown in Figure 5. The scale of upper

panel has been kept in order to clearly show how the distributions of log(nU
(2)
n )

under non-convexity are closer to 0 than those of log(nUn). This is the main
conclusion of the simulations.
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Observe that most of the estimated densities of log(nU
(2)
n ) corresponding to

non-convex S do not overlap the density of log(nUn) corresponding to convex
S (i.e., R = ∞). This fact does not necessarily contradict our belief that the

null distribution of nUn can always be approximated with that of nU
(2)
n : the

asymptotic distribution of n(G(2) − G(1)) depends on whether the data follow
the null distribution or not (see Lemmas 1 and 2).

The use of the distribution of the statistic nU
(2)
n as an approximation for

that of nUn under the null hypothesis entails a problem: only one observation

of nU
(2)
n is available from each sample X1, . . . , Xn. Therefore a resampling

procedure is required to provide a set of pseudo-observations of nU
(2)
n .

The standard bootstrap is not adequate in this context because at each
bootstrap sample there would be some repeated observations, say X∗

i = X∗
j =

Xl, for i 6= j, and therefore we would have minh=1...n γ(X
∗
i , X

∗
j , X

∗
h) = 0, thus

reducing the effective number of summands defining U∗
n.

We propose to perform subsampling bootstrap, that is, resampling without
replacement from the original sample at smaller than the original sample size
(see Politis and Romano (1994); Politis, Romano, and Wolf (1999)). Then the
procedure to compute p-values for the support convexity decision rule is as
follows. Let nUObs

n be the observed values of nUn for the sample X1, . . . , Xn

at hand. We take B subsamples of size m < n and compute the statistic

mU
(2)
m for each subsample. Let mU

(2)∗
m,b , b = 1, . . . , B, be the B values of mU

(2)
m

obtained this way. Let µ∗
m and s∗m be the sample mean and standard deviation,

respectively, of mU
(2)∗
m,b , b = 1, . . . , B. We approximate the distribution of nUn

(under support convexity) by a normal distribution centered at µ∗
m and having

standard deviation equal to s∗m. Let Φ be the distribution function of the
standard normal distribution. The p-value is therefore defined as

p− value = 1− Φ

(

nUObs
n − µ∗

m

s∗m

)

. (4)

Table 2 illustrates the performance of the proposed procedure for deciding
about support convexity when this is true. For each different sample size, 500
samples have been generated according to the hypothesis of support convexity
(S-shape pattern with R = ∞). For each sample, B = 100 bootstrap subsamples
have been drawn, with sizes m = n/2 (for n ∈ {100, 250, 500}) or m = n/4 (for
n = 1000). The empirical significance levels are calculated as the proportion of
samples for which the computed p-value is lower than the nominal one. We see
that the nominal significance level is well reproduced for α = 0.01 and α = 0.05
(when n ≥ 500 in this case), but the case α = 0.1 is unsatisfactory.

The empirical power of the convexity decision rule has been calculated (for
a nominal significance value α = 0.05) for sample sizes n ∈ {100, 250, 500, 1000}
as the proportion of samples for which the computed p-value is lower than α.
Figure 7 shows the estimated powers. It can be seen how patterns which are
distant from convexity are perfectly detected. For a sample size of n = 100
the case closest to convexity (R = 24) is not detected as non-convex while it is
detected when n ∈ {250, 500, 1000}.
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α n = 100 n = 250 n = 500 n = 1000

.01 .006 .004 .016 .012

.05 .022 .020 .068 .058
.1 .026 .044 .134 .134

Table 2: Empirical significance levels for three nominal significance levels α.
Those being significantly different from the nominal ones (95% confidence) have
been written in italics.
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Figure 6: Up: Density estimation of 500 observed values of the statistic log nUn

for each of the six noisy S-shaped configurations (see Figure 5) for sample size

n = 500. Down: Densities of 500 values of the statistic log nU
(2)
n generated from

data according to each of the six noisy S-shaped configurations for sample size
n = 500.
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Power for nominal α=0.05
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Figure 7: Empirical power functions (for nominal significance level α = 0.05)
estimated from 500 samples (n ∈ {100, 250, 500, 1000}). The parameter R indi-
cates the radius of the circumferences used to produce the six noisy S-shaped
configurations in Figure 5: the bigger the value of R, the closer the support is
to convexity, which is achieved at R = ∞. Horizontal lines mark acceptance
intervals of the null hypothesis that the observed powers equal to the nominal
significance level α = 0.05.
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5 Choice of the tuning parameter in ISOMAP

In this section we present a statistical application of the rule introduced in
Section 2. We use this decision rule for choosing automatically the tuning
parameter of ISOMAP, a nonlinear dimensionality reduction method due to
Tenenbaum et al. (2000).

