
Combinatorial BanditsI
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Abstract

We study sequential prediction problems in which, at each time instance, the
forecaster chooses a vector from a given finite set S ⊆ Rd. At the same time,
the opponent chooses a “loss” vector in Rd and the forecaster suffers a loss
that is the inner product of the two vectors. The goal of the forecaster is to
achieve that, in the long run, the accumulated loss is not much larger than
that of the best possible element in S. We consider the “bandit” setting
in which the forecaster only has access to the losses of the chosen vectors
(i.e., the entire loss vectors are not observed). We introduce a variant of a
strategy by Dani, Hayes, and Kakade achieving a regret bound that, for a
variety of concrete choices of S, is of order

√
nd ln |S| where n is the time

horizon. This is not improvable in general and is better than previously
known bounds. The examples we consider are all such that S ⊆ {0, 1}d, and
we show how the combinatorial structure of these classes can be exploited
to improve the regret bounds. We also point out computationally efficient
implementations for various interesting choices of S.
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1. Introduction

Consider a sequential prediction problem in which a forecaster is to choose,
at every time instance t = 1, . . . , n, an element from a set S of N actions (or
experts). After making a choice, the forecaster suffers a loss corresponding
to the chosen action. The goal of the forecaster is to achieve that the accu-
mulated loss is not much larger than that of the best possible fixed action,
chosen in hindsight. The difference between the achieved and optimal cumu-
lative losses is called the regret. It is well known (see [1] for a survey) that
randomized prediction strategies exist that guaranteeing that the expected
regret of the forecaster is bounded by a constant times

√
n lnN , regardless

of the sequence of losses, as long as they are bounded. The logarithmic de-
pendence on the number of actions allows one to compete with very large
classes of actions. However, large classes raise nontrivial computational is-
sues. The construction of computationally efficient forecasters for various
cases of structured classes of experts is a thoroughly studied problem. Once
again, we refer to [1] for a survey.

An interesting variant of the sequential prediction problem is the adver-
sarial multi-armed bandit problem in which the forecaster only observes the
loss of the chosen action and uses the randomized choices to gather informa-
tion. It was shown by Auer et al. [2] that an expected regret of the order of√
nN lnN is achievable in this case. There has been a flurry of activity to

address versions of the adversarial bandit problem for large and structured
classes of experts, see Awerbuch and Kleinberg [3], McMahan and Blum [4],
Dani and Hayes [5], György, Linder, Lugosi, and Ottucsák [6], Dani, Hayes,
and Kakade [7], Abernethy, Hazan, and Rakhlin [8], Bartlett, Dani, Hayes,
Kakade, and Tewari [9], Abernethy and Rakhlin [10].

Most of the effort has been focused on two main issues: (1) obtaining
regret bounds as small as possible; (2) constructing computationally feasible
forecasters.

In this paper we build on the methodology of Dani, Hayes, and Kakade [7],
who introduced a general forecaster with close-to-optimal regret bounds. By
a simple generalization of their forecaster we obtain improved regret bounds
in many cases, when the finite class of experts has a certain combinatorial
structure. We also show that in some interesting cases nontrivial efficient
algorithms exist.
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The paper is organized as follows. In Section 2 we formulate the prob-
lem. In Section 3 we discuss the relationship of our results to earlier work.
The general prediction strategy is defined and the main performance bound
is established in Section 4. Various applications are described in Section 5,
including a multitask bandit problem, learning permutations, learning span-
ning trees of a complete graph, and learning balanced cut sets.

2. Statement of the problem

In the bandit linear optimization problem [7, 8, 9] a finite 2 set S ⊆ Rd

of elements v(k) for k = 1, . . . , N is given (this is the set of “experts” or
“actions”). The forecaster plays a repeated game with an opponent such
that, at each round of the game, the forecaster chooses an index between
{1, . . . , N} and the forecaster chooses a loss vector `t ∈ Rd. For all k =
1, . . . , N denote ct(k) = `>t v(k). If the index chosen by the forecaster at
time t is Kt, then the only information given to the forecaster is the value of
ct(Kt). The game is described as follows:

For each step t = 1, 2, . . .

1. The opponent secretly chooses a loss vector `t ∈ Rd

2. The forecaster chooses Kt ∈ {1, . . . , N}
3. The cost ct(Kt) = `>t v(Kt) is announced to the forecaster.

The forecaster’s goal is to control the regret

L̂n − min
k=1,...,N

Ln(k) =
n∑
t=1

ct(Kt)− min
k=1,...,N

n∑
t=1

`>t v(k) .

Similarly to [7] we assume that |`>t v| ≤ 1 for all v ∈ S and t. If 1 is replaced
by an arbitrary known positive constant, then the bound on the regret of
our forecasting strategy (Theorem 1) must be multiplied by the same scaling
constant.

The forecaster is allowed to use randomization. More precisely, at every
time instance t, the forecaster chooses a distribution pt−1(1), . . . , pt−1(N) over

2If S is infinite but bounded, then [7, Lemma 3.1] shows that it can be approximated
with a finite class of size order of (dn)d/2, causing any forecaster, working on the finite
class, to suffer an extra regret w.r.t. S of order

√
dn.
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the set {1, . . . , N} (i.e., pt−1(k) ≥ 0 for all k = 1, . . . , N and
∑N

k=1 pt−1(k) =
1) and draws an index Kt = k with probability pt−1(k). Thus, the regret is
a random variable. In this paper we investigate the behavior of the expected
regret

max
k=1,...,N

E
[
L̂n − Ln(k)

]
where the expectation is with respect to the forecaster’s internal randomiza-
tion. If the opponent is oblivious, that is, the actions of the opponent do not
depend on the past actions of the forecaster (see, e.g., [1, Chapter 4] for a
formal definition and discussion), then Ln(k) is not a random variable and
the expected regret is simply

E L̂n − min
k=1,...,N

Ln(k) .

In this paper we do not restrict ourselves to oblivious opponents.
The most important parameters of the problem are the time horizon n,

the dimension d, the cardinality N of the action set S, and the maximum
“size” of any expert

B = max
v∈S
‖v‖

where ‖ · ‖ indicates the Euclidean norm.
The combinatorial bandit problem is a special case of the bandit linear

optimization problem where we restrict S to be a subset of the binary hy-
percube {0, 1}d. This fact allows us to exploit the combinatorial structure
of the class of experts in a transparent way. Arguably, the most interesting
examples of online linear optimization fit in the combinatorial framework. In
the rest of the paper we only consider the “combinatorial” case S ⊆ {0, 1}d
though the general forecasting strategy and regret bound below extend to
arbitrary sets S ⊆ Rd in a straightforward manner.

3. Relation to previous work

When d = N and v(1), . . . ,v(N) are the standard basis vectors, then the
model is identical to the adversarial bandit problem introduced by Auer et
al. [2], who proved a regret bound of the order of

√
nN lnN that holds not

only in expectation but also with high probability. (We refer to Audibert and
Bubeck [11] for recent improvements of this result.) A well-studied instance of
our general framework is the path planning problem, in which d is the number
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of edges of a fixed graph and v(1), . . . ,v(N) represent all paths between two
fixed vertices of the graph. More precisely, each v(k) ∈ S ⊂ {0, 1}d is the
incidence vector of a path: a component of v(k) equals 1 if and only if the
corresponding edge is present in the path represented by v(k). At each time
instance the forecaster chooses a path and suffers a loss that is the sum
of the losses over the individual edges of the chosen path. Takimoto and
Warmuth [12] and Kalai and Vempala [13] exhibit computationally efficient
forecasters in the “full-information” case, that is, when the forecaster has
access to the losses over every edge of the graph.

