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On the Performance of Clustering in Hilbert Spaces

Gérard Biau, Luc Devroye, and Gabor Lugosi

Abstract—Based on n randomly drawn vectors in a separable
Hilbert space, one may construct a k-means clustering scheme by
minimizing an empirical squared error. We investigate the risk
of such a clustering scheme, defined as the expected squared
distance of a random vector X from the set of cluster centers.
Our main result states that, for an almost surely bounded X,
the expected excess clustering risk is O(4/1/n). Since cluster-
ing in high (or even infinite)-dimensional spaces may lead to
severe computational problems, we examine the properties of a
dimension reduction strategy for clustering based on Johnson-
Lindenstrauss-type random projections. Our results reflect a
tradeoff between accuracy and computational complexity when
one uses k-means clustering after random projection of the data
to a low-dimensional space. We argue that random projections
work better than other simplistic dimension reduction schemes.

Index Terms—Clustering, k-means, Vector quantization,
Hilbert space, Empirical risk minimization, Random projections.

I. INTRODUCTION

Clustering is the problem of identifying groupings of similar
points that are relatively isolated from each other, or, in
other words, to partition the data into dissimilar groups of
similar items (Duda, Hart, and Stork [14, Chapter 10]). This
unsupervised learning paradigm is one of the most widely used
techniques in exploratory data analysis. Across all disciplines,
from social sciences to biology or computer science, practi-
tioners try to get a first intuition about their data by identifying
meaningful groups of observations. In data compression and
information theory, the clustering problem is known as vector
quantization or lossy data compression. Here, the goal is to
find an efficient and compact representation from which the
original observations can be reconstructed with a prescribed
level of accuracy (see Gersho and Gray [18], Gray and Neuhoff
[20], Linder [30]).

Whatever the terminology used, an observation is usually
supposed to be a collection of numerical measurements repre-
sented by a d-dimensional vector. However, in some problems,
input data items are in the form of random functions (speech
recordings, spectra, images) rather than standard vectors, and
this casts the clustering problem into the general class of func-
tional data analysis. Even though in practice such observations
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are observed at discrete sampling points, the challenge in this
context is to infer the data structure by exploiting the infinite-
dimensional nature of the observations. The last few years
have witnessed important developments in both the theory
and practice of functional data analysis, and many traditional
data analysis tools have been adapted to handle functional
inputs. The book of Ramsay and Silverman [40] provides a
comprehensive introduction to the area.

Interestingly, infinite-dimensional observations also arise
naturally in the so-called kernel methods for general pattern
analysis. These methods are based on the choice of a proper
similarity measure, given by a positive definite kernel defined
between pairs of objects of interest, to be used for inferring
general types of relations. The key idea is to embed the
observations at hand into a (possibly infinite-dimensional)
Hilbert space, called the feature space, and to compute inner
products efficiently directly from the original data items using
the kernel function. The use of kernel methods for clustering
is very natural, since the kernel defines similarities between
observations, hence providing all the information needed to
assess the quality of a clustering. For an exhaustive presenta-
tion of kernel methodologies and related algorithms, we refer
the reader to Scholkopf and Smola [41], and Shawe-Taylor
and Cristianini [42].

Motivated by this broad range of potential applications,
we propose, in the present contribution, to investigate the
general problem of clustering when observations take values
in a separable Hilbert space H. Thus, in our model, the
data to be clustered is a sequence of independent H-valued
random observations X1,..., X, with the same distribution
as a generic random variable X. The goal of clustering is to
find an assignment of each variable to one of a finite number
k of classes. Throughout, we will denote by (-,-) the inner
product in H, and by ||-|| the associated norm. In particular, we
focus on the so-called k-means clustering, which prescribes a
criterion for partitioning the sample X1, ..., X, into k groups,
or clusters, by minimizing the empirical squared norm criterion

1<
Wie,pn) = > min X — ¢ (M
=1

over all possible choices of cluster centers ¢ = (¢y,...,cx) €
‘H*. Here, in, 18 the empirical distribution of the data, defined
by

1 n
,u'n(A) = ﬁ Z]I{XiEA}
=1

for every Borel subset A of H. Associated with each center
c; is the convex polyhedron S; of all points in H closer to c;
than to any other center, called the Voronoi cell of ¢; (ties are
broken arbitrarily). Each X is assigned to its nearest center,
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and each empirically optimal center c,1,...,cyk is just the
mean of those X;’s falling in the corresponding cluster.

