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1. Introduction.

1.1. The broadcasting problem. The broadcasting problem on trees may be defined as
follows. Let Tn be a rooted tree on n+ 1 vertices. The vertices are labeled by {0,1, . . . , n}
and the root has label 0. The parent pi of a vertex i ∈ {1, . . . , n} is the unique vertex on the
path between the root and vertex i that is connected to i by an edge. Each vertex is assigned a
bit value Bi ∈ {−1,1} generated by the following random mechanism: the root bit obtains a
bit uniformly at random, while all other vertices have the same bit value as their parent with
probability 1− q and the opposite value with probability q, where q ∈ [0,1]. In other words,
for i ∈ {1, . . . , n},

Bi =BpiZi

where Z1, . . . ,Zn are independent random variables taking values in {−1,1} with P{Zi =
−1}= q.

We consider the problem of estimating the value of the root bit B0, upon observing the
unlabeled tree Tn, together with the bit value associated with every vertex. (Note that since
the vertex labels are not observed, the identity of the root is not known.) We call this the
root-bit reconstruction problem.

In a more difficult version of the problem, the unlabeled tree is observed but only the bit
values of the leaves are observed. We refer to this variant as the problem of reconstruction
from leaf bits.
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In this paper we consider these problems when the underlying tree is a random recursive
tree. Such trees are grown, starting from the root vertex 0, by adding vertices recursively one-
by-one, according to some simple random rule. The simplest and most important example is
the uniform random recursive tree in which, for each i ∈ {1, . . . , n}, vertex i attaches with
an edge to a vertex picked uniformly at random among vertices 0,1, . . . , i− 1.

We also consider preferential attachment trees. In such a tree vertex i chooses a vertex
among 0,1, . . . , i− 1 such that the probability of attaching to vertex j ∈ {0,1, . . . , i− 1} de-
pends on the outdegree D+

j (i− 1) of vertex j at the time vertex i is attached. (The outdegree
of a vertex j is the number of vertices with index larger than j attached to j.) We consider
linear preferential attachment models. In such a model,

P{i∼ j}=
D+
j (i− 1) + β∑i−1

k=0D
+
k (i− 1) + β

,

where β > 0 is a parameter.
The root-bit reconstruction problem is a binary classification problem, in which one ob-

serves an unlabeled tree Tn generated by one of the random attachment mechanisms defined
above, together with the bit values assigned to all n+ 1 vertices. (In the problem of recon-
struction from leaf bits, only the bit values assigned to the leaves of Tn are observed.) Based
on this observation, one guesses the value of the root bit B0 by an estimate b̂. The probability
of error (or risk) is denoted by

R(n, q) = P
{
b̂ 6=B0

}
.

In this paper we study the optimal risk

(1.1) R∗(n, q) = infR(n, q) ,

where the infimum is taken over all estimators b̂. In particular, we are interested in

R∗(q) = lim sup
n→∞

R∗(n, q) .

Clearly, R∗(n, q)≤ 1/2 for all n and q and a principal question of interest is for what values
of q one has R∗(q) < 1/2 and how R∗(q) depends on q in both problems and under the
various random attachment models.

We assume, for simplicity, that the generating mechanism of the tree and the value q are
known to the statistician.

For convenience of presentation, we focus the discussion on the uniform random recursive
tree. Preferential attachment models are discussed in Section 5.

Before discussing root-bit estimators, we make an easy observation.

PROPOSITION 1. In the root-bit reconstruction problem and the reconstruction problem
from leaf bits on a uniform random recursive tree, R∗(q)≥ q/2. In particular, R∗(1) = 1/2.
Moreover, R∗(0) = 0.

PROOF. With probability q, the bit values of vertex 0 and vertex 1 are different. Since
these two vertices are statistically indistinguishable after their labels are removed, on this
event, any classification rule has a probability of error 1/2.

We begin by noting that an optimal classification rule, achieving error probability equal to
the minimal risk (1.1), may be explicitly determined. To describe such a classification rule
with minimal probability of error, we first recall some facts established by Bubeck, Devroye,
and Lugosi [4].
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A recursive labeling of a rooted tree T = Tn on n+ 1 vertices is a labeling of the vertices
of the tree with integers in {0,1, . . . , n} such that every vertex has a distinct label, and the
labels on every path starting from the origin are increasing. (Thus, the root has label 0.)

Write V (T ) for the set of vertices of a tree T . Given vertices u, v ∈ V (T ), we denote by
T vu↓ the subtree of T that contains all vertices whose path to v includes u.

For a vertex v ∈ V (T ), we denote by Aut (v,T ) the number of vertices equivalent to v
under graph isomorphism. Formally,

Aut (v,T ) = |{w ∈ V (T ) : ∃ graph automorphism φ : T → T such that φ (v) =w}|

Let u1, . . . , uj be the children of v and consider the subtrees T 0
u1↓, . . . , T

0
uj↓. These subtrees

belong to rooted graph isomorphism classes S1, . . . , Sm. For i ∈ [m], let `i be the number

of representatives of Si, formally `i
def.
=
∣∣∣{k ∈ [j] : T 0

uk↓ ∈ Si
}∣∣∣. Moreover, let Aut

(
T 0
v↓

)
def.
=∏m

i=1 `i!.
It is shown in [4, Proposition 1] that, given a tree T on n+ 1 vertices, for any node v ∈ T ,

the number of recursive labelings of T such that u has label 0 equals

(n+ 1)!∏
v∈V (T )\L(T )

(
|T uv↓| ·Aut

(
T uv↓

)) ,
where L(T ) is the set of leaves of T . As a consequence, we have that, given an unlabeled
tree T , the likelihood of each vertex u being the root (under the uniform attachment model)
is proportional to the function

(1.2) λ(u) =
1

Aut (u,T )
∏
v∈V \L(T,u)

(∣∣∣T uv↓∣∣∣ ·Aut
(
T uv↓

)) .
By the conditional independence of the generation of the uniform attachment tree and the
process of broadcasting the root bit, one easily obtains the following.

PROPOSITION 2. For the root-bit reconstruction problem on a uniform random recursive
tree T , the following estimator b∗ of the root bit B0 minimizes the probability of error:

b∗ =

1 if
∑

u∈V (T ):Bu=1

λ(u)>
∑

u∈V (T ):Bu=0

λ(u)

0 otherwise.

In other words, P{b∗ 6=B0}=R(n, q).

The analysis of the optimal rule described above seems difficult. Instead, we analyze vari-
ous other classification methods.

1.2. Main results. In this section we present our main findings for the uniform attach-
ment model. Some of the results are extended to the linear preferential attachment models in
Section 5.

One of the main results of the paper is that the trivial lower bound R∗(q) ≥ q/2 above
is tight, up to a constant factor. This may be surprising since it is not even entirely obvious
whether there exists any q > 0 for which R∗(q)< 1/2.
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THEOREM 1. Consider the root-bit reconstruction problem in a uniform random
recursive tree. Then

R∗(q)≤ q

for all q ∈ [0,1]. In the reconstruction problem from leaf bits,

R∗(q)≤ 13q

for all q ∈ [0,1].

Our other main result is that for the uniform random recursive tree, we characterize the
values of q for which R∗(q)< 1/2.

THEOREM 2. Consider the broadcasting problem in a uniform random recursive
tree.

1. In the root-bit reconstruction problem R∗(q)< 1/2 if and only if q ∈ [0,1).
2. In the reconstruction problem from leaf bits, R∗(q) < 1/2 if and only if q ∈

[0,1/2)∪ (1/2,1).

Note that in the reconstruction problem from leaf bits, one obviously has R∗(1/2) = 1/2.
This follows from the fact that, when q = 1/2, the bit values on the vertices of the tree are
independent unbiased coin tosses. With probability tending to one, the root of the tree is not
a leaf and therefore its bit value is not observed. In all other cases (except when q = 1), an
asymptotic probability of error strictly smaller than 1/2 is achievable.

Perhaps the conceptually simplest method is the majority rule that simply counts the num-
ber of observed vertices with both bit values and decides according to the majority. Denote
by b̂maj the majority. (In case of a voting tie we may arbitrarily define b̂maj = 0.) This simple
method has surprisingly good properties. Indeed, we prove the following bound.

THEOREM 3. Consider the broadcasting problem in a uniform random recursive
tree. Denote the probability of error of the majority vote by

Rmaj(n, q) = P
{
b̂maj 6=B0

}
.

For both the root-bit reconstruction problem and the reconstruction problem from leaf
bits, the following hold.

1. There exists c > 0 such that

lim sup
n→∞

Rmaj(n, q)≤ cq for all q ∈ [0,1] .

2.

lim sup
n→∞

Rmaj(n, q)< 1/2 if q ∈ [0,1/4)

and

lim sup
n→∞

Rmaj(n, q) = 1/2 if q ∈ [1/4,1/2] .
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A quite different approach is based on the idea that, if one is able to identify a vertex that
is close to the root, then the bit value associated to that vertex is correlated to that of the
root bit, giving rise to a meaningful guess of the root bit. The possibilities and limitations of
identifying the root vertex have been thoroughly studied in recent years–see Section 1.3 for
references.

A simple and natural candidate for an estimate of the root is the centroid of the tree. In
order to define the centroid of a tree T , we need some notation. The neighborhood of a vertex
v, that is, the set of vertices in T connected to v, is denoted by N(v).

Define φ : V (T )→R+ by

φ(v) = max
u∈N(v)

∣∣V (T vu↓)∣∣
and define a centroid of T by

v∗ = arg min
v∈V (T )

φ(v) .

It is well known that a tree can have at most two centroids. In fact, φ(v∗)≤ |V (T )|
2 and there

are at most two vertices that attain the minimum value. If there are two of them, then they are
connected with an edge (Harary [18]).

Equipped with this notion, now we may define an estimator b̂cent of the root bit in a natural
way: (1) in the root-bit reconstruction problem, b̂cent = Bv∗ is the bit value of an arbitrary
centroid v∗ of T ; (2) in the reconstruction problem from leaf bits, let v∗ be a centroid of T ,
let v◦ be a leaf closest to v∗, and let b̂cent =Bv◦ be the associated bit value.