The partial information setting considered in this paper was first studied
by Awerbuch and Kleinberg [3] who proved a regret bound of order n2/3 for
the restricted model of oblivious opponent. McMahan and Blum [4] achieved
a regret bound of order n3/4 for the general model.

Both [3] and [4] study the somewhat more general framework of online
linear optimization, introduced by Kalai and Vempala [13]. György et al. [6]
considered the problem of path planning in a less demanding partial informa-
tion framework, when the loss of every edge on the chosen path is revealed to
the forecaster. They exhibit a computationally efficient forecaster achieving
a regret of order

√
nd lnN with high probability. Even though [6] only con-

siders the path planning problem, it is not difficult to extend their results to
the more general setup of this paper. However, the model considered here,
that is, when the forecaster only receives information about the total loss of
the chosen action, is more challenging. Dani, Hayes, and Kakade [7] were
the first to prove an expected regret bound with the optimal

√
n dependence

on the time horizon. Their bound is of the form B
√
nd lnN . Bartlett, Dani,

Hayes, Kakade, Rakhlin, and Tewari [9] show that this bound also holds with
high probability. The forecaster of [7] is based on exponential weights and
can be computed efficiently whenever efficient implementations of the expo-
nentially weighted average forecaster are available. This is certainly possible
for the path planning problem, but there are various other interesting ex-
amples —see the discussion of the examples in Section 5 below. Abernethy,
Hazan, and Rakhlin [8] consider a very different approach which allows one to
construct computationally efficient forecasters for a large variety of problems
and has an expected regret of the order of d

√
nθ lnn, where the parameter

θ depends on the class of actions S (which is supposed to be a convex set).
This requires the construction of a self-concordant function tailored to the
problem at hand. Even though the existence of such a function is guaranteed,
its construction (and estimation of the parameter θ) may be a nontrivial task
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Algorithm: ComBand
Parameters: Finite action set S ⊆ {0, 1}d, sampling distribution µ over S,
mixing coefficient γ > 0, learning rate η > 0
Initialization: q0 = uniform distribution on S
For t = 1, 2, . . .

1. Let pt−1 = (1− γ)qt−1 + γ µ

2. Draw action Kt from pt−1
3. Incur and observe cost ct(Kt) = `>t v(Kt)

4. Let Pt−1 = E
[
V V >

]
where V has law pt−1

5. Let ˜̀t = ct(Kt)P
+
t−1v(Kt)

6. Update qt(k) ∝ qt−1(k) exp
(
−η ˜̀>t v(k)

)
for all k = 1, . . . , N .

Figure 1: The bandit forecaster ComBand described in Section 4.

in some applications. Abernethy and Rakhlin [10] extend this to analogous
regret bounds that hold with high probability.

In this paper we revisit the approach of Dani, Hayes, and Kakade [7].
Like [7], we construct unbiased estimates of each loss component `t,i, i =
1, . . . , d and define an exponentially weighted average forecaster based on
these estimates. The main difference is in the exploration part of the al-
gorithm. Following Awerbuch and Kleinberg [3], Dani, Hayes and Kakade
construct a barycentric spanner of the set S and ensure exploration by mixing
the exponential weights with the uniform distribution on spanners. Instead,
we use a mixing term derived from a possibly different distribution over S.
(We mostly consider uniform sampling though other distributions may be
advantageous in some examples.) This allows us to achieve an expected re-
gret bound of the order of

√
nd lnN whenever the smallest eigenvalue of a

certain matrix associated with S (and the sampling distribution) is not too
small. The largest part of our efforts is dedicated to show that this smallest
eigenvalue can indeed be handled by exploiting the combinatorial structure
of the class of experts in a number of interesting cases. Note that the bound√
nd ln |S| is not improvable in general when S ⊆ {0, 1}d. This follows from

a result of [7], as it is shown in Section 5.2 below.
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4. The forecasting strategy

The algorithm ComBand maintains a weight vector defined, at each
time t, by wt,i = exp

(
−η L̃t,i

)
for i = 1, . . . , d, where L̃t,i = ˜̀

1,i + · · · + ˜̀
t,i

is a cumulative pseudo-loss, see (1) below, and η > 0 is a fixed parame-
ter. Initially, w0,i = 1 for all i. These weights define corresponding weights
wt(1), . . . , wt(N) ∈ R over the elements of S in the natural way:

wt(k) =
∏

i : vi(k)=1

wt,i .

Let W t =
∑N

k=1wt(k) and let qt(k) = wt(k)/W t. Note that q0 is the uni-
form distribution on S because we set w0,i = 1 for all i. At each time
t, ComBand plays v(Kt) ∈ S, where Kt is drawn from the distribution
pt−1 = (1−γ)qt−1+γ µ on 1, . . . , N . Here µ is any distribution on {1, . . . , N}
and γ > 0 is a parameter. An equivalent description of the algorithm, without
the explicit use of the weights wt,i, is given in Figure 1. Thus, pt−1 is a mix-
ture of the exponentially weighted distribution qt−1 representing exploitation
and the fixed distribution µ that is responsible of exploration. The choice
of µ is crucial for the performance of the algorithm, and one of the main
purposes of the paper is to take a step towards understanding how µ should
be selected in each problem (i.e., for each set S). We show that in many ap-
plications choosing µ to be the uniform distribution leads to close-to-optimal
performance.

The vector of pseudo-losses ˜̀t =
(˜̀
t,1, . . . , ˜̀t,d) is defined by

˜̀
t = ct(Kt)P

+
t−1v(Kt) (1)

where P+ is the pseudo-inverse of the d × d correlation matrix E
[
V V >

]
for V ∈ S distributed according to pt−1. (Throughout the paper, we use an
index k = 1, . . . , N and its corresponding element v(k) ∈ S interchangeably.)

We also use the notation c̃t(k) = ˜̀>t v(k).
As we mentioned before, ComBand can be viewed as a generalization

of the GeometricHedge algorithm of Dani, Hayes and Kakade. The only
substantial difference is that we perform exploration by drawing actions from
a distribution µ over the entire set S (step 1 in Figure 1) instead of drawing
from a barycentric spanner. This fact gives us a finer control on the loss
estimates ˜̀t,i in which the factor

∥∥P+
t−1
∥∥ occurs —see (1) above. Indeed,

while [7] only achieves
∥∥P+

t−1
∥∥ ≤ d/γ due to the mix of the barycentric

7



spanners in Pt, we can afford the more detailed bound
∥∥P+

t−1
∥∥ ≤ 1

/
(γλmin),

where λmin is the smallest nonzero eigenvalue of the correlation matrix of
the initial sampling distribution µ. In concrete cases, the computation of
tight lower bounds on λmin allows us to obtain better regret bounds. The
ComBand performance bound stated below indicates that choosing µ to
ensure that λmin is as large as possible guarantees better bounds.

Theorem 1. Let S be a finite subset of {0, 1}d and let M = E
[
V V >

]
where

V ∈ S is a random vector distributed according to an arbitrary distribution µ
such that S is in the vector space spanned by the support of µ. If ComBand
is run with parameters S, µ,

γ =
B

λmin

√√√√ lnN

n
(

d
B2 + 2

λmin

) and η =
1

B

√√√√ lnN

n
(

d
B2 + 2

λmin

)
where N = |S|, λmin is the smallest nonzero eigenvalue of M , and B ≥ ‖v‖
for all v ∈ S, then its expected regret after n steps satisfies

max
k=1,...,N

E
[
L̂n − Ln(k)

]
≤ 2

√(
2B2

d λmin

+ 1

)
nd lnN .