The performance of a clustering scheme given by the
collection ¢ = (cy,...,cr) € HF of cluster centers (and the
associated Voronoi partition of H) is measured by the mean
squared error or clustering risk

Wi, p) = /j:nlli.n i |z — ¢;]|* du(x). 2
The optimal clustering risk is defined as
W*(p) = inf Wi(c,p) .
(u) = inf W(e,p)

Since the early work of Hartigan [21], [22] and Pollard [35],
[36], [37], the problem of k-means clustering and its algo-
rithmic counterparts have been considered by many authors.
Convergence properties of the empirical minimizer c,, of the
clustering risk have been mostly studied in the case when
H = R9 Consistency of ¢, was shown by Pollard [35],
[37] and Abaya and Wise [1] who prove that in RY, the
infimum in the definition of W*(u) is achieved and that
W (cn, i) — W*(u) almost surely (a.s.) as n — oo, whenever
E[|X|? < oo. Rates of convergence and nonasymptotic
performance bounds have been considered by Pollard [36],
Chou [11], Linder, Lugosi, and Zeger [31], Bartlett, Linder,
and Lugosi [7], Linder [29], [30], Antos [3], and Antos, Gyorfi,
and Gyorgy [4]. For example, it is shown in [7] that if p is
such that P{|| X|| < 1} =1, then

1-2/d4]
EW (Cou 1) — W* (1) < Cmin (\/’jf ,\/knd‘W)

3
where C is a universal constant. On the other hand, there exists
a constant ¢ and p with P{||X|| < 1} =1 such that

kl—4/d

EW (e, ) = W (1) 2 ¢/ *—
For further references, consult Graf and Luschgy [19] and
Linder [30]. Note that the upper bounds mentioned above
become useless when d is very large. In our setup, in which
we allow X to take values in an infinite-dimensional Hilbert
space, substantially different arguments are called for. In
Section II, we prove that when P{||X|| < 1}, the expected
excess clustering risk EW (c,,, ) — W*(u) is bounded by
Ck/+/n, where C is a universal constant. We also examine
the case where X is not bounded. In order to do this, we
replace the VC and covering number arguments by techniques
based on Rademacher averages.

It is important to point out that minimizing the empirical
clustering risk is a computationally hard problem as all known
algorithms have a computational complexity exponential in
the dimension of the space. In practice approximate solutions
are needed, often leading to local optima. In this study we
ignore this computational issue and assume that an (approx-
imate) minimizer of the empirical clustering risk can be
found. In Section III we discuss computational complexity
from a different point of view: we propose to use Johnson-
Lindenstrauss-type random projections as an effective tool for
dimension reduction. This is independent of the particular

algorithm used to minimize the empirical squared error. Our
results reflect a tradeoff between accuracy and computational
complexity (measured as the dimension of the space in which
the clustering is performed) when one uses k-means clustering
after random projection of the data to a low-dimensional space.
We argue that random projections work better than other
simplistic dimension reduction schemes. Proofs are postponed
to Section IV.

II. CLUSTERING PERFORMANCE IN HILBERT SPACES

Recall that the training data consists of n independent
‘H-valued random observations Xi,..., X, with the same
distribution as a generic random variable X with distribution
. Throughout the paper, we suppose that E||X[|? < oo.

Let 0, > 0. A collection ¢, = (¢p1,-..,cnk) of vectors is
called a d,,-minimizer of the empirical clustering risk (1) over
H* if

W(cn, ptn) < W*(ln) + 65

where W*(uy,) = infocpyr W(e, pir). When 6, = 0, ¢, is
called an empirical clustering risk minimizer. (Note that the
existence of an empirical risk minimizer is guaranteed by the
fact that yu,, is supported on at most n points.) The following
consistency result states that the clustering risk W (c,, u)
should be close to the optimal risk W*(u) = infocqr Wi(c, p)
as the size of the training data grows.

Proposition 2.1: Assume that E|| X ||? < oo. Let c,, be a §,,-
minimizer of the empirical clustering risk. If lim,, ., §,, = 0,
then

(1) lim W(cp,u) =W*(u) as.,

and
(“) nlLH;o EW(CTH ,u) =W (/’L) :
In the Euclidean case, that is, when H is isomorphic to
some RY (d > 1), statement (i) is due to Pollard [37] (see
also Pollard [35], [36]) and Abaya and Wise [1]. The proof
of the general case is essentially similar—for the sake of
completeness, we sketch it in Section IV, where we also show
that (4¢) is a consequence of (¢) and some properties of the
Lo Wasserstein distance (Rachev and Riischendorf [38], [39])
between p and fy,.

Clearly, the consistency result of Proposition 2.1 does not
provide any information on how many training samples are
needed to ensure that the clustering risk of the d,-optimal
empirical centers is close to the optimum. The starting point
of our analysis is the following elementary inequality (see
Devroye, Gyorfi, and Lugosi [13, Chapter 8]):

EW (cp 1) — W (1)
E (W (ens 1) — W (Cas 1)) + (W (Ca i) — W* ()]

< E sup (W(c, ) — Wi, p))
ceHF
+ sup E(W(C,H) - W(Cnun)) +0n
ceHF

Roughly, this means that if we can guarantee that the uniform
deviation

E sup (W(Cvlf"n) -

W(c, 1))
ceHF
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of estimated clustering risks from their true values is small,
then the risk of the selected c,, is close to the best risk over
all ¢ in ¥, In R?, this can be achieved by exploiting standard
techniques from empirical process theory such as entropy
methods or the Vapnik-Chervonenkis inequality [43]. How-
ever, in infinite-dimensional Hilbert spaces these techniques
yield suboptimal bounds.