Given n points x1, . . . , xn ∈ R
p in a high-dimensional space, equipped with

metric d, the object of nonlinear dimensionality reduction (also known as mani-
fold learning) is to find a low dimensional configuration, that is, an n×d matrix,
with d ≪ p, with rows yi, i = 1, . . . , n, and a nonlinear function ρ : Rd → R

p

such that ρ(yi) is close (in some sense) to the observed xi, for i = 1, . . . , n.
Principal Component Analysis (PCA) is without doubt the most used dimen-
sionality reduction technique, but it is not able to detect nonlinear structures.
See Lee and Verleysen (2007) or Gorban, Kégl, Wunsch, and Zinovyev (2007)
for a broad coverage of nonlinear dimensionality reduction.

We focus on ISOMAP transformation. The underlying implicit assumption
is that the high-dimensional data lie on, or close to, a low-dimensional nonlinear
manifold and the geodesic distance of the manifold represents a meaningful
metric. ISOMAP tries to recover this hidden information.

The algorithm takes as its starting point the distance matrixD = (d(xi, xj))i,j
between all pairs of points in the original space of high dimension. The avail-
able distance d(xi, xj) is a good approximation of the geodesic distances only
for those pairs of points xi and xj that are close enough.

The ISOMAP algorithm can be briefly described as a three-step process:

1. First step determines that points xi and xj are neighbors in the original
space if d(xi, xj) ≤ ǫ, for a ǫ > 0. (Another version declares that two
points are neighbors if one of them is one of the k nearest neighbors of the
other). A weighted graph Gǫ is built with vertices being the data points
and edges of weight d(xi, xj) between neighboring points.

2. In the second step, the matrix of geodesic distances dǫG(xi, xj) between all
pairs of points is estimated by computing shortest path distances in the
graph Gǫ. The matrix Dǫ

G = (dǫG(xi, xj))i,j is obtained.

3. In the third step, classical multidimensional scaling is applied to the matrix
of distances Dǫ

G in order to obtain coordinates for the points in R
d, with

d < p.

One of the advantages of this algorithm is that only one parameter, ǫ, is re-
quired in step 1. However, the performance of the algorithm crucially depends
on the choice of this parameter. If the neighborhood is too large, local neighbors
will include data points from other branches of the manifold and short-circuits

will appear: faraway points according to geodesic distances would turn up to
be close according to the Euclidean distance. On the other hand, if the neigh-
borhood is too small, the manifold will fragment into disconnected clusters and
the algorithm will not be able to assign distances between every pair of points.
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In the original work (Tenenbaum et al. (2000)) this parameter was chosen
manually. There have been other methods for selecting the optimal parameter
value. See Shao, Huang, and Wan (2007) and references therein.

Our proposal for the selection of the tuning parameter ǫ is motivated by the
following observation. The original distance d(xi, xj) between points xi and xj

is similar to their geodesic distance dǫG(xi, xj) when either xi and xj are within
distance ǫ or when xi and xj can be connected through a path that contains
points h0 = xi, h1, . . . , hr, hr+1 = xj in such a way that for all k = 0, . . . , r, hk

and hk+1 are within distance ǫ and also

r
∑

k=0

d(hk, hk+1) ≈ d(xi, xj). (5)

If this happens for all pairs of points, there is no need to modify the distance
matrix (steps 1 and 2 of ISOMAP) and MDS can be applied directly. Therefore,
the full ISOMAP algorithm should be applied with a tuning parameter ǫ such
that in the final configuration a condition similar to (5) holds:

r
∑

k=0

dǫG(hk, hk+1) ≈ dǫG(xi, xj). (6)

Note that in the space Rd only Euclidean distance is applied, and also that con-
dition (6) for Euclidean spaces is equivalent to stating that around the segment
[xi, xj ] joining points xi and xj , there are other sample points, that is, this seg-
ment crosses completely the support of the underlying probability distribution.
In other words, roughly, the Euclidean distance between xi and xj is substan-
tially different from their geodesic distance if and only if the segment [xi, xj ] is
not completely included in the support of the distribution. Therefore, it is pos-
sible to find pairs of points (xi, xj) with this property if and only if the support
of the underlying probability distribution is not a convex set. As a consequence,
the tuning parameter in ISOMAP should be chosen in order to guarantee that
the final configuration is compatible with an underlying probability distribution
with a convex support.