The proof of Theorem 1, which is based on an appropriate modification of
the performance bound of Dani, Hayes, and Kakade [7], is given in Appendix
A.

The theorem shows that the success of the forecaster crucially depends on
the value of the smallest nonzero eigenvalue λmin of the correlation matrix M
corresponding to µ. In Section 5 we work out various examples in which, for
the uniform distribution µ, B2/(dλmin) = O(1). In all these cases we obtain

E
[
L̂n − Ln(k)

]
= O

(√
nd lnN

)
. (2)

Rewriting the above condition as λmin = Ω(B2/d), and observing that M has
trace bounded by B2, reveals that we achieve (2) whenever the eigenvalues
of M tend to be equal.

Inequality (2) improves on the bound of Dani, Hayes, and Kakade [7]
by a factor of B and on the bound of Abernethy, Hazan, and Rakhlin [8]
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by a factor of
√

(dθ lnn)/(ln(N)).3 Computationally, both ComBand and
GeometricHedge face the problem of sampling from distributions defined
over S. In many cases this can be done efficiently, as we discuss in Section 5.
The algorithm of [8], instead, works in a completely different way. It performs
a randomized gradient descent in the convex hull of S, translating each point
xt in the convex hull into a distribution over S. This is done in such a
way that sampling Kt from this distribution ensures E

[
`>t v(Kt)

]
= `>t xt.

The efficiency of this procedure depends on the specific choice of S (for
the path planning problem efficient procedures exist). Moreover, in order
to guarantee a good regret, gradient descent is implemented using a self-
concordant function tailored to the problem. Even if the existence of such
a function is guaranteed, its construction may be a non-trivial issue in some
applications.

Remark: choice of sampling distribution. The upper bound of Theo-
rem 1 suggests a way of choosing the distribution µ used for random sampling
in the exploration phase: the larger the smallest nonzero eigenvalue λmin(M),
the tighter the upper bound. In many cases for the uniform distribution µ
one has λmin = Ω(B2/d) and the order of magnitude of the bound of Theo-
rem 1 cannot be improved for any other distribution. In Section 5 we show
several such examples. However, the uniform distribution may be a very bad
choice in some case. Indeed, in Section 5.9 we show that in some instances of
the path planning problem λmin may be exponentially small as a function of
d. On the other hand, λmin = Ω(1/d) is achievable for all classes S. Indeed,
if µ is uniformly distributed over the d vectors of a barycentric spanner (i.e.,
a collection of d vectors such that every v ∈ S can be expressed as a lin-
ear combination of these vectors with coefficients between −1 and 1), then
λmin ≥ 1/d as shown in [7]. This choice, while safe, is sub-optimal in general.
A more general approach is to determine µ so that the value of λmin is max-
imized. This may be cast as a semidefinite programming problem —see [14,
Problem 4.43].

Remark: regret bounds that hold with high probability. The-
orem 1 bounds the largest expected regret maxk E

[
L̂n − Ln(k)

]
where ex-

pectation is taken with respect to the randomized choices of the forecaster.

3In all applications of Section 5, lnN = O
(√
d ln d

)
. Hence the improvement on [8] is at

least by a factor of d1/4
√
θ ln(n)/ ln(d), where θ is known to be bounded by a polynomial

function of d but may be difficult to determine in specific cases.
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However, one may argue that it is more important to bound the realized re-
gret maxk

(
L̂n−Ln(k)

)
with high probability. Bartlett, Dani, Hayes, Kakade,

Rakhlin, and Tewari [9] showed how one can guarantee that the performance
bound of Dani, Hayes, and Kakade [7] holds not only in expectation but also
with high probability. The same argument can be used in our case as well.
The straightforward but technical details are omitted.

5. Applications

In order to apply Theorem 1 to concrete classes S we need to find lower
bounds on the smallest eigenvalue λmin = λmin(M) of the linear transforma-
tion

M =
N∑
k=1

v(k)v(k)> µ(k)

restricted to the vector space U spanned by the elements v(1), . . . ,v(N) of
S. Since µ has support S, Lemma 13 implies that this smallest eigenvalue is
strictly positive. Thus we want to bound

λmin = min
x∈U : ‖x‖=1

x>M x .

In all of our examples (with the exception of Section 5.9) we assume that µ
is uniform over the set S. It is convenient to consider a random vector V ,
distributed according to µ over S. Then we have

λmin = min
x∈U : ‖x‖=1

Ex>V V >x .

Since x>V V >x =
(
V >x

)2
we have the following simple property.

Lemma 2.
λmin = min

x∈U : ‖x‖=1
E
[(
V >x

)2]
.

In what follows we write any x ∈ U as x =
∑N

k=1 a(k)v(k) where we let∑
k a(k) = α.
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5.1. A multitask bandit problem

In this first example we consider the case when the decision maker acts in
m games in parallel. For simplicity, assume that in each one of the m games,
the decision maker selects one of R possible actions (a possibly different
action in each game). After selecting the m actions, only the sum of the
losses suffered in the m games is observed. If the loss of each action in
each game is bounded between 0 and 1/m, then the condition |`>t v| ≤ 1 is
satisfied.

Proposition 3. For the multitask bandit problem, λmin = 1/R.

In this case B =
√
m, d = mR, B2/(dλmin) = 1, and N = Rm. Therefore

the optimal regret bound (2) holds and becomes

E
[
L̂n − Ln(k)

]
≤ 2m

√
3nR lnR .

Thus, when playing m games in parallel, the price of getting information
about the sum of the losses in spite of the losses suffered separately in each
game is just a factor of m in the regret bound. In this special case Com-
Band can be implemented efficiently since it suffices to sample actions inde-
pendently in each one of the R games.

Proof. We can write the elements of S ⊆ {0, 1}d as vectors v(k) ∈ {0, 1}d,
k = 1, . . . , Rm, with components vj,i(k), j = 1, . . . ,m, i = 1, . . . , R. These
vectors satisfy

R∑
i=1

vj,i(k) = 1 (3)

for each j = 1, . . . ,m and k = 1, . . . , N = Rm. According to Lemma 2, we

want to lower bound E
[(
V >x

)2]
uniformly over x in the span of S, where

V is uniformly distributed over S. We denote the components of V by Vj,i,
j = 1, . . . ,m, i = 1, . . . , R and the corresponding components of x by xj,i. We

calculate E
[(
V >x

)2]
= var

[
V >x

]
+ E2

[
V >x

]
where x =

∑N
k=1 a(k)v(k)

is such that ‖x‖ = 1. By (3), for each j = 1, . . . ,m,

R∑
i=1

xj,i =
N∑
k=1

a(k)
R∑
i=1

vj,i(k) =
N∑
k=1

a(k) = α .
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Thus,

EV >x =
m∑
j=1

R∑
i=1

xj,i EVj,i =
m∑
j=1

1

R

R∑
i=1

xj,i =
m

R
α .

On the other hand, since the R-vectors
(
Vj,1, . . . , Vj,R

)
are independent for

j = 1, . . . ,m,

var
[
V >x

]
=

m∑
j=1

var

[
R∑
i=1

xj,iVj,i

]

=
m∑
j=1

E

( R∑
i=1

xj,iVj,i

)2
− E2

[
R∑
i=1

xj,iVj,i

]
=

m∑
j=1

 1

R

R∑
i=1

x2j,i −

(
1

R

R∑
i=1

xj,i

)2


=
1

R
− m

R2
α2 .

Thus,

E
[(
V >x

)2]
=

1

R
+
m(m− 1)

R2
α2 ≥ 1

R

with equality whenever α = 0.