We call this estimator the centroid rule.

THEOREM 4. Consider the broadcasting problem in a uniform random recursive
tree. Denote the probability of error of the centroid rule by

Rcent(n, q) = P
{
b̂cent 6=B0

}
.

For the root-bit reconstruction problem,

lim sup
n→∞

Rcent(n, q)≤ q for all q ∈ [0,1]

and

lim sup
n→∞

Rcent(n, q)≤ log 2

2
≈ 0.34 for all q ≤ 1/2 .

For the reconstruction problem from leaf bits,

lim sup
n→∞

Rcent(n, q)≤ 13q for all q ∈ [0,1] .

Moreover,

lim sup
n→∞

Rcent(n, q)< 1/2 for all q < 1/2 .

Clearly, Theorem 4 implies Theorem 1. In order to prove Theorem 2, we need to construct
an estimator of the root bit that performs better than random guessing when q ∈ (1/2,1). This
construction is described in Section 4, together with the proof that its asymptotic probability
of error is better than 1/2.

The rest of the paper is organized as follows. In Section 2 we analyze the majority rule and
prove Theorem 3. In Section 3 the analysis of the centroid rule is presented and Theorem 4
is proved. In Section 4 we complete the proof of Theorem 2.



BROADCASTING ON RANDOM RECURSIVE TREES 7

Finally, in Section 5 the main results are extended to linear preferential attachment trees.

1.3. Related work. The broadcasting problem on trees has a long and rich history. The
form studied here was proposed by Evans, Kenyon, Peres, and Schulman [16]. We refer to this
paper for the background of the problem and related literature. In the broadcasting problem
of [16], a bit is transmitted from each node to its children recursively, beginning from the
root vertex. Each time the bit is transmitted between two nodes, the value of the bit is flipped
with some probability. The authors study the problem of reconstructing the bit value of the
root, based on the bit values of all vertices at distance k from the root. They establish a sharp
threshold for the probability of reconstruction as k goes to infinity, depending on the tree’s
branching number. Variants of this problem for asymmetric flip probabilities, non-binary
vertex values, and perturbations have been studied by Sly [36], Mossel [30], Janson and
Mossel [21]. A sample of recent progress and related results includes Jain, Koehler, Liu and
Mossel [19] Mossel [31], Daskalakis, Mossel, and Roch [8, 9]. Mézard and Montanari [27],
Mossel, Neeman, and Sly [32], Moitra, Mossel, and Sandon [28], and Makur, Mossel, and
Polyanskiy [26].

As far as we know, the broadcasting problem has not been studied for random recursive
trees. In the vast majority of the literature on the broadcasting problem, the location of the root
is assumed to be known. Of course, in this case the reconstruction problem is meaningful only
if the bit values near the root are not observed. The types of trees that are generally considered
are such that, even if the root is not identified, it is easy to locate. In the problems that we
consider, the trees are random recursive trees where localizing the root is a nontrivial issue.
Hence, both the root-bit reconstruction problem and the problem of reconstruction from leaf
bits are meaningful. The structure of the tree plays an important role in the solution of both
problems.

The problem of localizing the root in different models of random recursive trees has been
studied by Haigh [17], Shah and Zaman [35], Bubeck, Devroye, and Lugosi [4]. For diverse
results on closely related problems, see Curien, Duquesne, Kortchemski, and Manolescu [7],
Bubeck, Mossel, and Rácz [6], Bubeck, Eldan, Mossel, and Rácz [5], Khim and Loh [23],
Jog and Loh [22], Lugosi and Pereira [25], and Devroye and Reddad [33].

2. Majority rule – proof of Theorem 3. In this section we analyze the majority rule and
prove Theorem 3. First we consider the root-bit reconstruction problem, that is, we assume
that the bit values are observed at every vertex of the tree. In this case b̂maj denotes the ma-
jority vote among all bit values. In Section 2.7 we extend the argument for the reconstruction
problem from leaf bits.

Observe that the number of vertices in the uniform random recursive tree Tn with bit
value B0 is distributed as the number of black balls in a Pólya urn of black and white balls
with random replacements defined as follows: initially, there is one black ball in the urn. For
i= 1,2, . . ., at time i, a uniformly random ball is selected from the urn. The ball is returned to
the urn together with a new ball whose color is decided according to a Bernoulli(q) coin toss.
If the value is 1 (which happens with probability q), the color of the new ball is the opposite
of the selected one. Otherwise the new ball has the same color as that of the selected ball.

Such randomized urn processes have been thoroughly studied. In particular, early results
can be traced back to Wei [38] and depend on results by Athreya and Karlin [2] concerning
random multi-type trees. More recently, Janson [20] and Knape and Neininger [24] proved
general limit laws that may be used to analyze the probability of error of the majority rule.

Instead of using these limit laws, our starting point is a decomposition of the uniform
random recursive tree defined below. This methodology allows us to prove the first inequality
of Theorem 3 in an elementary way. Moreover, this decomposition may be used to treat the
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i

FIG 1. Illustration of the decomposition of a tree. The vertices enclosed by a circle are marked. The subtree that
is enclosed by a dotted curve is T̃i. The subtree that is enclosed by a dashed curve is T 0

i↓.

case of the reconstruction problem from leaf bits in a straightforward fashion. The same
technique will also prove useful in analyzing the majority vote in the preferential attachment
models.

In Sections 2.3 and 2.5 we use Janson’s limit theorems to derive qualitative results on the
probability of error of the majority rule.

In this entire section we assume that q ≤ 1/2. The conclusions of the theorem hold trivially
for q ≥ 1

2 .

2.1. A decomposition of the URRT. It is convenient to decompose the uniform random
recursive tree (URRT) as follows. First, the URRT is generated in the standard way, without
attached bit values. Then we identify all nodes apart from the root as follows:

• with probability 2q, they are marked. Then there is a coin flip ξ that takes values uniformly
at random in {−1,1} and determines if a marked node takes the same bit value as its parent
or it flips.

• with probability 1− 2q they are not marked. These nodes do not perform a flip, and thus
have the same bit value as their parent.

The root and marked nodes become roots of subtrees that are disjoint and shatter the uniform
recursive tree into many pieces. Each of the subtrees consists of nodes of the same bit value
necessarily, and the roots have the bit value of their original parent if ξ = 1 and different
otherwise (if ξ =−1). We recall that nodes are numbered 0 through n, where 0 is the root.
The node variables are, for node i:

• pi ∈ {0, . . . , i− 1}: the uniform random index of its parent
• mi ∈ {0,1}: a Bernoulli(2q) random variable: 1 indicates marking
• ξi ∈ {−1,1}: a Rademacher random variable used for flipping bit values: P [ξi = 1] = 1

2 .

Note that, for each i ∈ {1, . . . , n}, pi,mi, and ξi are independent. Moreover, the sequence
((pi,mi, ξi) ,1≤ i≤ n) is independent. Let Bi be the bit value in {−1,1} of node i, with
B0 = 1. We set

Bi =

{
Bpi , if mi = 0 (no marking) or if mi = 1, ξi = +1 (no flipping)
−Bpi , if mi = 1, ξi =−1

Formally, Bi = (miξi + (1−mi))Bpi . Note that
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• The shape of the URRT depends only upon p1, . . . pn.
• The decomposition of the tree into subtrees depends upon p1, . . . pn and m1, . . .mn.
• The bit counting algorithm (that outputs the majority) uses ξ1, . . . ξn as well as the two

other sequences.

Let T̃i be the maximal size subtree of T 0
i↓ with root i and homogeneous bit values, such that

all its vertices apart from i are unmarked (i can be either marked or unmarked). See Figure 2.1
for an illustration. We write Ni = |T̃i|.

2.2. Linear upper bound for the probability of error. Here we prove that there exists a
universal constant c such that

(2.1) lim sup
n→∞

Rmaj(n, q)≤ cq for all q ∈ [0,1] .

Taking c≥ 8, we may assume that q ≤ 1/8.
The difference between the number of nodes of value 1 and those of value −1 is given by

∆
def
= N0 +

n∑
i=1

NiBpiξimi.

In this formula, we only count subtrees corresponding to vertices with mi = 1, and add the
vertex count (Ni) to the Bpiξi side. As the ξi’s are independent of the rest of the variables,
we have

(2.2) E [∆] = E [N0] .

Also, by first conditioning on everything but the ξi’s, we have

E
[
∆2
]

= E
[
N2

0

]
+

n∑
i=1

E
[
N2
i B

2
pimi

]
= E

[
N2

0

]
+ 2q

n∑
i=1

E
[
N2
i

]
.

So,

Var [∆] = Var [N0] + 2q

n∑
i=1

E
[
N2
i

]
.

By Chebyshev’s inequality,

P
{
b̂maj 6=B0

}
≤ P{∆≤ 0} ≤ Var [∆]

(E [∆])2

=
Var [N0]

(E [N0])
2 + 2q

∑n
i=1E

[
N2
i

]
(E [N0])

2 .

In Lemmas 4, 5, and 6, stated and proved in Section 2.6, we establish bounds for the first and
second moments of Ni. These bounds imply (2.1) as follows.

Let ζ(α) =
∑∞

i=1 1/iα be the Riemann zeta function and let ζ̃(α) =
∑∞

i=1(log i)/iα. Note
that both functions are finite and decreasing for α> 1. By Lemmas 4 and 6,

Var [N0]

(E [N0])
2

≤ 2qe4(4 + e)ζ(2− 4q) + 2qe4n−(1−4q) + 12e5q2ζ̃(2− 4q) + 4e4q2n−(1−4q) logn

≤ c1q+ c2q
2 + on(1)
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with c1 = 2e4(4 + e)ζ(3/2) and c2 = 12e5ζ̃(3/2), where we used the fact that ζ and ζ̃ are
decreasing functions and that q ≤ 1/8.