Based on the intuitive argument described above, our proposal is based on
applying to distance matrix Dǫ

G the support convexity decision rule. This de-
cision rule is used to assign, to any possible value of ǫ, a score according to
the plausibility of the support convexity hypothesis for the corresponding con-
figuration generated by ISOMAP. The selected parameter is the one achieving
the maximum score. We implicitly assume that the embedded low dimensional
distribution has convex support and that the possible non-convexity in the high
dimensional space is due only to the embedding being non-linear. Our proposal
would not work in situations as, for instance, that of a two-dimensional distri-
bution whose support is a circle with two holes that is non-linearly embedded
in a three-dimensional space.

Let (ǫmin, ǫmax) be an interval of candidate values for parameter ǫ. Given
ǫ ∈ (ǫmin, ǫmax), the ǫ-ISOMAP algorithm is applied to D, the starting distance
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matrix. Let Dǫ
G be the output distance matrix (that is, the matrix containing

Euclidean distances between points in the low-dimensional space). Then the
support convexity decision rule is performed from Dǫ

G. Let p(ǫ) be the p-value
defined in (4). We use p(ǫ) as the score value for ǫ.

We propose to choose parameter ǫ as

ǫ∗ = argmax{p(ǫ) : ǫ ∈ (ǫmin, ǫmax)}.

Therefore ǫ∗ is the value in (ǫmin, ǫmax) for which the highest compatibility with
the hypothesis of support convexity is achieved.

A remark on the meaningful choice of ǫmin and ǫmax: Very low values of ǫ
produce disconnected graphs Gǫ in the first step of the ǫ-ISOMAP algorithm.
Then the usual way to circumvent the problem is to analyze only the largest
connected component of Gǫ. Then different samples are used for different values
ǫ < ǫconn, being that value the lowest one assuring the connectivity of Gǫ. So
it may seem plausible to take ǫmin = ǫconn. Unfortunately, the value of ǫconn is
extremely sensitive to outliers, because ǫconn ≥ maxi minj d(xi, xj).

Our proposal to avoid disconnected graphs Gǫ for small ǫ is based on the
Minimum Spanning Tree associated to distance matrix D. Let G0

MST be the
graph representing this Minimum Spanning Tree, which is connected by defini-
tion. We propose to replace always the graph G in the first step of ǫ-ISOMAP
algorithm by the union graph Gǫ

MST = Gǫ ∪ G0
MST, and proceed to further

steps in the usual way. Observe that GMST is connected for all ǫ ≥ 0, being
GMST = G0

MST for ǫ = 0. Therefore we may choose ǫmin = 0.
An easy way to fix ǫmax is taking

ǫmax = max
i,j

d(xi, xj).

This choice allows the possibility of having observed a distance matrix D com-
patible with a convex support probability distribution. In practice a lower
value may be chosen such as ǫmax = median{d(xi, xj)}. Then a fine regu-
lar grid ǫ1 = ǫmin < · · · < ǫE = ǫmax is used and p-values are computed:
p(ǫe), e = 1, . . . , E.

We have applied the proposed procedure for the choice of ǫ to a bi-dimensional
synthetic data set, corresponding to the sharpest S in Figure 5, that with ra-
dius R = 1. The sample size is n = 100 and B = 200 bootstrap samples are
obtained. We have used values ǫ equal to seven evenly spaced values ǫ1, . . . , ǫ7,
with ǫ1 = 0 and ǫ7 = median{d(xi, xj)}. The resulting p-values are shown in
Figure 8 (only for ǫ1 to ǫ6; the result for ǫ7 is very similar to that of ǫ6).