5.2. The hypercube

Suppose next that S = {0, 1}d is the entire binary hypercube. This
example is interesting because in this case the upper bound of Theorem 1
is optimal up to a constant factor. Indeed, Dani, Hayes, and Kakade [7]
shows that there exists an absolute constant κ such that no forecaster can
achieve an expected regret smaller than κd

√
n for all sequences of loss vectors

satisfying |`>t v| ≤ 1 for all v ∈ {0, 1}d.
To apply Theorem 1, note that N = 2d, B =

√
d, and λmin = 1/4. This

last identity follows simply by Lemma 2 because if V = (V1, . . . , Vd) is uni-
formly distributed over {0, 1}d then V1, . . . , Vd are independent Bernoulli (1/2)
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random variables and then for all x = (x1, . . . , xd) ∈ Rd with ‖x‖ = 1,

E
[(
V >x

)2]
= E

[
d∑
i=1

V 2
i x

2
i

]
+ E

[∑
i 6=j

ViVjxixj

]

=
1

2

d∑
i=1

x2i +
1

4

∑
i 6=j

xixj

=
1

4
‖x‖2 +

1

4

(
d∑
i=1

xi

)2

≥ 1

4

with equality whenever
∑d

i=1 xi = 0. Thus, Theorem 1 implies that for all
sequences of loss vectors with |`>t v| ≤ 1 for all v ∈ {0, 1}d,

max
k=1,...,N

E
[
L̂n − Ln(k)

]
≤ 6d

√
n ln 2

matching the lower bound of [7].

5.3. Perfect matchings: learning permutations

Consider the complete bipartite graph Km,m and let S contain all perfect
matchings. Thus, d = m2 (the number of edges of Km,m), S has N =
m! members, and each perfect matching has m edges and therefore B =√
m. Each v(k) ∈ S may be represented by an m ×m permutation matrix[
vi,j(k)

]
m×m; that is, a zero-one matrix such that

∑m
j=1 vi,j(k) = 1 for all i =

1, . . . ,m and
∑m

i=1 vi,j(k) = 1 for all j = 1, . . . ,m. Online learning of perfect
matchings (or, equivalently, permutations) was considered by Helmbold and
Warmuth [15] who introduced a computationally efficient forecaster with
good regret bounds in the full-information setting. Koolen, Warmuth, and
Kivinen [20] extend this to general classes. However, proving good regret
guarantees for an adaptation of their method to the bandit setting remains
a challenge.

Here we show that ComBand performs well for this problem and point
out that it has a computationally efficient implementation. The next propo-
sition shows that the term λmin in Theorem 1 is sufficiently large.

Let
[
Vi,j
]
m×m be chosen uniformly at random from the collection[

vi,j(k)
]
m×m k = 1, . . . , N

13



representing a random permutation (i.e., perfect matching).

Proposition 4. For the perfect matchings on Km,m,

λmin =
1

m− 1
.

It follows from the proposition that B2/dλmin ≤ 1, and therefore the optimal
bound (2) holds and it takes the form

E
[
L̂n − Ln(k)

]
≤ 2m

√
3n ln(m!)

under the condition |`>t v| ≤ 1, which is fulfilled if the loss corresponding to
every edge of Km,m is bounded between 0 and 1/m.

The fact that ComBand can be implemented efficiently follows from a
beautiful and deep result of Jerrum, Sinclair, and Vigoda [16] who were the
first to describe a polynomial-time randomized algorithm for approximating
the permanent of a matrix with non-negative entries. To see the connection,
observe that the sum of the weights W t =

∑m!
k=1wt(k) is just the permanent

of a matrix with entries exp
(
−η L̃t,(i,j)

)
, i, j ∈ {1, . . . ,m} where L̃t,(i,j) is the

estimated cumulative loss of edge (i, j). The algorithm of Jerrum, Sinclair,
and Vigoda is based on random sampling perfect matchings from the (ap-
proximate) distribution given by the wt(k) which is exactly what we need
to draw a random perfect matching according to the exponentially weighted
average distribution.

Proof. By Lemma 2, we need a lower bound for

E
[(
V >x

)2]
= E

( m∑
i=1

m∑
j=1

Vi,jxi,j

)2


where x =
∑N

k=1 a(k)v(k) is such that
∑m

i,j=1 x
2
i,j = 1. Observe that for any

fixed i,
m∑
j=1

xi,j =
N∑
k=1

a(k)
m∑
j=1

vi,j(k) =
N∑
k=1

ak = α

and similarly, for any fixed j,
∑m

i=1 xi,j =
∑N

k=1 ak = α. Since

P
{
Vi,j = 1, Vi′,j′ = 1

}
=


1
m

if i = i′ and j = j′,

1
m(m−1) if i 6= i′ and j 6= j′,

0 otherwise

14



we have

E
[(
V >x

)2]
= E

( m∑
i,j=1

Vi,j xi,j

)2


=
m∑

i,j=1

m∑
i′,j′=1

xi,j xi′,j′ P
{
Vi,j = 1, Vi′,j′ = 1

}
=

1

m

m∑
i,j=1

x2i,j +
1

m(m− 1)

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′

=
1

m
+

1

m(m− 1)

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′ .

The second term on the right-hand side may be written as

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′ =
m∑

i,j=1

m∑
i′,j′=1

xi,j xi′,j′

−
m∑

i,j=1

m∑
j′=1

xi,j xi′,j′ −
m∑

i,j=1

m∑
i′=1

xi,j xi′,j′ +
1

m

m∑
i,j=1

x2i,j

=

(
m∑

i,j=1

xi,j

)2

−
m∑
i=1

(
m∑
j=1

xi,j

)2

−
m∑
j=1

(
m∑
i=1

xi,j

)2

+ 1

=

(
m

N∑
k=1

a(k)

)2

− 2m

(
N∑
k=1

a(k)

)2

+ 1 .

Summarizing, we have that for all x =
∑N

k=1 a(k)v(k) such that ‖x‖ = 1,

E
[(
V >x

)2]
=

1

m
+

1

m(m− 1)

((
mα

)2 − 2mα2 + 1
)

=
1

m− 1
+
m− 2

m− 1
α2

which is at least 1/(m− 1) with equality whenever α = 0.
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5.4. Spanning trees

Next we consider an online decision problem in which, at each time in-
stance, the decision maker chooses a spanning tree in a graph of m nodes.
The loss of a spanning tree is the sum of the losses over the edges of the tree.
Such a problem is meaningful in certain mobile communication networks, in
which a minimum-cost subnetwork is to be selected at each time frame to
assure connectedness of the whole network. This problem fits in our general
framework if we let S be the family of all spanning trees of the complete
graph Km. If all edge losses are in [0, 1/(m − 1)] then |`>t v| ≤ 1 holds.
Thus, d =

(
m
2

)
, B =

√
m− 1, and by Cayley’s formula there are N = mm−2

spanning trees.
In order to estimate λmin for this case, we start with a general lemma that

applies for all sufficiently “symmetric” classes S. More precisely, we consider
the case when the elements of S ⊆ {0, 1}d are the incidence vectors of certain
subsets of the edges of a complete graph Km (i.e., d =

(
m
2

)
in these cases).

If i and j are distinct edges of Km, we write i ∼ j when i and j are adjacent
(i.e., they have a common endpoint) and i 6∼ j when i and j are disjoint.

We require that S is sufficiently symmetric, so that if V is drawn uni-
formly at random from S, then the probability P{Vi = 1, Vj = 1} can take
at most three different values depending on whether i = j, i ∼ j, or i 6∼ j.