On the other hand, by Lemmas 4 and 5,∑n
i=1E

[
N2
i

]
(E [N0])

2 ≤ e4(4 + e)ζ(2− 4q) + n−(1−4q)e3 ≤ c1
2

+ on(1) .

Hence, for all q ≤ 1/8,

P
{
b̂maj 6=B0

}
≤ 2c1q+ c2q

2 + on(1) ,

proving (2.1).

2.3. Majority is better than random guessing for q < 1/4. Next we show that

(2.3) lim sup
n→∞

Rmaj(n, q)<
1

2
for all q <

1

4
.

To this end, we may apply Janson’s [20] limit theorems for Pólya urns with randomized
replacements.

Consider first the model when bit values are observed at every vertex of the tree. Recall
from the introduction of this section that the number of vertices with bit value B0 may be
represented by the number of white balls in a Pólya urn of white and black balls, initialized
with one white ball. At each time, a random ball is drawn. The drawn ball is returned to the
urn, together with another ball whose color is the same as the drawn one with probability
1− q and has opposite color with probability q. The asymptotic distribution of the balls is
determined by the eigenvalues and eigenvectors of the transpose of the matrix of the expected
number of returned balls. In this case, the matrix is simply(

1− q q
q 1− q

)
,

whose eigenvalues are 1 and 1− 2q. If q < 1/4, by [20, Theorem 3.24],

∆−E∆

n1−2q

converges, in distribution, to a random variable whose distribution is symmetric about zero
and has a positive density at 0. Since

E∆

n1−2q
≥ 1

eΓ(2− 2q)

by (2.2) and the calculations in Lemmas 2 and 4 below, it follows that

lim sup
n→∞

P
{
b̂maj 6=B0

}
≤ lim sup

n→∞
P{∆≤ 0}

= lim sup
n→∞

P
{

∆−E∆

n1−2q
≤− E∆

n1−2q

}
<

1

2
,

proving (2.3).
The majority rule in the leaf-bit reconstruction problem may also be studied using Pólya

urns with random replacements. In this case the urn has four colors, corresponding to (1)
leaf vertices whose bit value equals B0; (2) leaf vertices whose bit value equals 1 − B0;
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(3) internal vertices whose bit value equals B0; (4) internal vertices whose bit value equals
1−B0.

Initially, there is one ball of type (1) and no balls of any other type in the urn. When a ball
of type (1) is drawn, it is replaced by a ball of type (3). With probability 1− q, an additional
ball of type (1) is added to the urn, and with probability q a ball of type (2) is added, etc. The
resulting replacement matrix is 

−q q 1 0
q −q 0 1

1− q q 0 0
q 1− q 0 0


The eigenvalues of the transpose of this matrix are 1,1 − 2q,−1,−1, and once again [20,
Theorem 3.24] applies. Reasoning as previously and using Lemma 7, we have that for q <
1/4,

lim sup
n→∞

P
{
b̂maj 6=B0

}
<

1

2
.

2.4. Majority is not better than random guessing for q > 1/4. Here we prove that

(2.4) lim sup
n→∞

Rmaj(n, q) =
1

2
for all q ∈ (1/4,1/2] .

This follows easily from the decomposition of the URRT introduced above and the fol-
lowing lemma:

LEMMA 1 (Rogozin, 1961 [34]). Let ξ1, . . . , ξn be i.i.d. Bernoulli
(
1
2

)
random variables.

Then for any α1, . . . , αn, all nonzero,

sup
x

P

{
n∑
i=1

ξiαi = x

}
≤ γ√

n

for some universal constant γ, uniformly over all choices of α1, . . . αn.

Indeed,

P
{
b̂maj 6=B0

}
≥ P{∆< 0}= P

{
n∑
i=1

NiBpimiξi <−N0

}

=
1

2
P

{∣∣∣∣∣
n∑
i=1

NiBpimiξi

∣∣∣∣∣>N0

}
(by symmetry)

≥ 1

2
E

[(
1− 2γ(N0 + 1)√∑n

i=1mi

)
+

]
.

The inequality above follows by first conditioning on all but the ξi’s and using Lemma 1. The
latter expression is further lower bounded by

1

2

(
E

[(
1− 2γ(N0 + 1)

√
qn

)
+

]
− P

{
n∑
i=1

mi < qn

})

≥ 1

2

(
1− 2γE [N0 + 1]

√
qn

)
+

− P{Binomial(n,2q)< qn}(by Jensen’s inequality)

=
1

2
− on (1) ,
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since E [N0] = o (
√
n) when q > 1

4 by Lemma 4.

2.5. Majority is not better than random guessing for q = 1/4. In the “critical” case q =
1/4, we may, once again, use the Pólya urn representation and the limit theorems of Janson
[20]. Indeed, by working as in Section 2.3, [20, Theorem 3.23] applies and it implies that

∆−E∆

n1/2 logn

converges, in distribution, to a normal random variable. Since

E∆

n1/2 logn
= o (1)

by Lemmas 2 and 4, we have

lim sup
n→∞

P
{
b̂maj 6=B0

}
≥ lim sup

n→∞
P{∆< 0}

= lim sup
n→∞

P
{

∆−E∆

n1/2 logn
≤− E∆

n1/2 logn

}
=

1

2
.

A similar computation may be performed for the case when only leaf-bits are observed.

2.6. The study of Ni. In this section we present the technical results used in the proofs
of this section. In particular, we bound the first and second moments of the random variables
Ni defined in the decomposition of the URRT. We begin with two technical lemmas.

LEMMA 2. For all i≥ 0 and constant α≥ 0,
n−1∏
t=i

(
1 +

α

t+ 1

)
=

Γ (α+ n+ 1)

Γ (n+ 1)
· Γ (i+ 1)

Γ (α+ i+ 1)
.

PROOF.

(2.5)
n−1∏
t=i

(
1 +

α

t+ 1

)
=

∏n−1
t=0

(
α+1+t
1+t

)
∏i−1
t=0

(
α+1+t
1+t

) .

Also,
n−1∏
t=0

(
α+ 1 + t

1 + t

)
=

Γ (α+ n+ 1)

Γ (α+ 1) Γ (n+ 1)
,

implying that (2.5) equals

Γ (α+ n+ 1)

Γ (α+ 1) Γ (n+ 1)
· Γ (α+ 1) Γ (i+ 1)

Γ (α+ i+ 1)
=

Γ (α+ n+ 1)

Γ (n+ 1)
· Γ (i+ 1)

Γ (α+ i+ 1)
.

LEMMA 3. For n≥ 1 and α ∈ [0,1],(
n+ 1

e

)α
≤ Γ (α+ n+ 1)

Γ (n+ 1)
≤ (n+ 1)α .
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PROOF. If Gamma (n+ 1) denotes a Gamma random variable with parameters (n+ 1,1),
then

Γ (α+ n+ 1)

Γ (n+ 1)
=

∫∞
0 xα+ne−xdx∫∞
0 xne−xdx

= E [Gamma (n+ 1)α]

≤ (E [Gamma (n+ 1)])α = (n+ 1)α ,

by Jensen’s inequality. We show the lower bound by induction to n. For n= 1 it holds for all
α ∈ [0,1], since

(
2
e

)α ≤ 1≤ Γ (2 + α) . For larger n, note:

Γ (α+ n+ 1)

Γ (n+ 1)
=
n+ α

n
· Γ (α+ n)

Γ (n)
≥ n+ α

n

(n
e

)α
≥
(
n+ 1

e

)α
,

where the first inequality follows by induction hypothesis and the second since n+α
n ≥(

n+1
n

)α.

LEMMA 4. For all i≥ 0 and q ≤ 1
2 ,

e−1
(
n+ 1

i+ 1

)1−2q
≤ E [Ni]≤ e

(
n+ 1

i+ 1

)1−2q
.

PROOF. The statement follows immediately by Lemmas 2 and 3 by noting that

(2.6) E [Ni] =

n−1∏
t=i

(
1 +

1− 2q

t+ 1

)
.

To see that (2.6) holds, define Yi = 1 and, for t ∈ {i, . . . , n− 1}, let

Yt+1 = Yt + β1−2qβYt/(t+1) .

where each appearance of βx denotes an independent Bernoulli(x) random variable. Clearly,
Yt is distributed as the number of vertices counted by Ni and which have label at most t.
Hence Ni has the same distribution as Yn. For all t≥ 1, by conditioning on Yt we see that

E [Yt+1] = E [Yt]

(
1 +

1− 2q

t+ 1

)
,

from which (2.6) is immediate.

LEMMA 5. For all i≥ 0 and q ≤ 1
2 ,

E
[
N2
i

]
≤
(
n+ 1

i+ 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

PROOF. We use the representation of Ni introduced in the proof of Lemma 4. Consider
the recurrence

xi = 1, xt+1 = xt

(
1 +

2α

t+ 1

)
+ f(t) , i≤ t≤ n .

In particular, we are interested in the case α= 1−2q, f(t) = (1− 2q) E[Yt]
t+1 , and xt = E

[
Y 2
t

]
.

The solution is given by

xn = xi

n−1∏
t=i

(
1 +

2α

t+ 1

)
+

n−1∑
s=i+1

n−1∏
t=s

(
1 +

2α

t+ 1

)
f (s− 1) + f (n− 1) .
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Using Lemmas 2,3,4 and the bound f(t)≤ α
(
t+1
i+1

)α
e
t+1 ,

xn ≤ xi
(
n+ 1

i+ 1

)2α

e2α +

n−1∑
s=i+1

(
n+ 1

s+ 1

)2α

e2α+1α

(
s

i+ 1

)α 1

s
+ αe

=

(
n+ 1

i+ 1

)2α

e2α

(
1 +

n−1∑
s=i+1

sα · eα (i+ 1)α

s (s+ 1)2α

)
+ αe

≤
(
n+ 1

i+ 1

)2α

e2α

(
1 +

eα

i+ 1
+

n−1∑
s=i+2

eα (i+ 1)α

s1+α

)
+ αe

≤
(
n+ 1

i+ 1

)2α

e2α
(

4 + eα (i+ 1)α
∫ ∞
i+1

1

s1+α
ds

)
+ αe

=

(
n+ 1

i+ 1

)2α

e2α
(

4 +
eα (i+ 1)α

α (i+ 1)α

)
+ αe

≤
(
n+ 1

i+ 1

)2α

e2α (4 + e) + αe .