In the next theorem we exhibit a universal upper bound
which is valid in any separable (possibly infinite-dimensional)
Hilbert space. To achieve this goal, we use a measure of
complexity of a function class, successfully employed in
learning theory, known as the Rademacher averages (Bartlett,
Boucheron, and Lugosi [6], Koltchinskii [26]; see also Bartlett
and Mendelson [8], Bartlett [5], and Ambroladze, Parrado-
Hernandez, and Shawe-Taylor [2]). Contrary to the VC
techniques used to derive (3), the structural properties of
Rademacher averages (see Bartlett and Mendelson [8]) make
it a suitable tool to derive a dimension-free bound. For any
R >0, let P(R) denote the set of probability distributions on
‘H supported on Fpg, the closed ball of radius R centered at
the origin. In other words, u € P(R) is equivalent to

P{IX|| < R} - 1.

The main result of this section is the following:
Theorem 2.1: Assume that p € P(R). For any J,-
minimizer c,, of the empirical clustering risk, we have

8kR \/E| X2 + 4kR?
BV (e 1) — W () < B VE ﬁU o,

and, consequently,
12k R?
Vn

Remark. (DEPENDENCE ON k.) As we mentioned in the
introduction, in R? the expected excess risk may be bounded
by a constant multiple of \/kd/n. Even though the bound of
Theorem 2.1 gets rid of the dependence on the dimension, this
comes at the price of a worse dependence on the number & of
clusters. The linear dependence on k is a consequence of our
proof technique and we do not know whether it is possible to
prove a bound of the order of \/k/n. This would match the
stated lower bound (when d is large).

Corollary 2.1: Suppose that ;1 € P(R). Then, for any = >

x

0, with probability at least 1 — e~ 7%,
12kR* + 4R*\/2x
e +

The requirement P{|| X || < R} =1 is standard in the cluster-
ing and data compression literature, where it is often called
the peak power constraint. As stated by the next theorem, this
requirement can be removed at the price of some technical
complications.

Theorem 2.2: Assume that E[| X||?> < oo. For any z > 0,
there exist positive constants C'(u) and Ng = No(p, k, ) such
that, for all n > Ny, with probability at least 1 — 2e™7%,

kE+ ez
O -
NG +

EW (cp, ) — W*(u) < + 0, .

W (ew 1) — W (p) < b

W(cnaﬂ) - W*(:u') < C(,LL)

Remark. (FAST RATES.) In the finite-dimensional problem,
there are some results showing that the convergence rate can
be improved to O(1/n) under certain assumptions on the
distribution. Based on a result of Pollard [36] showing that for
sources with continuous densities satisfying certain regularity
properties, including the uniqueness of the optimal cluster
centers, the suitably scaled difference of the optimal and
empirically optimal centers has asymptotically multidimen-
sional normal distribution, Chou [11] pointed out that for such
distributions the expected excess risk decreases as O(1/n).
Further results were obtained by Antos, Gyorfi, and Gyorgy
[4] who prove that for any fixed distribution supported on a
given finite set the convergence rate is O(1/n), and provide
for more general (finite-dimensional) distributions conditions
implying an O(logn/n) rate of convergence. As pointed out
by the authors, these conditions are, in general, difficult to
verify. Recent general results of Koltchinskii [27] on empirical
risk minimization show that whenever the optimal clustering
centers are unique, and the distribution has a bounded support,

the expected excess risk converges to zero at a rate faster than
-1/2
n .

III. RANDOM PROJECTIONS

In practice, handling high or infinite-dimensional data re-
quires some dimension reduction techniques. A common prac-
tice to reduce dimension is by projecting the observations
onto a lower-dimensional subspace that captures as much
as possible the variation of the data. The most widely used
methods achieving this goal are factorial methods, such as
principal component analysis (see, e.g., Mardia, Kent, and
Bibby [33]) and its functional versions (see Ramsay and
Silverman [40]). Unfortunately, most factorial methods in
high-dimensional spaces are computationally expensive, with
no guarantee that the distances between the original and
projected observations are well preserved. In this section we
argue that random projections to lower-dimensional subspaces
are particularly well suited for clustering purposes.

In the random projection method, the original high-
dimensional observations are projected onto a lower-
dimensional space using a suitably scaled random matrix
with independent, normally distributed entries. Random pro-
jections have been found to be a computationally efficient,
yet sufficiently accurate method for dimensionality reduction.
Promising experimental results are reported in Bingham and
Mannila [9]. The key idea of random mapping arises from
the Johnson-Lindenstrauss lemma [24], which states that any
n point set in a Euclidean space can be embedded in a
Euclidean space of dimension O(logn/e?) without distorting
the distances between any pair of points by more than a factor
of 1 £ e, for any € € (0,1). The original proof of Johnson
and Lindenstrauss was simplified by Frankl and Maehara [16],
[17], and further worked out using probabilistic techniques by
Dasgupta and Gupta [12].