Following our proposal, the chosen value for ǫ is ǫ∗ = 0.63. It can be seen that
a short-circuit appears (leading to a misleading bi-dimensional configuration)
when ǫ = 1.26. The short-circuit is also present (but not so clearly) for ǫ = 0.94.
For ǫ = 1.57 there are two short-circuits. Observe that the p-value corresponding
to the better choice of ǫ is 0.0281, indicating a moderate evidence against the null
hypothesis of support convexity. This happens because the ISOMAP procedure
is not able to fully linearize the data configuration even for the most favorable
value of parameter ǫ.

30



−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=0; p−value=4e−07

Dim1

D
im

2

−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=0.31; p−value=9e−07

Dim1

D
im

2

−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=0.63; p−value=0.0281

Dim1

D
im

2

−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=0.94; p−value=6e−04

Dim1

D
im

2

−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=1.26; p−value<e−16

Dim1

D
im

2

−4 −2 0 2 4

−
2

−
1

0
1

2

epsilon=1.57; p−value<e−16

Dim1

D
im

2

Figure 8: Choosing ǫ for the sharpest S-shaped configuration (see Figure 5)
with sample size n = 100. Low dimensional configurations obtained as output
of the ǫ-ISOMAP algorithm for six values of ǫ, and the corresponding p-values
obtained when deciding about support convexity.
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6 Conclusions

In this paper we investigated the possibilities and limitations of constructing
data-based procedures to decide whether the support of the underlying density
generating the data points is convex or nor. We defined a decision rule, based
on a U -statistic with a random kernel, which decides correctly for sufficiently
large n, with probability 1, whenever the density is bounded away from zero in
its compact support and the support has a boundary of zero Lebesgue measure.

We also show that such asymptotically correct decision rules are impossible
to define if one only assumes boundedness of the density.

Moreover, we suggest a bootstrap-like procedure for approximating the dis-
tribution of the proposed test statistic under the hypothesis of convexity of the
support. The performance of the proposed method is illustrated on simulated
data sets.

To illustrate potential applications, the decision rule is used to automatically
choose the tuning parameter of ISOMAP, a nonlinear dimensionality reduction
method.

7 Appendix: some simple lemmas

Lemma 3. Let f be a density on R
d with support S and assume that there

exists c > 0 such that f(x) ≥ c for all x ∈ S. Then Vol(∂S) = 0 if and only if

for almost every x ∈ S there exists ǫ > 0 such that essinfy:‖y−x‖<ǫ f(y) > 0.

Proof. First note that every x ∈ S \ ∂S is an interior point of S. Since f is
bounded away from zero on its support, for all such points there exists ǫ > 0
such that essinfy:‖y−x‖<ǫ f(y) ≥ c. Thus if Vol(∂S) = 0, the Lebesgue measure
of x ∈ S with essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0 equals zero.

On the other hand, for every x ∈ ∂S, essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0.
To see this, suppose that this is not true and for some x ∈ ∂S, there exists ǫ > 0
such that essinfy:‖y−x‖<ǫ f(y) > 0. But since x is on the boundary of S, there
exists z /∈ S such that ‖z−x‖ < ǫ/2. Since S is closed, there exists δ < ǫ/2 such
that the ball N(z, δ) is entirely outside of S. But then essinfy∈N(z,δ) f(y) > 0,
which contradicts the definition of the support.

This implies that if Vol(∂S) > 0, then the Lebesgue measure of the set of
points x ∈ S with essinfy:‖y−x‖<ǫ f(y) = 0 for all ǫ > 0 is positive.

Lemma 4. Let f be a density with support S. Suppose that Vol(∂S) = 0 and

f(x) ≥ c for all x ∈ S where c > 0. Define the set A = {x : ∃δ > 0 :
essinfy∈N(x,δ) f(y) > 0}. Then S is the closure of A.

Proof. Since A ⊂ S and S is closed, A ⊆ S (where A stands for the closure of A).
Suppose S 6= A. Then there exists x ∈ S and ǫ > 0 such that N(x, ǫ) ∩ A = ∅.
Observe that since f(x) ≥ c on S, for every point y ∈ N(x, ǫ), either y /∈ S or
y ∈ ∂S. Thus, by assumption, Vol(S ∩ N(x, ǫ)) = 0. But then the closed set
S ∩N(x, ǫ)c has f -measure 1 which contradicts the definition of S.
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