Replacing α by 1− 2q, we have

E
[
N2
i

]
≤
(
n+ 1

i+ 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

Recall the notation ζ(α) =
∑∞

i=1 1/iα and ζ̃(α) =
∑∞

i=1(log i)/iα.

LEMMA 6. Var(N0) is bounded by

2qe2(4 + e)(n+ 1)2−4qζ(2− 4q) + 2nqe2 + 12e3q2(n+ 1)2−4q ζ̃(2− 4q) + 4e2q2n logn .

PROOF. Knowing the parent selectors p1, . . . , pn and the coin flips ξ1, . . . , ξn, we have
that N0 is a function of the independent random variables m1, . . . ,mn. Note that resampling
one of them, say mi, does not change the value of Ni. Moreover, resampling mi can change
N0 by at most Ni: if before resampling we had mi = 0 and T̃i ⊂ T̃0, and after resampling we
have mi = 1, then N0 decreases by Ni; also, if before resampling we had mi = 1 and after
resampling we have mi = 0, then T̃i might become a subtree of T̃0 and then N0 increases by
Ni. Hence, by the Efron-Stein inequality ([14, 37]),

Var(N0|p1, . . . , pn, ξ1, . . . , ξn)≤
n∑
i=1

2q(1− 2q)E
[
N2
i |p1, . . . , pn, ξ1, . . . , ξn

]
.

Hence, writing Z0 = E [N0|p1, . . . , pn, ξ1, . . . , ξn], we have

Var(N0) = E Var(N0|p1, . . . , pn, ξ1, . . . , ξn) + Var(Z0)≤ 2q

n∑
i=1

EN2
i + Var(Z0) .

The first term on the right-hand side may be bounded, using Lemma 5, by

2q

n∑
i=1

EN2
i ≤ 2qe2

n∑
i=1

((
n+ 1

i+ 1

)2−4q
(4 + e) + 1

)
≤ 2qe2(4 + e)(n+ 1)2−4qζ(2− 4q) + 2nqe2 .
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To bound Var(Z0), let δi be the distance between the root and node i in T̃0. These distances
are a function of p1, . . . , pn only and, therefore, we have

Z0 =
∑
v

(1− 2q)δv = 1 +

n∑
j=1

(1− 2q)δj .

We define

Zj =
∑
v∈T 0

j↓

(1− 2q)δv−δj , 0≤ j ≤ n .

Let Z ′i denote the modification of Zi when the random variable pi is replaced by an inde-
pendent copy p′i and the other values p1, . . . pi−1, pi+1, . . . , pn are kept unchanged. Define
similarly the variables δ′i. Observe that if pj is replaced by p′j , then

Z0 −Z ′0 = Zj

(
(1− 2q)δj − (1− 2q)δ

′
j

)
whose absolute value is at most

Zj (1− 2q)min(δj ,δ′j)
(

1− (1− 2q)|δj−δ
′
j |
)
≤
{

0, if δj = δ′j
Zj2q|δj − δ′j |, else

Therefore, by the Efron-Stein inequality,

Var [Z0]≤
1

2

n∑
j=1

E
[
Z2
j 4q2

(
δj − δ′j

)2]

= 2q2
n∑
j=1

E
[
Z2
j

]
E
[(
δj − δ′j

)2](by independence)

By Jensen’s inequality, E
[
Z2
j

]
≤ E

[
N2
j

]
. Moreover,

(2.7) E
[(
δj − δ′j

)2]
= 2Var [δj ]≤ 2 log j

by well-known properties of uniform random recursive trees (Devroye [10]). Therefore,

Var [Z0]≤ 4q2
n∑
j=1

E
[
Z2
j

]
log j

≤ 4q2
n∑
j=1

E
[
N2
j

]
log j

≤ 4q2
n∑
j=1

((
n+ 1

j + 1

)2−4q
e2 (4 + e) + e2

)
log j

(by Lemma 5)

≤ 12e3q2(n+ 1)2−4q
n∑
j=1

log j

(j + 1)2−4q
+ 4e2q2 log(n!)

≤ 12e3q2(n+ 1)2−4q ζ̃(2− 4q) + 4e2q2n logn .
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2.7. Majority of the leaf bits. We have proved Theorem 3 for the root-bit reconstruction
problem. It remains to show the analogous statements for the reconstruction problem from
leaf bits, that is, for the case when b̂maj denotes the majority vote among the bit values ob-
served on the leaves only. This may be done quite simply, as the proof presented in Section
2.2 may be easily modified to handle this case.

Recall that Ni is the maximum number of unmarked vertices in a subtree rooted at i in
T 0
i↓ (i is included and can be marked or not marked). Let N i be the number of them that

are leaves. It suffices to show that the first and second moments of N i satisfy inequalities
analogous to those of Lemmas 4, 5, and 6, with possibly different constants.

The next lemma establishes the desired analogues of Lemmas 4 and 5. This suffices to
prove (2.1) by the same argument as before. (The corresponding extension of Lemma 6 is
straightforward and is omitted.)

LEMMA 7. For all i≤ n,

1

32e

(
n+ 1

i+ 1

)1−2q
− i

8ne
≤ E

[
N i

]
≤ e

(
n+ 1

i+ 1

)1−2q

and

E
[
N

2
i

]
≤
(
n+ 1

i+ 1

)2−4q
e2(1−2q) (4 + e) + e (1− 2q) .

PROOF. The upper bounds for the expectation and the second moment clearly hold by the
fact that N i ≤Ni and by Lemma 4.

Recall from the proof of Lemma 4 that for t ∈ {i, . . . , n− 1}, Yt denotes the number of
vertices that are counted by Ni and whose label is at most t. Similarly, define Y t as the
number of leaves in the same subtree. Hence, Y n is distributed as N i. For t ∈ {i+ 1, . . . , n},
we have

E
[
Y t

∣∣Y t−1, Yt−1
]

= Y t−1 +
1− 2q

t

(
Yt−1 − Y t−1

)
,

since given Y t−1, Yt−1, with probability 1−2q
t

(
Yt−1 − Y t−1

)
the number of leaves increases

by one (1−2q is the probability that the new vertex is unmarked). Hence at
def.
= EY t satisfies,

for t ∈ {i+ 1, . . . , n},

at = at−1

(
1− 1− 2q

t

)
+ f(t) ,

where f(t) = 1−2q
t EYt−1. Solving the recurrence we have

an ≥
n−1∑
j=i

f(j + 1)

n∏
k=j+1

(
1− (1− 2q)

k

)

≥
n−1∑
j=i

1− 2q

e (j + 1)

(
j + 1

i+ 1

)1−2q j

n
(by Lemma 4)

≥ 1− 2q

2ne (i+ 1)1−2q

∫ n−1

j=i
x1−2qdx

≥ 1

8ne (i+ 1)1−2q

(
(n− 1)2−2q − i2−2q

)
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≥ 1

32e

(
n+ 1

i+ 1

)1−2q
− i

8ne
.

3. The centroid rule.

3.1. The bit value of the centroid. In this section we analyze the centroid rule and prove
Theorem 4. The case when only the leaf bits are observed is discussed in Section 3.2 below.
Recall the notation introduced in Section 1.

Assume that the bit value of each vertex is observed. In this case, b̂cent is the bit value
of one of the at most two centroids of the tree. First notice that, with high probability, the
centroid of a uniform random recursive tree is unique:

LEMMA 8. If Tn is a uniform random recursive tree on n+ 1 vertices, then

P{Tn has two centroids}=

{
0 if n is even
4

n+3 if n is odd.

PROOF. Recall that the number of recursive trees on n+ 1 vertices equals n! and each of
them are equally likely.

Any tree with an odd number of vertices has a unique centroid, so the first half of the
statement is obvious. For odd n, if the tree has two centroid vertices L,R, then there exist
two disjoint subtrees of (n+ 1)/2 vertices, each containing one of the centroids (i.e., there
exists a central edge LR). Call these subtrees left and right subtree. The left subtree contains
vertex L and the right subtree contains vertex R. We may assume, without loss of generality,
that the label of L is smaller than the label of R. Then vertex 0 belongs to the left subtree.
Moreover, the two subtrees correspond to unique recursive trees of n+1

2 vertices, after suitable
relabelling that respects the relative ordering of the labels.

To count the number of recursive trees with two centroids, note that there are
(n+1
n−1

2

)
ways

of choosing the labels in the left subtree, excluding the label of L. Then there are are n−1
2 + 2

remaining labels. The label of vertex R is smaller than all its descendants and larger than the
label of L. Hence L has the smallest available label and R has the second smallest available
label. Once the labels in the left subtree (and therefore in the right subtree) are fixed, there
are (

(
n−1
2

)
!)2 ways of selecting the recursive trees that correspond to each. Hence,

P{Tn has two centroids}=

(n+1
n−1

2

)
·
((

n−1
2

)
!
)2

n!
=

4

n+ 3
.

Let Dn (or D when it is clear from the context) be the edge distance between the root and
v∗ in Tn. Then, given D, the number of changes of the bit value on the path between the root
and v∗ is Binomial(D,q), independent of D. Thus,

P
{
b̂cent 6=B0

}
= E

[
1{Binomial(D,q) is odd}

]
=

1−E
[
(−1)Binomial(D,q)

]
2

=
1−E

[
(1− 2q)D

]
2

.
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It is shown by Moon [29] that the probability that the root is a centroid is asymptotically
positive. In particular, Moon proves

lim inf
n→∞

P{δn = 0}→ 1− log 2 ,

where δn is the distance between the root and the closest centroid to the root. Hence, for all
q ≤ 1/2,

lim sup
n→∞

P
{
b̂cent 6=B0

}
≤ 1

2
− 1

2
lim inf
n→∞

P{Dn = 0}(3.1)

=
1

2
− 1

2
lim inf
n→∞

P{δn = 0}(3.2)

=
1

2
− 1

2
(1− log 2)(3.3)

proving the second statement of Theorem 4.
To prove the first statement of Theorem 4, note that

(3.4)
1−E

[
(1− 2q)D

]
2

≤ qED .