The Johnson-Lindenstrauss lemma is usually stated in the
Euclidean setting, that is, when H ~ R¢ (d > 1). The
general case requires some simple adaptations, detailed below.
Recently, this lemma has found several applications, including
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Lipschitz embeddings of graphs into normed spaces (Linial,
London, and Rabinovich [32]) and searching for approximate
nearest neighbors (see Kleinberg [25], Indyk and Motwani
[23D.

To describe the random projections we suppose, without
loss of generality, that H is infinite-dimensional. Since H is
assumed to be separable, we may identify it with the space
% of all sequences = (z4)q>1 such that > oo | 22 < oc.
Each data point X; (: = 1,...,n) is now represented by a
vector in £2, denoted, with a slight abuse of notation, by X; =
(xM x* )

Let sbea positive integer, and let (N14)a>1,- - -, (Nsa)a>1
be s independent sequences of independent centered normal
random variables with variance 1/s. For each D > 1, set

XDJZXD:NMX}“) j=1,...,s,
a=1
or, in matrix form,
XA Ni Nip x®
X:i]?s ) N:s1 N:sD Xi(:D)

Conditioned on X1, ..., X,, for fixed ¢ and j, the sequence
(X 7DJ) p>1 1s a sum of independent centered random variables,
and therefore it is a martingale. Moreover, denoting by Ex
expectation taken with respect to the normal random variables
(conditioned on X7,...,X,),

Z ) <X

Thus, the sequence (X”)p>1 is a martingale bounded in
Ly. Consequently, it converges almost surely and in Lo to
some random variable X; ; (see, e.g., Williams [45]). More-
over, there exists a random variable Z;; in Lo such that
|X || < Z; ;. It follows by dominated convergence that

(R4
S

l)liinmEN(ij) —EnX7; =

The vector X; = (X, 1,...,X;s) € R® may be regarded
as a random projection of X; to an s-dimensional subspace.
(Note however that this is not an orthogonal projection stricto
sensu.) Clearly, for fixed X;, each component X; ; is a normal
random variable with mean 0 and variance || X;||?/s. There-
fore, Ex || X;]|? = || X;]|? and (with X; fixed) s||X;]|%/[|X; |
has x? distribution with s degrees of freedom. Similarly, for
any i #1i' € {1,...,n},

En|[Xi - Xoll* = |1 X; - X |

and s||X; — Xy||?/||X; — Xi||? has x? distribution with
s degrees of freedom. Now by a simple Chernoff bound
(Chernoff [10]) for the x? distribution, we have

X — X2
Pl [

s
I = Aell 4 < [7 et (1 ]
X X >5}exp 2( e+1In(1+¢))

and, similarly,

IP’N{ | X — X2
| X — X ||?

By the union bound we obtain the following:

Theorem 3.1 (Johnson-Lindenstrauss lemma): Let 'H be a
separable Hilbert space. For any ¢,d € (0, 1) and any positive
integer n, let s be a positive integer such that

3 /9y—1 n
€’/3) " log — .

/3)"" log 7
Define a linear map f : H — R® as a random projection
described above. Then, for any set D of n points in H, with
probability at least 1 — 0, for all (u,v) € D2,

(L =e)u—vl* < I f(u) = f0)]|* <

Thus, random projections approximately preserve pairwise
distances in the data set, and therefore are particularly well
suited for the purposes of k-means clustering.

Let s = [4(%2/2 — £3/3)7 log(n/V/6)] and let
Xi,...,X, € R® be the randomly projected data points
Xi,...,X,. We propose the following algorithm:

Determine a collection €, = (Cn1,...,Cnk) € (R$)F
of cluster centers which minimizes the empirical clustering
risk in R® based on the projected data X 1y--- Ym and let
Sni,...,Snr C R® be the associated Voronoi cells. Define
the cluster centers in H by

o Y Xlzes.
Cnj = T ’ ]:la-'-aka
Zi:l H{X;eﬁm-}

—-1< 5} < exp [g(€+ln(1 fs))] .

s> 4(e%/2 -

(1+e)fu—f* .

and denote by ¢,, the collection of these k centers. The cluster
centers then determine the associated Voronoi partition of H
into k cells. The following result ensures that replacing the
empirically optimal cluster centers c,, by ¢, does not harm
too much.

Theorem 3.2: Fix the sample D = {Xi,...,X,}. For
any £,0 € (0,1), let the positive integer s and the random
projection be as in Theorem 3.1 above. Then, with probability
at least 1 — 0,

~ 1+e¢
W(Cn:,un) < 17_5 W(CTHIJ’TL) .

We may combine this with results of the previous sections
to establish performance bounds for the clustering algorithm
based on random projections.