In such cases, if x = (x1, . . . , xd) is any vector in Rd, then

E
[(
V >x

)2]
=

d∑
i=1

d∑
j=1

xi xj P{Vi = 1, Vj = 1}

= C1

d∑
i=1

x2i + C2

∑
i,j : i∼j

xi xj + C3

∑
i,j : i 6∼j

xi xj (4)

where

C1
def
= P{Vi = 1} ∀ i = 1, . . . , d

C2
def
= P

{
Vi = 1, Vj = 1

}
∀ i, j = 1, . . . , d s.t. i ∼ j

C3
def
= P

{
Vi = 1, Vj = 1

}
∀ i, j = 1, . . . , d s.t. i 6∼ j

are quantities independent of i, j.
This property is true for collections S of “symmetric” subsets of Km, such

as spanning trees, balanced cuts, planar graphs, Hamiltonian cycles, cliques
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of a certain size, etc. The following result provides a general lower bound for
the smallest eigenvalue of the associated matrix M .

Lemma 5. If (4) holds and x ∈ Rd has unit norm, then

E
[(
V >x

)2] ≥ C1 − C3 − |C2 − C3|m−
(C2 − C3)

2

C3

.

Proof. Since ‖x‖ = 1, we have

E
[(
V >x

)2]
= C1 + C2

∑
i,j : i∼j

xi xj + C3

∑
i,j : i 6∼j

xi xj

= C1 − C3 + (C2 − C3)
∑
i,j : i∼j

xi xj + C3

d∑
i,j=1

xi xj .

Denote the summation over all pairs of adjacent edges by

Am =
∑
i,j : i∼j

xixj and let Bm =

(
d∑
i=1

xi

)2

.

With this notation, we have

E
[(
V >x

)2]
= C1 − C3 + (C2 − C3)Am + C3Bm . (5)

Next we need an appropriate estimate for Am. By the Cauchy-Schwarz in-
equality, and using the fact that ‖x‖ = 1,

|Am| =

∣∣∣∣∣
d∑
i=1

xi
∑
j : i∼j

xj

∣∣∣∣∣
≤

√√√√ d∑
i=1

(∑
j : i∼j

xj

)2

=

√√√√ d∑
i=1

( ∑
j,l : j∼i,l∼i

xj xl

)

=

√
(m− 2)

∑
i,j : i∼j

xi xj + 4
∑
i,j : i 6∼j

xi xj . (6)
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The last equality holds because a pair of edges is counted m−2 times if they
are adjacent (m− 2 is the number of edges adjacent to both) and 4 times if
they are not adjacent. We may write the argument of the square root in (6)
as

(m− 2)
∑
i,j : i∼j

xixj + 4
∑
i,j : i 6∼j

xixj = (m− 6)
∑
i,j : i∼j

xixj + 4
∑
i,j

xixj − 4

≤ m |Am|+ 4Bm . (7)

Thus, substituting (7) in (6), and using Bm ≥ 0, we get

|Am| ≤
√
m |Am|+ 4Bm .

Solving the above for |Am| and overapproximating gives

|Am| ≤ m+ 2
√
Bm

which, substituted into (5) yields

E
[
(V >x)2

]
≥ C1 − C3 − |C2 − C3|

(
m+ 2

√
Bm

)
+ C3Bm .

Observing that

C3Bm − 2|C2 − C3|
√
Bm =

(√
C3Bm −

|C2 − C3|√
C3

)2

− (C2 − C3)
2

C3

≥ −(C2 − C3)
2

C3

concludes the proof.

Interestingly, the proof above does not use that fact that x is in the space
spanned by the incidence vectors of S. Thus, the matrix E

[
V V >

]
is positive

definite whenever the lower bound of Lemma 5 is positive. This also implies
that the matrix Pt, which is used to define the pseudo-losses (1), is positive
definite, and thus P+

t can be replaced by P−1t .
Now we may use Lemma 5 to bound λmin in the case of spanning trees

of the complete graph Km. All we need is to calculate the values of C1, C2,
and C3. We do it by applying the theory of electric networks.
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Lemma 6. If V is the incidence vector of a uniform random spanning tree
of Km, then

P{Vi = 1} =
2

m

P
{
Vi = 1, Vj = 1

}
=

3

m2
if i ∼ j

P
{
Vi = 1, Vj = 1

}
=

4

m2
if i 6∼ j .

Proof. Since every spanning tree has m− 1 edges,

P{V1 = 1}+ · · ·+ P{Vd = 1} = m− 1

where d =
(
m
2

)
. By symmetry, P{Vi = 1} = 2/m for all i = 1, . . . , d. The

other two cases can be handled by the “Transfer Current” theorem of Burton
and Pemantle [17], see also Lyons and Peres [18], which implies that for any
i 6= j,

P
{
Vi = 1, Vj = 1

}
=

4

m2
− Y (i, j)2

where Y (i, j) is the voltage difference across the edge j when a unit current
is imposed between the endpoints of edge i. (For the basic notions of electric
networks we refer, e.g., to the books of Doyle and Snell [19] and Lyons and
Peres [18].)

First note that if i and j are not adjacent then Y (i, j) = 0. This holds
because, by symmetry, every vertex not belonging to edge i has the same
voltage, so there is no current flowing through edge j. Thus, P{Vi = 1, Vj =
1} = 4/m2 in this case.

In order to address the case when edges i and j are adjacent, i ∼ j, note
that, by a result of Kirchoff (1847), the voltage difference between the end-
points of i equals the probability 2/m that i belongs to a random spanning
tree (see, e.g., the remark to Corollary 4.4 in [18]). By the above consid-
erations, there is current flow only along paths of length two between the
endpoints of i, that is paths that go through edges j ∼ i. Hence the voltage
difference between the endpoints of j is half the voltage difference between
the endpoints of i, that is |Y (i, j)| = 1/m.

Corollary 7. For the spanning trees of Km,

λmin ≥
1

m
− 17

4m2
.
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Since d =
(
m
2

)
andB =

√
m− 1, the inequality above implies thatB2/(dλmin) <

7 whenever m ≥ 6, and therefore the optimal bound (2) holds. Since
N = mm−2, the performance bound of ComBand in this case implies

E
[
L̂n − Ln(k)

]
≤ 4m3/2

√
2n lnm for m ≥ 6.

Finding computationally efficient algorithms for generating random spanning
trees has been an intensive area of research. Although some of these algo-
rithms may be successfully used in practical implementations, we are not
aware of any algorithm that guarantees an efficient implementation of Com-
Band under all circumstances. Instead of surveying the vast literature, we
mention the celebrated method of Propp and Wilson [21], who present an
algorithm that, given a graph with non-negative weights w(i,j) over the edges,
samples a random spanning tree from a distribution such that the probability
of any spanning tree k is proportional to wt(k) =

∏
(i,j)∈k w(i,j). The expected

running time of the algorithm is bounded by the cover time of an associated
Markov chain that is defined as a random walk over the graph in which the
transition probabilities are proportional to the edge weights. If we apply
Propp and Wilson’s algorithm with weights w(i,j) = exp

(
−η L̃t,(i,j)

)
over the

complete graph Km, then we obtain an implementation of the exponentially
weighted average forecaster. Unfortunately, there is no guarantee that the
cover time is bounded by a polynomial of m, though in practice we expect a
fast running time in most cases. It is an interesting open problem to find an
efficient sampling algorithm for all possible assignments of weights.

5.5. Cut sets

In this section we consider balanced cuts of the complete graph K2m. A
balanced cut is the collection of all edges between a set of m vertices and its
complement. Thus, each balanced cut has m2 edges and there are N =

(
2m
m

)
balanced cuts.

Our starting point in estimating λmin is (5). First, we compute C1, C2,
and C3.