It follows from Lemma 8 and the following result of Moon that limn→∞ED = 1.

THEOREM 5. ([29, Theorem 2.1]) Let δn be the depth of the centroid that is closest to
the root. Then for any n≥ 0,

E [δn] =

{ n
n+2 for n odd
n−1
n+2 for n even.

It follows that in the root-bit reconstruction problem, the centroid rule satisfies

lim sup
n→∞

Rcent(n, q)≤ q for all q ∈ [0,1] .

3.2. Centroid rule from leaf bits. To complete the proof of Theorem 4, it remains to
consider the reconstruction problem from leaf bits. Recall that in this case the centroid rule
localizes a leaf vertex that is closest to a centroid and guesses the root bit B0 by the bit value
at this leaf.

The key property for proving the linear upper bound for the asymptotic probability of error
is the following lemma, stating that in a uniform random recursive tree, the expected distance
of the nearest leaf to the root is bounded.

LEMMA 9. In a uniform random recursive tree Tn, define

∆n = min
i: vertex i is a leaf

d(i,0) .

Then, for all n,

E∆n ≤ 11 +
1

1− e/3
n−1−3 log(3/e) .

In particular,

lim sup
n→∞

E∆n ≤ 11 .
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PROOF. We write ∆ = ∆n, and start with the decomposition

E∆≤ 2 + 3(logn)P{∆> 2}+
∑

i>3 logn

P{∆≥ i} .

To bound P{∆> 2}, we show that, with probability at least

1− 3

logn
(1 + on (1)) ,

the uniform random recursive tree Tn has a leaf at depth 2. Let Ai be the event that i is a

leaf, and Bi the event that d (i,0) = 2. Let X =
n∑

i=d2n/3e
1Ai∩Bi be the number of leaves at

distance 2 from the root, among the vertices d2n/3e, . . . , n. We bound the mean and variance
as follows.

First, note that Ai =
n⋂

j=i+1
{pj 6= i} and Bi =

i−1⋃
j=1
{pi = j, pj = 0}. Then Ai and Bi are

independent and

P{Ai}=

n∏
j=i+1

(
1− 1

j

)
=
i

n
and P{Bi}=

i−1∑
j=1

(
1

i
· 1
j

)
=
Hi−1
i

.

Thus,

EX =

n∑
i=d2n/3e

(
1

n
· iHi−1

i

)
= (1 + o (1))

logn

3
.

We now turn to the calculation of E
{
X2
}

. For 2n/3≤ i < k ≤ n we have

P{Ak|Ai}=

n∏
l=k+1

P{pl 6= k|pl 6= i}=

n∏
l=k+1

(
1− 1

l− 1

)
=
k− 1

n− 1
,

so

P{Ak ∩Ai}= P{Ai}P{Ak}
(k− 1)n

k (n− 1)
=

(
1 +O

(
1

n

))
P{Ai}P{Ak} .

Moreover, P{Bi ∩Bk|Ai ∩Ak}= P{Bi ∩Bk|pk 6= i}, which is equal to

i−1∑
j=1

P{pi = pk = j, pj = 0|pk 6= i}+

i−1∑
j=1

k−1∑
l=1
l 6=j

P{pi = j, pj = 0}P{pk = l, pl = 0|pk 6= i}

=
1

k− 1
· Hi−1

i
+

i−1∑
j=1

k−1∑
l=2
l 6=j

P{pi = j, pj = 0}P{pk = l, pl = 0|pk 6= i} .

Since k ≥ 2n/3, we have

P{pk = 0, pl = 0|pk 6= i}=
1

k− 1
· 1

l− 1
=

(
1 + o

(
1

n

))
P{pk = l, pl = 0} .

To handle the j = l term, we note that
i−1∑
j=2

P{pi = j, pj = 0}P{pk = j, pj = 0}=
1

k · i

i−1∑
j=1

1

j2
=O (1) · 1

k · i
.
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It follows that

P{Bi ∩Bk|Ai ∩Ak}=

(
1 +O

(
1

n

))
P{Bi}P{Bk}+

Hi−1 −O (1)

i (k− 1)
,

So, recalling that Ai and Bi are independent for all i, E
[
X2
]

is equal to∑
2n/3≤i≤n

∑
2n/3≤k≤n

P{Ai ∩Bi ∩Ak ∩Bk}

=
∑

2n/3≤i≤n

P{Ai ∩Bi}

+2
∑

2n/3≤i<k≤n

[(
1 +O

(
1

n

))
P{Ai ∩Bi}P{Ak ∩Bk}+ P{Ai ∩Ak}

Hi−1 −O (1)

i (k− 1)

]

≤
(

1 +O
(

1

n

))(EX)2 +
∑

2n/3≤i≤n

(
P{Ai ∩Bi} − P{Ai ∩Bi}2

)+ o (1)

≤ (EX)2 +
1

3
logn (1 + o (1))

Recalling that EX =
(
1 +O

(
1
n

)) logn
3 , it follows that

P{X = 0} ≤ Var{X}
(E{X})2

≤ 3 (1 + on (1))

logn
.

It remains to bound
∑

i>3 logn P{∆≥ i}. We do this simply by bounding ∆ by d(n,0), the
depth of vertex n. By standard results on uniform random recursive trees (see Devroye [10]),
the insertion depth d(i,0) of vertex i is distributed as

∑i
j=1 Yj , where the Yj are independent

Bernoulli random variables with P{Yj = 1}= 1/j. By the standard Chernoff bound for sums
of independent Bernoulli variables [3, Exercise 2.10],

(3.5) P{d(i,0)≥ t} ≤ exp

(
t−Hi − t log

t

Hi

)
,

where Hi =
∑i

j=1 1/j. By (3.5) above, for all i > 3Hn,

P{∆≥ i} ≤ P{d(n,0)≥ i} ≤ exp

(
i−Hn − i log

i

Hn

)
≤ 1

n
e−i log(3/e) .

Thus, ∑
i>3 logn

P{∆≥ i}=O
(
n−1−3 log(3/e)

)
.

Collecting terms, the proof of the lemma is complete.

If ṽ is a leaf vertex that is closest to the centroid v∗, then its distance to the root is bounded
as follows.

d(ṽ,0)≤ d(ṽ, v∗) + d(0, v∗)≤ d(0, ṽ) + 2d(0, v∗) = ∆ + 2D ,

where D = d(v∗,0). Hence, Lemmas 8, 5, and 9 imply that

lim sup
n→∞

Ed(ṽ,0)≤ 13 ,

proving the third statement of Theorem 4.
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x1

x2

xk−1

xk

≤ n
rk
(1− ε)

≥ n
10rk

(1− ε)

sizes n
rk

(1± ε)

r

r

x0

FIG 2. A depiction of condition (II) of the event Er,k , described in Definition 1.

4. The case q > 1
2

. In this section we finish the proof of Theorem 2 by showing that
R∗ (q) < 1/2 even when 1

2 < q < 1. The main idea is that, with probability bounded away
from zero, the URRT has a certain structure and, if this structure happens to occur, then the
root can be identified with probability greater than 1/2. Then one may proceed by identifying
if the given structure occurs. If it doesn’t, one may toss a random coin. If it does, one tries to
identify the root and picks the associated bit value.

First we show that this strategy works when the bit values associated to all vertices are
observed. Since the vertex identified as root is not a leaf, this strategy does not work in the
reconstruction problem from leaf bits. However, an easy modification works when only bit
values on the leaves are available. This is shown in Section 4.2.

4.1. Root-bit reconstruction. The structure of the URRT that we require is described in
Definition 1. Recall the definitions of Aut and Aut from the introduction.

DEFINITION 1. (see also Figure 4.1) Fix integers r, k > 3 such that k ≤ r and let ε ∈
(0, 1

2rk ). Let Er,k denote the event that the following conditions are satisfied:

(I) Tn contains a complete rooted r-ary subtree D of height k (we denote its root-vertex by
x0 and its leaves by L (D)).

(II) Let T be any subtree of Tn which is maximal subject to the constraint that |T ∩D|= 1,
and write v for the unique vertex of T ∩D. If v ∈D \L (D) then T has at most (1− ε) n

rk

vertices and at least (1− ε) n
10rk vertices. If v ∈ L (D), then T has at most (1 + ε) n

rk

vertices and at least (1− ε) n
rk vertices.

(III) All maximal subtrees that intersect D on exactly one vertex which has depth k (in D)
are different as unlabelled rooted trees.

(IV) For all v ∈D \L (D), Aut (v,Tn) = Aut
(
T x0

v↓

)
= 1.

We now present the skeleton of the proof. Some of the technical details are deferred to
later.