Corollary 3.1: Assume that ;1 € P(R), and let e € (0,1/2)
and § € (0,1). Define s = [4(e2/2 — £3/3) "' log(n/V9)],
and consider the clustering centers ¢,, found by the clustering
algorithm based on random projections described above. Then,
for any = > 0, with probability at least 1 —e™* (with respect
to the random sample), with probability at least 1 — § (with
respect to the random projections),

24kR? + 12R*\/2z
vn
Remark. This corollary shows a tradeoff between perfor-

mance and computational complexity. If one projects onto
a space of dimension O(logn/e?), the price to pay is an

W(cn, ) =W () < +4eR? .
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excess clustering risk of the order of €. With other, simplistic,
dimension reduction techniques no such bounds can be proven.
Consider, for example, a commonly used dimension reduction
technique that simply keeps the first m, components of
X (in an orthonormal representation of X), where m,, is
some pre-specified positive integer, possibly growing with
the sample size. Then it is easy to see that, even though
almost sure convergence of the clustering risk to the optimum
may be achieved, convergence may be arbitrarily slow. For
concreteness, assume that X takes its values in ¢2. Let
k = 1 and suppose that u is concentrated on just one point,
¢ = (e1,c2,...), where the ¢,’s are nonnegative numbers with
D e ¢ < oco. Then the optimal cluster center is clearly ¢, but
by truncating at the first m,, components the best one can
do is to take ¢’ = (¢1,...,¢m,,0,0,...), giving a clustering
risk equal to > 2. No matter how fast m,, grows, the
clustering risk may converge to zero at an arbitrarily slow rate.

Another popular dimension reduction technique is based on
principal component analysis, see Vempala and Wang [44]
for an explanation of its advantages for clustering from and
algorithmic point of view. Unfortunately, clustering procedures
based on a principal component analysis may significantly
deteriorate the clustering performance as opposed to random
projections. The following example illustrates this in a 2-
dimensional setting. The same phenomenon occurs in higher
dimensions, as can be seen by simple extensions of the
example. Let € > 0 and assume that X is uniformly distributed
on the four points (—1—¢,0), (1+4¢,0), (0,1), (0, —1). Then
for k = 2, an optimal clustering rule groups (—1 — ¢,0) with
(0,1) and (1+¢,0) with (0,—1), giving a mean squared error
converging to 1/2 as ¢ — 0. At the same time, the principal
component of the distribution is the x axis, so projecting on the
first component collapses the points (0,1) and (0, —1). Thus,
any algorithm based on this projection needs to group, say,
(=1 —¢,0), (0,1), (0,—1) in one cluster, leaving (1 + ¢, 0)
for the other. The mean squared error of the best such rule
converges to 2/3 as ¢ — 0, thus giving a strictly increased
clustering risk if ¢ is sufficiently small.

Remark. In the corollary above we assumed, for simplicity,
that 1 € P(R). In this case W (cy,, i1,,) < R? with probability
one, and by Theorem 3.2, ¢,, is a 4¢ R?-minimizer of the em-
pirical clustering risk, and Theorem 2.1 implies the corollary.
However, it is easy to generalize the statement, since, as it
is clear from the proof of Theorem 2.2, if E||X||? < oo,
then W (c,, 1) is bounded, eventually, almost surely, by a
constant, so Theorem 2.2 implies an analog statement with
the appropriate trivial modifications.

Remark. (COMPUTATIONAL MODEL.) There is no standard
computational model to handle Hilbert-space valued data. In
the algorithm described above we assumed implicitly that the
random projections can be calculated easily. This may not
be unrealistic if an orthonormal representation of the X;’s
is available. Instead of discussing such details, we simply
assume the existence of a computational oracle that computes
a random projection at a unit cost. In this paper we have
ignored some other important issues of computational com-
plexity. It is well known that finding the empirically optimal

cluster centers is, in general, NP hard. In practice, approximate
solutions have been used to avoid prohibitive complexity. Of
course, dimension reduction techniques are useful to lower
computational complexity, but in this paper we do not pursue
this issue further, and just investigate theoretical properties of
minimizers of the empirical clustering risk in the randomly
projected subspace.

IV. PROOFS
A. Sketch of proof of Proposition 2.1

The following sketch is based on arguments of Pollard [35]
(see also Theorem 2 in Linder [31]). Note that in this section
we only use the fact that 7 is a separable and complete vector
space.

The basic idea is that for large n the empirical distribution
Ln 1S a good estimate of u, so the optimal clustering for i,
should provide a good approximation to the optimal clustering
for p. Recall that the Lo Wasserstein distance (Rachev and
Riischendorf [38], [39]) between two probability measures i1
and ps on H, with finite second moment, is defined as

[ [le = sl avte]

where M(u1, p2) is the set of all laws on H x H with
marginals 1 and po. Equivalently,

inf

Y(pa, p2) = et

E]x —Y[?)"?,

Y p2) = s

inf
p1,Y
where the infimum is taken over all joint distributions of two
random H-valued random vectors X and Y such that X has
distribution p; and Y has distribution ps. It may be proven
(Rachev and Riischendorf [38]) that ~y is a metric on the space
of probability distributions on H with finite second moment,
and that the infimum in the definition of ~y(u1, o) is attained.