Lemma 8. If V is the incidence vector of a uniform random m-cut in K2m,
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then

P{Vi = 1} =
m

2m− 1

P
{
Vi = 1, Vj = 1

}
=

m(m− 1)

(2m− 1)(2m− 2)
if i ∼ j

P
{
Vi = 1, Vj = 1

}
=

2m(m− 1)2

(2m− 1)(2m− 2)(2m− 3)
if i 6∼ j .

Proof. The sample space is all choices of m-subsets of 2m vertices (note
that each m-cut is counted twice). Fix an edge i = (i−, i+). Then the
number of m-subsets that contain i− and do not contain i+ is clearly

(
2m−2
m−1

)
.

By symmetry, this is also the number of m-subsets that contain i+ and do
not contain i−. Therefore

P{Vi = 1} = 2×
(
2m−2
m−1

)(
2m
m

) =
m

2m− 1
.

Now fix two edges i and j that share a vertex, say i− = j−. The number
of m-subsets that contain i− = j− and do not contain neither i+ nor j+ is(
2m−3
m−1

)
. This is the same as the number of m-subsets that do not contain

i− = j− and contain both i+ and j+. Hence, if i ∼ j,

P
{
Vi = 1, Vj = 1

}
= 2×

(
2m−3
m−1

)(
2m
m

) =
m(m− 1)

(2m− 1)(2m− 2)
.

Finally, fix two disjoint edges i and j. The number of m-subsets that contain
i+, j+ and do not contain neither i− nor j− is

(
2m−4
m−2

)
. By symmetry, this is

also the number of m-subsets that contain i−, j− and do not contain neither
i+ nor j+, which is the same as the number of those that contain i−, j+ and
not i+ or j−, etc. Hence, for i 6∼ j,

P
{
Vi = 1, Vj = 1

}
= 4×

(
2m−4
m−2

)(
2m
m

) =
2m(m− 1)2

(2m− 1)(2m− 2)(2m− 3)

concluding the proof.

Now we may make use of the fact that each balanced cut has the same

number of edges. Thus, if x =
∑(2m

m )
k=1 a(k)v(k) is a linear combination of the
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incidence vectors of all balanced cuts with ‖x‖ = 1, we have
∑

i xi = m2α

where α =
∑(2m

m )
k=1 a(k), which implies that Bm = m4α2.

To compute Am, observe that for any fixed i, the number of edges in any
balanced cut adjacent to i is 2m if the cut doesn’t contain i and 2(m − 1)
otherwise, that is, ∑

j : j∼i

vi(k) =

{
2(m− 1) if vi(k) = 1
2m if vi(k) = 0

so ∑
j : j∼i

xj =
N∑
k=1

a(k)
∑
j : j∼i

vi(k) =
N∑
k=1

a(k) (2m− 2vi(k))

= 2mα− 2
N∑
k=1

a(k)vi(k) = 2mα− 2xi .

Therefore, we have

Am =
∑
i,j : i∼j

xixj =
∑
i

xi
∑
j : j∼i

xj = m3α2 − 2 .

Substituting these values in (5), we have, for m ≥ 2,

E
[(
V >x

)2]
=

1

4
+

8m− 7

4(2m− 1)(2m− 3)

+ α2 m
4(m− 1)

(
2m2 − 2m− 1

)
(2m− 1)(2m− 2)(2m− 3)

.

The minimum is achieved for α = 0, which proves the following.

Proposition 9. For the balanced cuts in K2m, if m ≥ 2 then

λmin =
1

4
+

8m− 7

4(2m− 1)(2m− 3)
.

In this case we have d =
(
2m
2

)
, B = m, and N =

(
2m
m

)
≤ 4m. By Proposition 9

we clearly have B2/(dλmin) ≤ 2 for all m ≥ 2, and therefore the optimal
bound (2) applies and it takes the form

E
[
L̂n − Ln(k)

]
≤ 2m3/2

√
10n ln 4
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which holds whenever all edge losses are between 0 and 1/m2 (and there-
fore |`>t v| ≤ 1). In this case computationally efficient implementations also
exist. Such an implementation may be based on an algorithm of Randall
and Wilson [22] who, building on Jerrum and Sinclair [23], show how to
sample efficiently spin configurations of a ferromagnetic Ising model. The
straightforward details are omitted.

5.6. Hamiltonian cycles

In our next example we consider the set S of all Hamiltonian cycles in
Km, that is all N = (m − 1)!/2 cycles that visit each vertex exactly once
and returns to the starting vertex. The corresponding randomized predic-
tion problem may be thought of as an online version of the traveling salesman
problem. This problem is computationally notoriously difficult and one can-
not expect polynomial-time implementations. Nevertheless, we show that
small regret bounds are achievable by ComBand. To this end, we calculate
λmin.

Proposition 10. If m ≥ 4, then for the class of all Hamiltonian cycles in
Km λmin = 2/(m− 1).

Since d =
(
m
2

)
, N = (m − 1)!/2, and B =

√
m, we have B2/(dλmin) = 1.

Thus the optimal bound (2) applies achieving

E
[
L̂n − Ln(k)

]
≤ 2m

√
3

2
n ln(m!) .

Proof. Once again, our analysis is based on (5). First we calculate the
values of the constants C1, C2, C3. Since each Hamiltonian cycle has m edges,
if V is a random Hamiltonian cycle, then C1 = P{Vi = 1} = 2/(m − 1).
Also, since the degree of every vertex in a Hamiltonian cycle is 2, for any
two adjacent edges i ∼ j, C2 = P{Vi = 1, Vj = 1} = 1

/(
m−1
2

)
. On the other

hand, if i 6∼ j, then

P{Vi = 1, Vj = 1} = P{Vi = 1}P
{
Vj = 1|Vi = 1

}
=

2

m− 1
× m− 3(

m
2

)
− 2(m− 2)− 1

because there are
(
m
2

)
− 2(m− 2)− 1 edges in Km that are not adjacent to i

and all of them are equally likely to be any of the remaining m− 3 edges of
the cycle V . Thus, C3 = 4/(m− 1)(m− 2).
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Now let x =
∑N

k=1 a(k)v(k) be a linear combination of the incidence
vectors of all Hamiltonian cycles such that ‖x‖ = 1. The crucial observation
is the following: since every v(k) has m edges, and the degree of every vertex
equals 2, we have

∑
i

xi =
N∑
k=1

a(k)
∑
i

vi(k) = mα .

This implies that

Bm =

(
d∑
i=1

xi

)2

= m2α2 .

Observe that for any fixed i, the number of edges in any Hamiltonian cycle
adjacent to i is 4 if the cycle doesn’t contain i and 2 otherwise, that is,∑

j : j∼i

vi(k) =

{
2 if vi(k) = 1
4 if vi(k) = 0

Thus,

∑
j : j∼i

xj =
N∑
k=1

a(k)
∑
j : j∼i

vi(k) =
N∑
k=1

a(k) (4− 2vi(k))

= 4α− 2
N∑
k=1

a(k)vi(k) = 4α− 2xi .

Using this, we have

Am =
∑
i

xi
∑
j : j∼i

xj =
∑
i

xi (4α− 2xi) = 4mα2 − 2
∑
i

x2i = 4mα2 − 2 .

Substituting these values in (5), we have

E
[(
V >x

)2]
=

2(m− 4)

(m− 1)(m− 2)
+

2 (2m2α2 − 4mα2 + 2)

(m− 1)(m− 2)

=
2

m− 1
+

4mα2

m− 1
≥ 2

m− 1
.

with equality achieved for
∑

k a(k) = 0.
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5.7. Stars

Here we consider a problem related to that of Section 5.4. Suppose that
in a fully connected communication network, the decision maker wishes to
select a “central” node such that the sum of the losses associated to all edges
adjacent to the node is minimal. This leads us to considering the class of all
stars. A star is a subgraph of Km which contains all m − 1 edges incident
on a fixed vertex. Thus, there are m different stars in Km. Consider the set
S of all stars and let V be the incidence vector of a random star, chosen
uniformly.