PROOF. (Theorem 2, case q > 1
2 .) Recall that x0 is the root vertex of D. Fix r, k > 3 such

that k ≤ r and fix ε ∈ (0, 1
2rk ). Let pi = (1/2)

(
1 + (1− 2q)i

)
be the probability that a vertex
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at distance i from the root 0 has the same bit valueB0 as the root and denoteD :=D \L (D).
Then we have

P
{
Bx0

=B0

∣∣Er,k}
≥
k−1∑
i=0

P
{
Bx0

=B0

∣∣Er,k, 0 ∈D, d (0, x0) = i
}
P
{

0 ∈D, d (0, x0) = i
∣∣Er,k}

≥ exp

(
− k

rk

)(
1− 1

rk−1

)2
∑k−1

i=0 pir
i
∏i
j=1

1
rj−1∑k−1

i=0 r
i
∏i
j=1

1
rj−1

+ on (1)

(by Lemma 10 below)

= exp

(
− k

rk

)(
1− 1

rk−1

)2
∑k−1

i=0
1
2

(
1 + (−1)i (2q− 1)i

)
ri
∏i
j=1

1
rj−1∑k−1

i=0 r
i
∏i
j=1

1
rj−1

+ on (1)

Note that
k∑
i=0

ri
i∏

j=1

1

rj − 1
= 1 +

r

r− 1
+

r2

(r− 1) (r2 − 1)
+ · · ·= 2 +O

(
1

r

)
and

k∑
i=0

(−1)i ((2q− 1)r)i
i∏

j=1

1

rj − 1
= 1− (2q− 1)r

r− 1
+

(2q− 1)2r2

(r− 1) (r2 − 1)
+ . . .

= 1− (2q− 1) +O
(

1

r

)
,

and therefore

lim inf
n→∞

P
{
Bx0

=B0

∣∣Er,k}≥ exp

(
− k

rk

)(
1− 1

rk−1

)2
(

1

2
+

1

2
·

1− (2q− 1) +O
(
1
r

)
2 +O

(
1
r

) )

=
3

4
− 2q− 1

4
+O

(
1

r

)
=

2− q
2

+O
(

1

r

)
>

1

2

for large enough r. Since lim infn→∞ P{Er,k}> 0 by Lemma 11 below, there exists a choice
of the parameters r and k (depending on q only) such that the procedure that guesses Bx0

if the event Er,k occurs and guesses a random bit otherwise is positively correlated with
B0.

It remains to prove the two key properties used in the proof above.

LEMMA 10. Let r, k > 3 with k ≤ r and let ε≤ 1
2rk . Then for all i= 0,1, . . . , k− 1,

lim inf
n→∞

P
{

0 ∈D, d (0, x0) = i|Er,k
}
≥ exp

(
− k

rk

)(
1− 1

rk−1

)2 ri
∏i
j=1

(
1

rj−1

)
∑

m<k r
m
∏m
j=1

(
1

rj−1

) .
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PROOF. We first lower bound P
{

0 ∈D|Er,k
}

. Notice that under the event Er,k, if 0 6∈
D, then either T 0

1↓ contains at least n
(
1− (1− ε)/(10rk)

)
vertices or it contains at most

(1 + ε)n/rk vertices. By standard results of the theory of Pólya urns (Eggenberger and Pólya
[15]),

∣∣∣T 0
1↓

∣∣∣ converges, in distribution, to a uniform random variable on [0,1].
Hence,

P
{

0 ∈D|Er,k
}

= 1− 1− ε
10rk

− 1 + ε

rk
+ on (1)

≥ 1− 2

rk
+ on (1)≥ 1− 1

rk − 1
+ on (1) .

It remains to derive a lower bound for

P
{
d(0, x0) = i

∣∣0 ∈D, Er,k}=
∑

v∈D:d(v,x0)=i

P
{

0 = v
∣∣0 ∈D, Er,k} .

Recall the definition of the function λ(u) from (1.2) and that, given an unlabeled tree,
the probability that vertex u is the root is proportional to λ(u). Hence, defining, for i =
0,1, . . . , k− 1,

Wi =
∑

v∈D:d(v,x0)=i

λ(v)

λ(x0)
,

we have that

P
{
d(0, x0) = i

∣∣0 ∈D, Er,k}=
Wi∑k−1
j=0Wj

.

Under the event Er,k, for all u ∈D, we have Aut (u,T ) = 1 and Aut (Tu↓) = 1. Hence, if
xi ∈D has depth i in D and x0x1 . . . xi is the path in D that connects it to the root of D,
then, for all j = 1, . . . , i− 1,

λ(xj+1)

λ(xj)
≥

n
rj (1− ε)

n− n
rj (1− ε)

=
1

rj − 1

(
1− εrj

rj − 1 + ε

)
≥ 1

rj − 1

(
1− 1

rk

)
,

since ε≤ 1
2rk . Thus,

λ(xi)

λ(x0)
≥
(

1− 1

rk

)k i∏
j=1

(
1

rj − 1

)

≥
(

1− k

rk

) i∏
j=1

(
1

rj − 1

)
≥
(

1− 1

rk−1

) i∏
j=1

(
1

rj − 1

)
.

Similarly,

λ(xj+1)

λ(xj)
≤

n
rj (1 + ε)

n− n
rj (1 + ε)

≤
(

1

rj − 1

)(
1 +

1

rk

)
and

λ(xi)

λ(x0)
≤
(

1 +
1

rk

)k i∏
j=1

(
1

rj − 1

)

≤ exp

(
k

rk

) i∏
j=1

(
1

rj − 1

)
.

Putting these estimates together, we obtain the statement of the lemma.
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The last ingredient is the following lemma.

LEMMA 11. Let r, k > 3. Then lim infn→∞ P{Er,k}> 0.

PROOF. Fixed k and r. After the insertion of M def.
= rk+1−1

r−1 vertices, the probability that
the uniform random recursive tree TM is isomorphic to a complete r-ary tree D of height k
is a positive value, depending on r and k only. Call this event EI . This event clearly implies
property (I) in Definition 1.

In what follows, we condition on event EI . Let u1, . . . , urk be the vertices of height k in D
and v1, . . . , vm be the rest of the vertices in D. For every such vertex vi (or uj accordingly),
we define T x0

vi↓ to be the maximal subtree of T x0

vi↓ that intersects D in only at vi. Then the

vector
(∣∣T x0

v1↓
∣∣ , . . . , ∣∣T x0

vm↓
∣∣ , ∣∣T x0

u1↓
∣∣ , . . . , ∣∣∣T x0

urk↓

∣∣∣) behaves as a standard Pólya urn with M
colors, initialized with one ball of each color. As n goes to infinity, the proportions of the
balls of each color converge to a Dirichlet (1, . . . ,1) distribution.

Let

Ω =

{
(x1, . . . , xM−1) ∈RM−1 :

M−1∑
i=1

xi = 1,

x1, . . . , xrk ∈
(

1− ε
rk

,
1− ε/2
rk

)
, xrk+1, . . . , xM−1 ∈

(
ε/10

M − rk
,

ε/2

M − rk

)}
.

Then

P{(II) |EI} ≥ Γ (M)

∫ 1−ε/2
rk

1−ε
rk

· · ·
∫ 1−ε/2

rk

1−ε
rk︸ ︷︷ ︸

rk times

∫ ε/2

M−rk

ε/10

M−rk

· · ·
∫ ε/2

M−rk

ε/10

M−rk︸ ︷︷ ︸
M−rk−1 times

dxM−1 . . . dx1 + on (1)

= Γ (M)

(
ε/2

rk

)rk ( 2ε/5

M − rk

)M−rk−1
+ on (1) ,

and therefore properties (I) and (II) jointly hold with probability bounded away from zero.
Conditioning on event EI , property (III) of Definition 1 clearly holds with probability

converging to one, since r, k are fixed.
Finally, we check property (IV ), conditioned on the properties (I), (II), (III). We abbre-

viate A= (I)∩ (II)∩ (III). Let v ∈D and S1, . . . , Sk the subtrees of Tn that are contained
in T x0

v↓ and whose roots are connected with an edge to v. Denote by nv the number of vertices
of the subtree T x0

v↓. By property (II), nv = Ω(n).
We call an SiSj-conflict the event where Si ∼= Sj as rooted unlabelled trees. Moreover, we

denote by C(nv)
i the number of indices j such that |Sj |= i. To finish the proof it suffices to

show that

lim inf
n→∞

P{no SiSj-conflict|A}> 0 .

To this end, it suffices that

lim inf
nv→∞

(
P
{
∀i≤

√
nv, C

(nv)
i ≤ 1|A

}
− P{∃SiSj-conflict where |Si|>

√
nv|A}

)
> 0 .

By independence and since r, k are fixed the claim then holds for all v ∈ D with constant
probability.

We need the following claim:
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CLAIM 1. For any j >
√
nv ,

P
{
C

(nv)
j ≥ 2|A

}
≤ P

{
C

(nv)√
nv
≥ 2
}

+O
(
n−3/2v

)
.

PROOF. The multiset {|S1|, . . . , |Sk|} is distributed as the multiset of cycle lengths of a
uniformly random permutation of

∣∣∣T x0

v↓

∣∣∣ − 1. Hence, by Arratia, Barbour, and Tavaré [1,
Lemma 1.2],

(4.1) P
{
C

(nv)
j =m|A

}
=

1

jmm!

bnv/jc−m∑
`=0

(−1)`

j``!
.

Then

P
{
C

(nv)
j ≥ 2|A

}
=
∑
m≥2

1

jmm!

bnv/jc−m∑
`=0

(−1)`

jl`!

<
∑
m≥2

 1
√
nv

mm!

b√nvc−m∑
`=0

(−1)`

j``!
−

b√nvc−m∑
`=bnv/jc−m+1

(−1)`

j``!


= P

{
C

(nv)√
nv
≥ 2|A

}
+
∑
m≥2

1
√
nv

mm!

b√nvc−m∑
`=bnv/jc−m+1

(−1)`+1

j``!

≤ P
{
C

(nv)√
nv
≥ 2|A

}
+

1

nv

∑
m≥2

1

m!

b√nvc∑
`=1

1

j``!

≤ P
{
C

(nv)√
nv
≥ 2|A

}
+

e

nv

(
1
√
nv

+
1

nv
+ . . .

)
= P

{
C

(nv)√
nv
≥ 2|A

}
+O

(
n−3/2v

)
,

and the claim follows.

