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I would like to congratulate the authors for this very interesting contribution. The gen-
eralization of /;-penalized linear regression to the “mixture-of-Gaussian-regressions” model
raises some very interesting questions both from theoretical and algorithmic points of view
and the paper offers a variety of powerful tools to attack both problems. In this comment I
would like to mention another direction in which algorithmic issues become a relevant and
non-trivial challenge.

The basic underlying assumption behind LASSO and various related methods of linear
regression is sparsity. In the simplest fixed design regression model, one observes a random
vector Y = (Y7,...,Y,,) generated by

Yi=0i+0X;
where X = (X1,...,X,) is a vector of independent standard normal random variables, ¢ > 0
is a parameter, and 3 = (0 ..., ,) € R" is the mean vector to be estimated. The sparsity

assumption is that 3 has a small number of non-zero components. Then the LASSO estimate
is R
B = argmin (Y — vlf3 +7[v[)1)
veER”™

where v > 0 is a regularization parameter. The nice thing about this estimate is that it
is computationally feasible even when n is quite large and various available sparsity or-
acle inequalities guarantee that the method performs remarkably well under the sparsity
assumption. (The references of the discussed paper contain many relevant pointers to the
literature. )

In some situations, however, one may know more than just sparsity of the vector to be
estimated. For example, it may be natural to assume that the set of indices of the non-zero
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coefficients belongs to a given family of subsets of {1,...,n}. As an example, one may
think about a noisy measurement of an image where components of the observed vector
represent pixels. Then it is not unnatural to assume that the underlying mean vector (3
(i.e., the noiseless image) is non-zero on a connected set of pixels, or perhaps 3 is a linear
combination of a few such vectors. In fact, such situations abound and we list a few examples
below.

Formally, let C = {S1,...,Sn} be a class of N subsets of {1,...,n} and for each S; € C,
denote by

si = (Lpesys---» Lnesiy)

the incidence vector of S;. An assumption that we may call combinatorial sparsity is that

can be expressed as
N
B~ E CiS;
i=1

where ¢ = (cy,...,cn) C RY is a vector with a small number of non-zero coefficients. The
approximate inequality can be interpreted in the {5 sense, for example. Similar ideas have
lead to the Group LASSO (see Yuan and Lin [7]) in which the sets Si,..., Sy are disjoint
“blocks” of indices. Jacob, Obozinski, and Vert [5] consider a more general scenario in
which the sets in C may overlap though C is still considered to be a relatively small set.
However, in many interesting cases (such as some of the examples described below), N is
very large, possibly even exponential in n, which poses important additional challenges. We
also mention the closely related work of Huang, Zhang, and Metaxas [4] who introduce a
general framework for such “structured” sparsity.

The corresponding hypothesis testing problem has received quite a bit of attention re-
cently. In this problem, upon observing Y, one wants to test whether the mean of Y is the
all-zero vector or us; for some ¢ = 1,..., N where y > 0 is a known parameter. Arias Cas-
tro, Candes, Helgason, and Zeitouni [2], Arias Castro, Candes, Durand [3]|, Addario-Berry,
Broutin, Devroye, and Lugosi [1] derive various upper and lower bounds in many interesting
cases.

Next we mention some examples considered in these papers.

e Paths. Suppose we are given a graph of n vertices with two special nodes u and v.
Each component of the vector Y corresponds to a noisy measurement on a vertex.
Often (for example, when measuring traffic in certain networks) it makes sense to
assume that the mean vector is close to a sparse linear combination of indicators of
paths between u and v. Then C contains all loop-free paths between u and v. This is
one of the main examples originally considered in [2]. Typically, each path contains
a small number k& < n of vertices but the number of paths is exponentially large
compared to n.

e Clusters. Suppose again that one takes a noisy measurement on each vertex of a
network (such as a square grid, for example) with n vertices. Then it is often natural
to assume that the mean vector 3 is close to a linear combination of a small number



of incidence vectors of connected regions. For example, if the underlying graph is a
square grid, one may take C as the class of all rectangles or the class of all convex
polygons, etc. The corresponding testing problem is investigated in depth in [3] where
numerous practical applications of problems of this type are also described.

e Spanning trees. In one of the examples considered in [1], one is given a complete
graph with m vertices and n = (7;) edges. The components of Y correspond to a
measurement corresponding to every edge. Here C may be taken as the class of all
N = m™ 2 spanning trees.

e Perfect matchings. In another example considered in [1], given a complete bipartite
graph K, ,, with n = m? edges, C represents the set of all N = m! perfect matchings.

The common feature in all these examples is that C is a very large class with a certain
combinatorial or geometric structure and every set S; C C has a very small cardinality
compared to n.

A natural way to approach such problems is to use the incidence vectors si,...,sy as a
dictionary and define the corresponding LASSO estimate by

N 2 N
= argmin H Z cisill +y Z |ci
i=1 9 i=1

ceRN

for some v > 0. This raises two non-trivial issues. One is bounding the performance of
this estimate, while the other, algorithmic problem is whether one can compute 3 efficiently.
This is a non-trivial question because N is so big that even algorithms that run in time
linear in N are infeasible.

To bound the performance of this estimate, we may use a recent elegant result of Massart
and Meynet [6]. Their result is especially useful in our setting because it does not require any
condition on the dictionary sy, ..., sy. Specialized to our setting, the “/; oracle inequality”
of Massart and Meynet implies the following. Suppose every set S; € C has the same
cardinality |V;| = k and assume v > 40+/1/(kn)(1+ y/log N). Then there exists a universal

constant C' > 1 such that
2 N 3
e 2—1—7;:1 |ci +’ya\/;

If o is known, v may be chosen to be equal to the smallest value for which the bound holds

and we get
2 N
log N o?
i —+/log N
A\ ;ICI +-Vlog
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(for a possibly different value of C'). In fact, the term y/log N can be replaced by the expected
maximum

1
E max — X;
i=1,....,N \/E ]%;1
of a Gaussian process indexed by the class C. (Note that the expectation is always bounded
by v2log N.)

In order to make the estimate useful, one must find efficient ways of computing B This
needs to be done separately for each case and it is a non-trivial challenge to find such efficient
algorithms. We believe that in many important cases (such as most examples mentioned
above) it should be possible to establish such algorithms. Here we describe one simple case.
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Figure 1: N = 2% paths of length & in a graph with n edges.

Suppose that the n = 2k components of the vector Y correspond to edges in a (multi-)
graph shown on Figure 1. Let C contain all N = 2* paths from the leftmost vertex to
the rightmost vertex. To compute the LASSO estimate, one may equivalently solve the dual

problem of
2

N
subject to Z ;)| < B
2 =1

min
ceRN

N
Y - E C;iS;
=1

where B is an appropriate constant. Label the edges as indicated on the figure. The key
observation is that for every j =1,... k,

N
Z e + Z |Ci|=Z|Cz’|
=1

1:25€5; 1:2j—1€S5;

and therefore, denoting the two terms on the left-hand side by ag;—1 and ay;, the problem
decomposes to solving k& 2-dimensional problems of the form

min (Yv2j—1 — (12]'_1)2 + (}/2] — (12]')2 subject to agj_l + Clgj S B s
(azj—1,a2;)€R?

which, of course, can be solved easily.

Of course, this example is trivial algorithmically while others may require more sophis-
ticated ideas and methods. We believe that a systematical study of such problems with
“combinatorial sparsity” is an interesting challenge and may lead to useful estimates in a
number of applications.
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