The following inequality (see Linder [30, Lemma 3]) shows
that if two distributions w7 and po are close in  metric, then
their clustering error are also similar:

sup |[W(e,p1)'/? = W (e, u2)"?| < v(pa,p2) . (@)
ceHF
Lemma 4.1 below relates the clustering risk W (c,,, 1) of a
d,,-minimizer of the empirical clustering risk to the optimal
risk inf.cqx Wi(c, p) in terms of the + distance between the
source distribution x and the empirical distribution ,,.
Lemma 4.1: Let ¢, be a §,-minimizer of the empirical
clustering risk. Then

W(Cna H)1/2 - [ irgk W(C,M)] 12 < 2'7(.“#‘71) + \/On-
ceH”
Proof of Lemma 4.1. Let ¢ > 0 be arbitrary, and let c* be
any element of H* satisfying

inf Wi(c,pu) <W(c*,u) < inf Wic, .
Jnf W(e,p) <W(c p) < inf We,p)+e

For any t € R, we set (¢); = max(¢,0). Then

w s 1/2 inf W , 1/2
(cns ) [ inf Wie,u)]
< Wien, )" = [W(c*, u) — €]

1/2
+
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< Wien,w)'? = W(c*,w)'/? + Ve

= W(Cnvﬂ)1/2 - VV(Cnn“n)l/2
+W(en, Nn)1/2 - W(C*vﬂ)l/z +Ve

< W(Cnvﬂ)1/2 - W(Cnv.un)l/z

W (", )2 = W, )2+ VE + /6
(by definition of c,,)

< 27(,“7[1%)"'\/5"' Von ,

where the last inequality follows from (4). [

The two statements of Proposition 2.1 are immediate con-
sequences of Lemma 4.1 and the following lemma.

Lemma 4.2: (i) nlLIIOIO v, pn) = 0 as. (44)

lim Ey(p, pn) =0 -
Proof of Lemma 4.2. Statement (i) is proved in detail in
Linder [30, Theorem 2], and is based on the fact that the
empirical measure j.,, converges to u almost surely (see also
Dudley [15, Chapter 11]).

Statement (i¢) is less standard. To prove it, we denote
by M(u, ptr,) the (random) set of all laws on H x H with
marginals p and p.,,. By definition, the squared L, Wasserstein
distance between p and p,, reads

| / e — )2 dv(z, y) -

Let C be an arbitrary nonnegative constant, and let A be the
subset of H x H defined by

A= {(z,y) € H x H : max(||z[|, [ly]) < C} .

and

2 .
, = inf
¥ (s i) Loamf

We may write, for any v € M(u, ),

/ lz — gl du(z, y)
/ e -yl dv(z. ) + / -y du(z, y)
A Ac
/ e — gl du(z,y) +2 / |2 du(z, )
A Ac
2 / o2 dv(z, )

Ac

(since ||z — y|* < 2||z|* + 2|y[|*

[ e = avi)
A

+2/||ﬂ?\|2]1{|\x|\>0} dp(x)

IN

IN

+2/||ﬂ”Hzﬂ{nwnsc,||yu>C} dv(z,y)
+2/||y||211{|\yn>0} din (y)
+2/||y||2ﬂ{nmn>c,ny||s0} dv(z,y)

/ e — oI du(z, y)
A
2 / 2P sy dia(z) + 207yl > O}

IN

42 [ 19lPT110) dn() + 207 ol > €}

Consequently, by Markov’s inequality,
[z = ol avta,y)
< [ le=sP @)+ 2 [ 1ol asc) dute)
+2 [ 1PLisc) din)
+2/||y||2]1{|\y|\>0} dpin(y)
+2/||$H2H{|\z||>0} du(z).

Thus, taking the infimum over M(u, 1t,,) on both sides and
taking expectations with respect to the X;’s, we deduce that

Ev? (i, tin)

2
T — dv(x,
I e
+8/||$||2H{|\x|\>0} dpu(x).

For a fixed C' > 0, the first term tends to 0 as n — oo accord-
ing to statement (i) and the Lebesgue dominated convergence

theorem. Since / |z]|? du(z) < oo, the second term of the

right-hand side vanishes as C' — oo, and this concludes the
proof of Lemma 4.2. [

B. Proof of Theorem 2.1

An important consequence of the assumption u € P(R)
is that it is sufficient for our purpose to consider only cluster
centers in the (closed and convex) ball Fp of the Hilbert space
‘H, since otherwise projecting any center that is not in Fg to
the surface of Fp clearly reduces the clustering risk. Since
u € P(R), we also have p,, € P(R) a.s., and, similarly, we
only need to search for empirical centers living in Fg.

Note that, for any ¢ = (c1,...,cx) € Fr, the risk W(c, i)
defined in (2) may be rewritten as

Wi, = EIXP + B min [~ 2060+ o]}
Minimizing W (c, 1) is therefore equivalent to minimizing the
functional

Wie,p) = ]E{ “min

j=1,...,k

[~ 2txc + 1]

over all c € F }’%. Similarly, minimizing the empirical risk (1)
is the same as minimizing

_ 1 &

Wie ) = ~ =200 +llesl?].