Let (Z1, . . . ,Znv) be a vector of independent Poisson variables Zi with mean 1
i . It is known

(see for instance [1, Lemma 1.4]) that

(4.2) dTV

((
C

(nv)
1 , . . . ,C

(nv)
b

)
, (Z1, . . . ,Zb)

)
≤ 2b

nv + 1
,

where dTV denotes the total variation distance. Then,

P
{
∀i≤

√
nv, C

(nv)
i ≤ 1

}
≥
∏

i≤√nv

P
{

Poisson
(

1

i

)
≤ 1

}
−

2
√
nv

nv + 1
(by (4.2))

=
∏

i≤√nv

exp

(
−1

i

)(
1 +

1

i

)
−

2
√
nv

nv + 1

≥ exp (− log (
√
nv + 1)) (

√
nv + 1)−

2
√
nv

nv + 1
= 1−

2
√
nv

nv + 1

and

P{∃SiSj-conflict with |Si|>
√
nv|A}
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≤
∑

k>
√
nv

P
{
C

(nv)
k ≥ 2|A

}
≤
∑

k>
√
nv

P
{
C

(nv)√
nv
≥ 2|A

}
+O

(
n−1/2v

)
(by Claim 1)

≤ nv
m=
√
nv∑

m=2

1
√
nv

mm!

b√nvc−m∑
`=0

(−1)`

√
nv

``!
+O

(
n−1/2v

)
(by (4.1))

≤O
(
n−1v

)
+O

(
n−1/2v

)
.

We may now conclude that for large n, for all v ∈D, Aut
(
T x0

v↓

)
= 1 with constant probabil-

ity.
Finally, the constraints on the subtree sizes from (ii) imply that any automorphism of Tn

restricts to an automorphism of D. It follows that when (ii) holds, for any v ∈ D \ L (D),
any automorphism φ of Tn with φ (v) 6= v must permute the set of subtrees of Tn which
intersect L (D) in exactly one vertex. It follows that if (i),(ii) and (iii) all hold, then no such
automorphism can exist, i.e., Aut (v,Tn) = 1.

4.2. Reconstruction from leaf bits. The only missing bit from the complete proof of The-
orem 2 is to show that for q > 1/2 one may beat random guessing even when only the leaf
bits are observed. This follows quite easily from the construction of Section 4.1. The method
of the previous section does not work since even when the tree Tn has the structure described
in Definition 1, the root of the complete r-ary subtree D is not a leaf and therefore its bit
value is not observable. However, it is easy to see that the root of a URRT is attached to a
leaf with probability bounded away from zero (see, e.g., Arratia, Barbour, and Tavaré [1]).
Hence, the following method is easily shown to have a probability of error bounded away
from 1/2:

Choose r and k as in the proof in Section 4.1. Let E′r,k be the event that the four conditions
listed in Definition 1 are satisfied and moreover a leaf v of Tn is attached to the root of the
subtree D. Now guess the bit value B0 by flipping the bit value Bv of the leaf v. Since
lim infn→∞ P{E′r,k}> 0 and the root of D is positively correlated with B0, we have that

lim inf
n→∞

P{1−Bv =B0}>
1

2
,

as desired.

5. Preferential attachment. In this section we extend several of our results to the linear
preferential model defined in the introduction. As most of the arguments are analogous to
those of the uniform attachment model, we only give sketches of the proofs, relegating some
of the technical details to the Appendix.

5.1. The majority rule. We begin by analyzing the majority rule. Just like in the case of
uniform attachment, the asymptotic probability of error is bounded by a constant multiple
of q both in the root-bit reconstruction problem and in the reconstruction problem from leaf
bits. Interestingly, the break-down point of the majority rule is not at q = 1/4 anymore. The
critical value depends on the parameter β and it is given by

γ(β) = min

(
β + 1

4β
,
1

2

)
.
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Note that this value is always larger than 1/4 and therefore the majority rule has a better
break-down point than in the case of uniform attachment, for all values of β. Moreover,
when β ≤ 1, the majority vote has a nontrivial probability of error for all values of q < 1/2.

THEOREM 6. Consider the broadcasting problem in the linear preferential attachment
model with parameter β > 0. For both the root-bit reconstruction problem and the recon-
struction problem from leaf bits, there exists a constant c such that

lim sup
n→∞

Rmaj(n, q)≤ cq for all q ∈ [0,1] .

Moreover,

lim sup
n→∞

Rmaj(n, q)< 1/2 if q ∈ [0, γ(β)) ,

and

lim sup
n→∞

Rmaj(n, q) = 1/2 if q ∈ [γ(β),1/2] .

The proof of the linear bound follows exactly the same steps as the corresponding proof
of Theorem 3, only here Lemmas 12, 13 (shown in Section A.1 of the Appendix) take the
role of Lemmas 4, 5, 7. Note that the bound on Var(δj) in (2.7) that is used in the proof of
Lemma 6, is similar in the preferential attachment model (see for instance [11, Theorem 2.7,
Section 7]). Hence we omit this proof for brevity.

For the other two assertions, the proof follows the same steps as in Section 2.5, and Sec-
tion 2.3, only now the matrix we use encodes the expected change of the weight of each of the
four categories of nodes. The weight of a set A of vertices is defined by β |A|+

∑
v∈AD

+
v .

We obtain the following matrix:
−βq β (1− q) βq βq
β + 1 1 0 0
βq βq −βq β (1− q)
0 0 β + 1 1


The eigenvalues of the transpose of this matrix are β+ 1, β+ 1− 2βq,−β,−β and then [20,
Theorems 3.23, 3.24] can be immediately applied as before, in combination with Lemmas 12
and 13.

5.2. The centroid rule. For the performance of the centroid rule, we have the following
analog of Theorem 4 for linear preferential attachment trees. The proof parallels the argu-
ments of Section 3. The details are given in Section A.2 in the Appendix.

THEOREM 7. Consider the broadcasting problem in the linear preferential attachment
model with fixed parameter β > 0. For both the root-bit reconstruction problem and the
reconstruction problem from leaf bits, there exists a constant c such that

lim sup
n→∞

Rcent(n, q)≤ cq for all q ∈ [0,1] .

In particular, c≤ β
β+1 in the root-bit reconstruction problem and c≤ 2 + 2β

β+1 + 3(β+1)
β e

3β+1

β+1

in the reconstruction problem from leaf bits. Moreover,

lim sup
n→∞

Rcent(n, q)< 1/2 for all q ≤ 1/2 .
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APPENDIX A: APPENDIX

A.1. Preferential attachment: the moments of Ni, N i. Here we prove the analogues
of Lemmas 4, 5, 7 in the preferential attachment model that allows us to analyze the majority
rule.

The difference with respect to uniform attachment is that, in the preferential attachment
model, knowing Ni at time n−1 is not enough to determine the probability that Ni increases
in the next time step. This is because the vertices counted byNi do not only have connections
between them but also with other external vertices. So we introduce the weight wj , for j ≥ i.
Recall that T̃i denotes the maximal size subtree of T 0

i↓ with root i and all other vertices

unmarked. Also Ni = |T̃i|. As in Section 2.7, Yj denotes the number of vertices u ∈ T̃i, such
that u≤ j. Moreover, Yj is the set of vertices u ∈ T̃i such that u≤ j. Then

(A.1) wj
def.
=
∑
v∈Yj

(
D+
v (j) + β

)
= β · Yj +

∑
v∈Yj

D+
v (j) .

Similarly to Lemmas 2 and 3, it is easy to see that for any positive a, b < 1,

(A.2) e−1
(
n+ 1− α
i+ 1− α

)b
≤
n−1∏
j=i

(
1 +

b

j + 1− α

)
≤ e
(
n+ 1− α
i+ 1− α

)b
.

Recall that in order to show the linear upper bound for the risk, we may assume that q < 1/8
(otherwise the bound holds trivially).

LEMMA 12. Let r = 1− 2βq
β+1 , r1 = 1

β+1 , and assume that q < 1/8. Then for any i≤ n,

3β

8 (β + 1)e

(
n+ 1− r1
i+ 1− r1

)r
− 3β

4e (β + 1)
≤ E [Ni]≤

βe

1 + β

(
n+ 1− r1
i+ 1− r1

)r
+

1

β + 1

and

E
[
N2
i

]
≤ 4

(1 + β)2
(
βe+ βe2(1 + β) + re2(1 + β)2

)(n+ 1− r1
i+ 1− r1

)2r

.

PROOF. We have

E [wn|wn−1] =wn−1

(
1 +

2q+ (1 + β) (1− 2q)

n (β + 1)− 1

)
,

since if Yn is chosen by the new vertex n, then with probability 2q we have wn =wn−1 + 1
(n is marked) and with probability 1 − 2q we have wn = wn−1 + 1 + β (n is unmarked).
Taking expectations and expanding the resulting recurrence, we have

(A.3) E [wn] = β

n−1∏
j=i

(
1 +

r

j + 1− r1

)
≤ βe

(
n+ 1− r1
i+ 1− r1

)r
by (A.2) and the fact that wi = β. Similarly,

(A.4) E [wn]≥ βe−1
(
n+ 1− r1
i+ 1− r1

)r
.

For the second moment, we use a similar argument as in for the first moment and obtain

E
[
w2
n|w2

n−1
]

= w2
n−1 +

(1− 2q)wn−1
(β + 1)n− 1

(
2 (1 + β)wn−1 + (1 + β)2

)
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+
2qwn−1

(β + 1)n− 1
(2wn−1 + 1)

≤ w2
n−1

(
1 +

2r

n− r1

)
+
wn−1 (β + 1) r

n− r1
.