Proposition 11. For the stars in Km,

λmin =
m− 3

2(m− 2)
+

1

m
.

Here d =
(
m
2

)
, N = m, and B =

√
m− 1. Thus we have B2/(dλmin) ≤ 1

2
and

the optimal bound (2) applies with

E
[
L̂n − Ln(k)

]
≤ 2m

√
n lnm .

The implementation of ComBand is trivially efficient in this case.

Proof. Clearly, P{Vi = 1} = 2/m, P{Vi = 1, Vj = 1} = 1/m if i ∼ j and
P{Vi = 1, Vj = 1} = 0 if i 6∼ j. Therefore,

E
[(
V >x

)2]
=

2

m
+
Am
m

where Am =
∑

i,j : i∼j xixj. Let x =
∑m

k=1 akvk be such that ‖x‖ = 1. This
means that

1 =
d∑
i=1

(
m∑
k=1

akv
(k)
i

)2

=
m∑
k=1

m∑
k′=1

akak′
d∑
i=1

v
(k)
i v

(k′)
i .

Since
d∑
i=1

v
(k)
i v

(k′)
i =

{
1 if k 6= k′

m− 1 if k = k′,

we have

(m− 2)
m∑
k=1

a2k +

(
m∑
k=1

ak

)2

= 1 . (8)
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Now

Am =
∑
i,j : i∼j

(
m∑
k=1

akv
(k)
i

)(
m∑
k=1

akv
(k)
j

)
=

m∑
k,k′=1

akak′

( ∑
i,j : i∼j

v
(k)
i v

(k′)
j

)
.

Observe that ∑
i,j : i∼j

v
(k)
i v

(k′)
j =

{
2(m− 1) if k 6= k′(
m−1
2

)
if k = k′.

So

Am =

((
m− 1

2

)
− 1

) m∑
k=1

a2k + 2(m− 1)

(
m∑
k=1

ak

)2

.

Expressing
∑m

k=1 a
2
k from (8), and substituting in the expression above, we

obtain

Am =
m(m− 3)

2(m− 2)
+

(
m∑
k=1

ak

)2(
2(m− 1)− m(m− 3)

2(m− 2)

)
≥ m(m− 3)

2(m− 2)
.

In conclusion,

λmin ≥
2

m
+

m− 3

2(m− 2)

with equality for
∑

k ak = 0.

5.8. m-sized subsets

Consider S to be the set of all v ∈ {0, 1}d such that
∑d

i=1 vi = m for
some fixed m with 1 ≤ m < d.

Proposition 12. For the m-sized subsets,

λmin =
m(d−m)

d(d− 1)
.

We have B =
√
m, N =

(
d
m

)
. Then

B2

dλmin

=
d− 1

d−m
.

Thus the optimal bound (2) applies whenever m = o(d). In this case the
regret bound has the form

E
[
L̂n − Ln(k)

]
= O

(√
nmd ln d

)
.
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Note that also in this case ComBand can be implemented efficiently using
dynamic programming (see, e.g., Takimoto and Warmuth [12]).

Proof. Pick x ∈ U such that ‖x‖ = 1. Note that

d∑
i=1

xi =
N∑
k=1

a(k)
d∑
i=1

vi(k) = m

N∑
k=1

a(k) = mα .

Since for any i,

P
{
Vi = 1

}
=

(
d−1
m−1

)(
d
m

) =
m

d

and for any i 6= j

P
{
Vi = 1, Vj = 1

}
=

(
d−2
m−2

)(
d
m

) =
m(m− 1)

d(d− 1)

we can write

E
[(
V >x

)2]
=

d∑
i=1

d∑
j=1

xixj P{Vi = 1, Vj = 1}

=
m

d

d∑
i=1

x2i +
m(m− 1)

d(d− 1)

∑
i,j : i 6=j

xixj

=

(
m

d
− m(m− 1)

d(d− 1)

) d∑
i=1

x2i +
m(m− 1)

d(d− 1)

∑
i,j

xixj

=

(
m

d
− m(m− 1)

d(d− 1)

)
+
m(m− 1)

d(d− 1)
m2α2

=
m(d−m)

d(d− 1)
+
m3(m− 1)

d(d− 1)
α2 ≥ m(d−m)

d(d− 1)

with equality whenever α = 0.

5.9. Path planning

The path planning problem, described in Section 3, is one of the most
important motivating examples of the bandit linear optimization problem.
As mentioned in the introduction, a regret of the order of

√
nd lnN is achiev-

able if the loss of each edge of the chosen path is revealed to the forecaster
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(here d denotes the number of edges of the graph). If only the total loss
of the selected path becomes known to the decision maker (as in the model
considered in this paper), then the results of Dani, Hayes, and Kakade [7]
imply a regret bound of the order of B

√
nd lnN where B2 is the length of

the longest path in the collection. We conjecture that this bound is sub-
optimal. However, optimal sampling is a non-trivial issue in general. To see
why uniform sampling does not work, consider the case when the graph is
the m×m square grid (i.e., the vertex set is identified with pairs of integers
(i, j) with i, j ∈ {1, . . . ,m} and vertices (i, j) and (i′, j′) are joined by an
edge if and only if |i − i′| + |j − j′| = 1) and the class S of paths is the set
of all monotone paths between vertex (1, 1) and (m,m) (there are

(
2m−2
m−1

)
of

them, all of length 2m − 2). If µ is uniform on S, then the edges adjacent
to vertices (1,m) and (m, 1) are in the sampled path with probability that is
exponentially small in m. Thus, there is no chance to achieve a regret bound
that depends only polynomially on the number of edges. (Just consider a
sequence of loss vectors such that, for all t, all edge losses are 1/(2m − 2)
except for the ones adjacent to vertex (1,m) which are equal to zero.) De-
signing a general nearly optimal sampling distribution for the path planning
problem is an interesting open problem.

6. Conclusions

In this work we have investigated the problem of bandit online linear
optimization when the action set S is a finite subset of {0, 1}d, the action
vectors v ∈ S satisfy ‖v‖ ≤ B, and the loss vectors `t satisfy |`>t v| ≤ 1. We
introduced and analyzed a new randomized forecasting strategy, ComBand,
closely related to the GeometricHedge algorithm of [7].

Although the regret of ComBand can not be improved in general, in
some interesting cases (like the path planning problem) ComBand has a
suboptimal performance because a uniform initial sampling distribution µ
causes the smallest nonzero eigenvalue λmin to get too small. In general, µ
can be chosen in order to maximize λmin by solving a semidefinite program.
We conjecture that for the path planning problem this choice of µ is polytime
computable, and ComBand, run with this µ, has optimal regret

√
nd lnN .

Appendix A. Proof of Theorem 1

First we need some auxiliary results.
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Lemma 13. Let V be a random vector whose distribution is finitely sup-
ported in Rd. Let M = E

[
V V >

]
. Then MM+v = v for all v ∈ Rd such

that P{V = v} > 0.

Proof. To prove the statement we show that for all x ∈ Rd such that
M x = 0 and for all v ∈ Rd such that P{V = v} > 0, it must be the case
that x>v = 0. Pick any x ∈ Rd such thatM x = 0. This implies x>M x = 0.

Using the definition of M we obtain 0 = x>M x = E
[(
x>V

)2]
. But then it

must be the case that x>v = 0 for all v such that P{V = v} > 0.