Moreover, for any §,-minimizer c,, of the empirical risk,

W(Cn, M) — inf W(Ca :u) - W(Cn, N) - infk W(C, :u)7 (5)

cEFE CEFE
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and

EW (¢, ) — inf W(e,u)

ce]-'
< E sup (W(C7Mn) —W(c,,u))
ceFk
+ sup E(W(e,n) = W(c,p)) +6n. (6)
cEFE

We are thus interested in upper bounds for the maximal
deviation

B sup (e, )
cEFE

- W(C, ,LL)) :

Note that the second term on the right-hand side of (6) is
much easier and can trivially be bounded by the upper bound
we obtain for the first term below.

Let 0y, ...,0, be n independent Rademacher random vari-
ables, that is {+1}-valued independent random variables such
that P{o; = —1} = P{o; = +1} = 1/2, independent of
the X;’s. Let G be a class of real-valued functions defined on
the Hilbert space H. Then the Rademacher averages of G are
defined by

R, (G) =Esup — Zazg

n
9€9 i=1

The proof of Theorem 2.1 relies on the following lemma.
Lemma 4.3: For every c in Fg, let £, be the real-valued
map defined by

Le(x) =

Then the following three statements hold:

(4)

=2z, 0) +lef®, zeH.

E sup (W(e, ) — W(e, 1))
cEFE

1 n
E sup — o;| min £, (X;
ceﬁﬁn; []_1 ok ( )}
1 & R?
< 2k[Esu N +—]
(:6.7-1—:; n; < > 2\/H
(iid)
1 E||X||?
E sup fZUZ(Xi,c) <R M

ceEFR n i=1 n

Proof of Lemma 4.3. (i): Let X7,..., X/ be an independent

copy of Xi,...,X,, independent of the o;’s. Then, by a
standard symmetrization argument, we may write
E sup (W(c,,un) —W(c,,u))
C€.7:I)%
1 n
< E — ; e (X5) — in 4. (X]
S B o3l min (60— min 1o ()

1
< Esup —» o[ min £ (X;)]
ce]—‘,’;ni 1 J=L...k
+E sup — ) (—0;)[ min £ (X])]
CG}‘II% i=1 J=Lk
1 n
= 2FE sup — o;| min € .
i A )

(ii): To prove statement (i), we will make use of the
following properties of the Rademacher averages. Property 1
is a consequence of the contraction principle, due to Ledoux
and Talagrand [28]. (Note that our definition of a Rademacher
average does not involve absolute values, contrary to a perhaps
more usual usage. This allows us to save a factor of 2 in the
contraction principle.)

D) R, (|G1]) < Ru(G1), where Gi| = {[g1]: g1 € G1}.

2) Rn(G1 ® G2) < R,(G1) + R,(G2), where Gy & G =

{91 +92: (91,92) € G1 x Ga}.

The proof proceeds by induction on k. For £ = 1, we have

E sup 7202 c

CG]‘—R i—1

n

1
= E sup *Zai[_ 2(X;, ¢) + ||c||?]

ceEFRr n i—=1
RS llel” <
< 2E sup — Xi,c) +E sup o;
ceFR n z:zl < ’ > ceEFR n ZZI ’
R n
< 2FE sup 7201 X, )+ —E Z
c€Fr 2] i=1
(since sup |c||* < R?)
ceEFRr
1 R?
< 2E sup 7207;<Xi,c> +—

i=1 v
(by the Cauchy-Schwarz inequality).

ceEFR n

For k = 2, we obtain

E sup
(01,02)6.7: 7,:1 =

1
= E sup — Zdi ey (Xi) + Loy (X3)
(01702)6—7:2 z:l
|€Cl ’L - g (X )H

(using mln(a b) = (a+b)/2 —|a—b|/2)

< 2E sup — ile(
ceFr M Zl
(by properties 1 and 2 above)
1< 2
< ABsw o) alud+gn

ceFgr n i=1

The recurrence rule is straightforward, using the arguments
presented for £ = 1, k = 2, and the fact that for any
(21,...,zk) ERk,

7Zk)
= min (min(z,...

min(zq,. ..

 21)) -

,ztk/gJ),min(sz/2J+17 PN
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E sup 7< g 0; X5, c>

(,e]:R i=1

R
=2 IEH ;aiX
n
IEH Y oiX
=1

(by the Cauchy-Schwarz inequality)
E[ X2
—

Esupf oi(X;,c
ceFr M lzl e >

=R
O

Theorem 2.1 is a consequence of inequality (5), inequality
(6), and Lemma 4.3 (i) — (4it).

C. Proof of Corollary 2.1

The proof is immediate from Theorem 2.1 and a standard
application of the bounded differences concentration inequality
(see, e.g., McDiarmid [34]).