Taking expectations and setting f (j) = r (β + 1) E[wj−1]
j−r1 , we obtain the following recurrence

for an
def
= E [wn]:

an ≤ an−1
(

1 +
2r

n− r1

)
+ f (n)

≤ β
n−1∏
j=i

(
1 +

2r

j + 1− r1

)
+

n−2∑
j=i

f (j + 1)

n−1∏
k=j+1

(
1 +

2r

k+ 1− r1

)
+ f (n)

(since wi = β )

≤ βe
(
n+ 1− r1
i+ 1− r1

)2r

+

n−1∑
j=i

rβe2 (1 + β)

j + 1− r1

(
j + 1− r1
i+ 1− r1

)r(n+ 1− r1
j + 1− r1

)2r

(by (A.2) and (A.3))

=

(
n+ 1− r1
i+ 1− r1

)2r
βe+ rβe2 (1 + β) (i+ 1− r1)r

n−1∑
j=i

(j + 1− r1)−r−1


≤
(
n+ 1− r1
i+ 1− r1

)2r(
βe+ rβe2 (1 + β) (i+ 1− r1)r

(∫ n

i
(x+ 1− r1)−r−1 dx+

1

(i+ 1− r1)r+1

))

≤
(
βe+ βe2(1 + β) + re2(1 + β)2

)(n+ 1− r1
i+ 1− r1

)2r

.

By (A.3) and Yn = 1
1+β + wn

1+β , we have

E [Yn]≤ βe

1 + β

(
n+ 1− r1
i+ 1− r1

)r
+

1

β + 1
.(A.5)

Moreover,

E [Yn|Yn−1,wn−1] = Yn−1 +
(1− 2q)wn−1

(β + 1) (n− r1)
.

Taking expectations and expanding the resulting recurrence we obtain the following

E [Yn] =
(1− 2q)

β + 1

n−1∑
j=i

E [wj ]

j + 1− r1

≥ (1− 2q)

β + 1

n−1∑
j=i

βe−1
(
j+1−r1
i+1−r1

)r
j + 1− r1

by (A.4)

=
β (1− 2q)

e (β + 1) (i+ 1− r1)r
n−1∑
j=i

(j + 1− r1)r−1

≥ β (1− 2q)

e (β + 1) (i+ 1− r1)r
∫ n−1

i
(x+ 1− r1)r−1 dx
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≥ 3β

4e (β + 1) (i+ 1− r1)r
((n− r1)r − (i+ 1− r1)r) (since q <

1

8
and

1− 2q

r
≥ 3

4
)

≥ 3β

8e (β + 1)

(
n+ 1− r1
i+ 1− r1

)r
− 3β

4e (β + 1)

The upper bound for the second moment follows by Yn = 1
1+β + wn

1+β , hence E [Yn]≤ 4E[wn]
(1+β)2

,
and the previous computations.

Denote by Yj the number of leaf vertices in Yj .

LEMMA 13. Let r = 1− 2βq
β+1 , r1 = 1

β+1 , and assume that q < 1/8. For any i≤ n,

β

8e (β + 1)

(
n+ 1− r1
i+ 1− r1

)r
− 3β

8e (β + 1)
≤ E

[
N i

]
≤ βe

1 + β

(
n+ 1− r1
i+ 1− r1

)r
+

1

β + 1

and

E
[
N

2
i

]
≤ 4

(1 + β)2
(
βe+ βe2(1 + β) + re2(1 + β)2

)(n+ 1− r1
i+ 1− r1

)2r

.

PROOF. The upper bounds clearly hold by the fact that Y j ≤ Yj and Lemma 12. Let us
denote bywj the weight of the set of leaves in Yj (recall the weight function defined in (A.1)).
Notice that wn = βY n. Hence,

E
[
Y n|Y n−1,wn−1,wn−1

]
= Y n−1 +

1− 2q

(β + 1) (n− r1)
(wn−1 −wn−1)

= Y n−1 +
1− 2q

(β + 1) (n− r1)
(
wn−1 − βY n−1

)
= Y n−1

(
1− β (1− 2q)

(β + 1) (n− r1)

)
+

1− 2q

(β + 1) (n− r1)
wn−1.

We can assume that i≤ n− 2, since otherwise the result can be confirmed immediately. Let
f (n) = 1−2q

(β+1)(n−r1)E [wn−1]. Then, an
def
= E

[
Y n

]
satisfies

an = an−1

(
1− β (1− 2q)

(β + 1) (n− r1)

)
+ f (n)

≥
n−2∑
j=i

f (j + 1)

n−1∏
k=j+1

(
1− β (1− 2q)

(β + 1) (k+ 1− r1)

)

≥
n−2∑
j=i

β (1− 2q)

e (β + 1) (j + 1− r1)

(
j + 1− r1
i+ 1− r1

)r j + 1− r1
n+ 1− r1

(by (A.4))

≥ β (1− 2q)

e (β + 1) (n+ 1− r1)
(i+ 1− r1)−r

∫ n−2

i
(x+ 1− r1)r dx

≥ 3β

8e (β + 1)

(
1

3

(
n+ 1− r1
i+ 1− r1

)r
− 1

)
.
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A.2. Proof of Theorem 7. To show the theorem, we work as in Section 3. For brevity, we
omit overlapping arguments and we only fill in the missing points. Recall that the estimator
b̂cent is the bit value of the centroid v∗ of the tree. In case there are two centroids we pick one
uniformly at random. However, the probability of this event tends to zero, see Wagner and
Durant [13, Lemma 15].

THEOREM 8. (Wagner and Durant [13, Theorem 9, Theorem 11]) Let δn be the depth of
the centroid closest to the root and Ln be its label at time n. Then

lim
n→∞

E [δn] =
β

β + 1
and lim

n→∞
P{Ln = 0}= 1− β

(
21/(1+β) − 1

)
.

We may combine the above theorem and equation (3.1) as follows.

lim sup
n→∞

P
{
b̂cent 6=B0

}
≤ 1

2
− 1

2
lim inf
n→∞

P{D = 0}

=
1

2
− 1

2
lim inf
n→∞

P{δn = 0}

=
1

2
− 1

2

(
1− β

(
21/(1+β) − 1

))
<

1

2
.

The rest follows directly by combining Theorem 8 and equation (3.4).
To show Theorem 7 in the case of reconstruction from leaf-bits, we prove the following
lemma.

LEMMA 14. P{∆> 2} ≤ 3
β (β + 1)e

3β+1

β+1 n−
1

β+1 +O
(
1
n

)
.

PROOF. Denote by N1 the set of vertices i ≤ dn/2e at distance one from the root. For
vertex u such that dn/2e < u ≤ n, we write Yu for the indicator that u attaches to a vertex

in N1 (say it attaches to u1) and also an independent Bernoulli
(
D+
u1

(dn/2e)
D+
u1 (u−1)

)
coin flip is

successful. We add the last condition so that

P{YuYv = 1}= P{Yu = 1}P{Yv = 1} ,

for any u, v such that v > u > dn/2e. We write Xu for the indicator that u is connected with
an edge to N1 and is a leaf. Then, Xu = YuZu, where Zu is the indicator that no vertex t > u
attaches to u. Moreover,

P{Zv = 1|YuYv = 1}= P{Zv = 1|Yv = 1}

when v > u, and

P{XuXv = 1}= P{Zu = 1|ZvYuYv = 1}P{Zv = 1|YuYv = 1}P{YuYv = 1} .

Combining the previous observations, we obtain for v > u:

Cov (XuXv)

= P{Zv = 1|YuYv = 1}P{YuYv = 1} (P{Zu = 1|ZvYuYv = 1} − P{Zu = 1|Yu = 1}) .

But

P{Zu = 1|YuYvZv = 1}=
u

u+ 1− 1
β+1

· · · v− 2

v− 1− 1
β+1

·
v− β

β+1

v
· · ·

n− 1− β
β+1

n− 1

≤ u

u+ β
β+1

· · · v− 2

v− 2 + β
β+1

· v

v+ β
β+1

· · · n− 1

n− 1 + β
β+1
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and

P{Zu = 1|Yu = 1}=
u

u+ 1− 1
β+1

· · · n− 1

n− 1
β+1

=
u

u+ β
β+1

· · · n− 1

n− 1 + β
β+1

.

Therefore, for w (N1) =
∑

i∈N1

(
D+
i (dn/2e) + β

)
, we have

Cov (XuXv)≤

(
1− v− 1

v− 1 + β
β+1

)
·E
{

w (N1)

(β + 1)u− 1

}2

≤ 2

n
·E
{

w (N1)

(β + 1)u− 1

}2

≤ 8

n3 (β + 1)2
·E{w (N1)}2 ,

since v > u≥ n/2 + 1. Moreover,

EXu =

(
u

u+ β
β+1

· · · n− 1

n− 1 + β
β+1

)
·E
{

w (N1)

(β + 1)u− 1

}

≥ e−
β

β+1 ·E
{

w (N1)

(β + 1)n

}
.

Then, by Chebyshev’s inequality and the previous bounds,

P

 ∑
i>dn/2e

Xi = 0

≤
∑

i≥dn/2e
Var(Xi) +

∑
i 6=j

i≥dn/2e

Cov(XiXj)

( ∑
i≥dn/2e

EXi

)2

≤ e
2β

β+1 (β + 1)

E{w (N1)}
+O

(
1

n

)
.

Moreover E{w (N1)} ≥ β
3en

1

β+1 . To see that, notice that a its expectation satisfies the recur-
rence

αn ≥ αn−1

(
1 +

1/ (β + 1)

n− 1/ (β + 1)

)
,

with initial condition α1 = β, and then we can apply (A.2)).

By Lemma 14 and [12, Theorem 6.50],

E∆ =

n−1∑
i=0

P{∆> i} ≤ 2 +
3

β
(β + 1)e

3β+1

β+1 +
∑

i>n1/(β+1)

P{∆> i}+ on (1)

= 2 +
3

β
(β + 1)e

3β+1

β+1 + on (1) .

As in Section 3.2 and using Theorem 8, Lemma 14, we have that, if ṽ is a leaf vertex that is
closest to the centroid v∗, then

lim sup
n→∞

Ed(ṽ,0)≤ E[∆ + 2D]≤ 2 +
2β

β + 1
+

3

β
(β + 1)e

3β+1

β+1 .
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This completes the proof of the first part of Theorem 7 for the reconstruction problem from
leaf bits. The second part follows from the fact that the root is the centroid of the tree with
probability bounded away from zero, combined with the fact that the expected distance of
the nearest leaf is bounded, as shown above.
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