Let Qt = E
[
V V >

]
where V has law qt. Note that Qt is always positive

semidefinite since it is a convex combination of positive semidefinite matrices
v(k)v(k)>.

Corollary 14. Pt P
+
t v = v for all t and all v in the linear span of S.

Proof. Since Pt = (1−γ)Qt+γ M , for all t and v(k) ∈ S, pt(k) > 0. Thus,
Lemma 13 implies the result.

Lemma 15. Let V be a random element of Rd and let P = E
[
V V >

]
. Then

E
[
V >P+V

]
= rank(P ).

Proof. By the spectral theorem,

P =
d∑
i=1

λi ui u
>
i

where λi ≥ 0 and u1, . . . ,ud is an orthonormal basis. Then, for any v ∈ Rd,

v>P+v =
∑
i :λi>0

v>
ui u

>
i

λi
v =

∑
i :λi>0

1

λi
u>i v v>ui .

This implies

E
[
V >P+V

]
=
∑
i :λi>0

1

λi
u>i E

[
V V >

]
ui =

∑
i,j :λi,λj>0

λj
λi

u>i uju
>
j ui

=
∑
i :λi>0

(
u>i ui

)2
= rank(P ) .
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Proof of Theorem 1. Let Et be the expectation operator conditioned on
the first t − 1 random draws K1, . . . , Kt−1 (i.e., expectation with respect to
the distribution pt−1). Recall that ct(k) = `>t v(k) for k = 1, . . . , N , so

Et ct(Kt)v(Kt) = Pt−1 `t. Since c̃t(k) = ˜̀>t v(k), and since Corollary 14 gives

Et ˜̀t = `1t where `1t is the orthogonal projection of `t to the linear space
spanned by S, we obtain Et c̃t(k) = ct(k) for all k = 1, . . . , N .

For each k ∈ {1, . . . , N} define the cumulative pseudo-loss L̃n(k) =
c̃1(k) + · · · + c̃n(k). Since for every k∗ ∈ {1, . . . , N}, W n =

∑N
k=1wn(k) ≥

wn(k∗) = exp(−η L̃n(k∗)), we have

ln
W n

W 0

≥ −η L̃n(k∗)− lnN . (A.1)

On the other hand, assuming that η|c̃t(k)| ≤ 1 for all t and k (this condition
will be verified later), and using ex ≤ 1 +x+x2 for |x| ≤ 1 and ln(1 + y) ≤ y
for y > −1 gives

ln
W t

W t−1
= ln

N∑
k=1

pt−1(k)− γµ(k)

1− γ
exp
(
−η c̃t(k)

)
(A.2)

≤ ln
N∑
k=1

pt−1(k)− γµ(k)

1− γ

(
1− η c̃t(k) + η2c̃t(k)2

)
≤ − η

1− γ

N∑
k=1

pt−1(k)c̃t(k) +
ηγ

1− γ

N∑
k=1

c̃t(k)µ(k)

+
η2

1− γ

N∑
k=1

pt−1(k)c̃t(k)2 .
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The last term on the right-hand side can be written as follows

N∑
k=1

pt−1(k) c̃t(k)2 =
N∑
k=1

pt−1(k)

(
d∑
i=1

vi(k) ˜̀t,i)( d∑
j=1

vj(k) ˜̀t,j)

=
N∑
k=1

pt−1(k)

(
d∑

i,j=1

vi(k) vj(k) ˜̀t,i ˜̀t,j)

=
d∑

i,j=1

˜̀
t,i
˜̀
t,j

(
N∑
k=1

vi(k) vj(k) pt−1(k)

)

=
d∑

i,j=1

˜̀
t,iPt−1(i, j)˜̀t,j

= ˜̀>t Pt−1˜̀t
= ct(Kt)v(Kt)

>P+
t−1Pt−1P

+
t−1v(Kt)ct(Kt)

≤ v(Kt)
>P+

t−1v(Kt)

where we used the assumption |c(Kt)| ≤ 1. Summing for t = 1, . . . , n both
sides of the inequality (A.2) gives

ln
W n

W 0

≤ − η

1− γ

n∑
t=1

N∑
k=1

pt−1(k)c̃t(k) +
ηγ

1− γ

n∑
t=1

N∑
k=1

c̃t(k)µ(k)

+
η2

1− γ

n∑
t=1

v(Kt)
>P+

t−1v(Kt) .

Combining the above with (A.1), multiplying both sides by (1 − γ)/η > 0,
and using (1− γ)(lnN)/η ≤ (lnN)/η, gives

n∑
t=1

N∑
k=1

pt−1(k)c̃t(k) ≤ (1− γ)L̃n(k∗) +
lnN

η
+ γ

n∑
t=1

N∑
k=1

c̃t(k)µ(k)

+ η

n∑
t=1

v(Kt)
>P+

t−1v(Kt) . (A.3)

We now take expectation on both sides and use E c̃t(k) = ct(k) for all t and
k. For the first and third term on the right-hand side this gives

E L̃n(k∗) = ELn(k∗) and E

[
n∑
t=1

N∑
k=1

c̃t(k)µ(k)

]
≤ n . (A.4)
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The expectation of the term on the left-hand side is

E

[
n∑
t=1

N∑
k=1

pt−1(k)c̃t(k)

]
= E

[
n∑
t=1

N∑
k=1

pt−1(k)Et c̃t(k)

]

= E

[
n∑
t=1

N∑
k=1

pt−1(k)ct(k)

]

= E

[
n∑
t=1

Etct(Kt)

]

= E

[
n∑
t=1

ct(Kt)

]
. (A.5)

Finally, we handle the expectation of the last term on the right-hand side
of (A.3). Applying Lemma 15,

Et
[
V >P+

t−1V
]
≤ d (A.6)

where V is distributed according to pt−1 and Et
[
V V >

]
= Pt−1. Substitut-

ing (A.4), (A.5), and (A.6) into (A.3) gives, for every k∗ ∈ {1, . . . , N},

E

[
n∑
t=1

ct(Kt)− Ln(k∗)

]
≤ −γ ELn(k∗) +

lnN

η
+ γ n+ d η n

≤ lnN

η
+ 2γ n+ d η n (A.7)

where we used |ct(k∗)| ≤ 1 to bound −ELn(k∗) ≤ n.
In order to enforce the condition η |c̃t(k)| ≤ 1 we write

|c̃t(k)| =
∣∣v(k)>˜̀t∣∣ ≤ |ct(Kt)|

∣∣v(k)>P+
t−1v(Kt)

∣∣ ≤ ∥∥P+
t−1
∥∥ max

v∈S
‖v‖2

≤ B2

λmin(Pt−1)

where λmin(Pt−1) is the smallest nonzero eigenvalue of Pt−1, and we used, once
more, |ct(Kt)| ≤ 1 and ‖v‖2 ≤ B2. Let λmin = λmin(M). By Weyl’s inequal-
ity, λmin

(
Pt−1

)
≥ γ λmin, which in turn implies that |c̃t(k)| ≤ B2

/
(γ λmin).
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Hence we choose η = γ λmin

/
B2 and (A.7) becomes

E

[
n∑
t=1

ct(Kt)− Ln(k)

]
≤ B2 lnN

γ λmin

+ γλmin

(
d

B2
+

2

λmin

)
n .

Letting

γ =
B

λmin

√√√√ lnN

n
(

d
B2 + 2

λmin

)
finally yields

E

[
n∑
t=1

ct(Kt)− Ln(k)

]
≤ 2

√(
2B2

d λmin

+ 1

)
nd lnN

which ends the proof of Theorem 1.
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