D. Proof of Theorem 2.2

We start with the following lemma, which is a part of
Theorem 1 in Linder [30]:

Lemma 4.4: There exists a positive constant M, depending
on u, such that

inf W(c,u) = inf W(c,p)
ceHk cEFY,
and
inf  W(c,pu) > inf Wie, p) .
cE(Fk)e CEFY,

Let M be the constant of Lemma 4.4. Recall that c,, is
a 0,-minimizer of the empirical clustering risk over H*. If
c, € Fk . we let &, = c,, otherwise we define &, as any
8,-minimizer of the empirical clustering risk over F¥,. We
have

W(cnvp’)f inf W(C,,U,)

ceHF
= W(Cn7 ) - W(éna,u) + W(éna ) - ler;-f[‘k W( )
= W(CTHM) - W<énﬁu) + W(éna M) - é]f]l:fk W(C M)

where the last equality arises from Lemma 4.4. Denote by
(Q, A,P) the probability space on which the sequence of
random variables X;, X5,... is defined, and fix x > 0.
According to Corollary 2.1, there exists a subset ; of )
of probability larger than 1 — e™* such that, on {24,

12kM? + 4M3?/ 2z
NG

W(€p, ) — inf Wie,pu) < + 0 -

C€.7:k
Define

D(M) = inf W(c, p),

Ck) € H*
by Lemma

where the infimum is taken over all ¢ = (cy,...,
such that, for at least one j,
4.4,

D(M)> inf W

(M) > inf W(e,p)

Therefore, using Proposition 2.1, we deduce that a.s., for n
large enough,

W(en, ) < D(M),

which in turn implies that, a.s., for n large enough, each
component of c,, is bounded above by M. We have thus
proven that for each w € €, there exists N = N(w) such
that, for all n > N, W(cy, p) = W(Cn, p).

Note that the rank /N may depend on w. To circumvent this
difficulty, for each N > 1, define the event

Oy ={weQ: W(cy,p) =W(C,,p) foralln>N}.

Clearly, P(2\ Qx) | 0 as N — oo. Choose Ny such that
P(Q\Qn,) < e~ ". Then P(Qp,) > 1—e 7, and, for all n >
No, W(cp, ) = W(€y,p) uniformly on Qp,. Considering
the event ©; N Qy, leads to the desired result.

E. Proof of Theorem 3.2

Recall that we denote by €,, = (Cn1, .- ., Cnk) the empirical
clustering centers associated with the s- d1mens1onal observa-
tions X1,...,X,. Each Cp; is the mean of those X,’s in the
Voronoi cell Sm, that is,

Z?:l Yl]l{fz €Sn;}
Z?:l H{?Z egn‘j }

n
Q@ = ZH{Yz‘ngj} )
i=1

Since no confusion is possible, we continue to write f,
for the empirical measure associated with the projected data

. j=1,...,k.

Cnj =

Define

Xi,..., X Recalling that each ¢,; is the mean of the X,’s
falling in Snj, we obtain
_ 1 -
W (Cn, pin) = — min HX an”
n Jj=1,. h
i=1
k n

1
_ ﬁZZHX _CTLJH H{X €Sn;}

Jj=11i=1

n

~ 2
Xl %, x.,)e52,1-

I

"M”
[N}
Elia

Invoking the optimality of the k-means clustering procedure
(see Lemma 1 in Linder [30]), we obtain

Cnnun 22 ﬂj Z |Yi1_yi2||2ﬂ{(

11,09=1
where the S,,;’s are the Voronoi cells associated with c,, =
(cn1y.--yCnk), and

Xip,Xiy)ES2 ;)0

B = Tix.es.,)-
=1
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Consequently, by Theorem 3.1, with probability at least 1 — 4,

k [1]

W(Cn,pin) < (1 +¢) Z

Jj=1

= (1+e)W(cn, tin)-

1
2np; i1,ia=1

(2]
3]
Similarly,

(]- - €)W(6nnu/n) S W(En,/in) [4]

as desired. (5]

[6]
[7]

E. Proof of Corollary 3.1

x

According to Corollary 2.1, with probability at least 1 —e™

(with respect to the random sample), i8]

12kR? + 4R?\/2x

Wi(cn, p) = W(p) < NG

[9]

Thus,
[10]
W(Cn, u) = W*(p)
N 12kR? 4+ 4R%*\/2 11
< W(Cn,p) = Wien, 1) + J\F/ﬁ . H
. [12]
Let us decompose the term W (c,,, 1) — W(c,, ) as follows:
5 [13]
W(Cn, /J’) - W(CTM #’)
= W(en,p) = W(Cn, un) + W(Cn, un) — Wicn, tin) (141
+W(Cn7 ,U/n) - W(Cna ,u) . (7) [15]
Theorem 3.2 allows one to upper bound the second term: [16]
with probability at least 1 — & (with respect to the random
projections), [17]
W (€, ptn) — W(en, ttn) < 4eR* . [18]
With respect to the first term in (7), we note that (19]
W(Cp, 1) — W(Cn, tin) (20]
< sup (W(e,pu) —Wi(c, un)) 21]
ceHF [22]
2
< Esup (W(e,pu) — Wie,pn)) + 4R/ = ) (23]
ceH* n
where the last inequality arises from a standard application of ~ [24]
the bounded differences concentration inequality (McDiarmid [25]
[34]). Bounding the third term in (7) using the same principle
and applying Lemma 4.3 leads to the conclusion. 26
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