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Abstract
Zero-delay lossy source coding schemes are considered for both individual se-

quences and random sources. Performance is measured by the distortion redun-
dancy, defined as the difference between the normalized cumulative mean squared
distortion of the scheme and the normalized cumulative distortion of the best scalar
quantizer of the same rate which is matched to the entire sequence to be encoded. By
improving and generalizing a scheme of Linder and Lugosi, Weissman and Merhav
showed the existence of a randomized scheme which, for any bounded individual se-
quence of length n, achieves a distortion redundancy O(n−1/3 log n). However, both
schemes have prohibitive complexity (both space and time) which makes practical
implementation infeasible. In this paper, we present an algorithm that computes
Weissman and Merhav’s scheme efficiently. In particular, we introduce an algorithm
with encoding complexity O(n4/3) and distortion redundancy O(n−1/3 log n). The
complexity can be made linear in the sequence length n at the price of increas-
ing the distortion redundancy to O(n−1/4

√
log n). We also consider the problem of

minimax distortion redundancy in zero-delay lossy coding of random sources. By
introducing a simplistic scheme and proving a lower bound, we show that for the
class of bounded memoryless sources, the minimax expected distortion redundancy
is upper and lower bounded by (constant multiples of) n−1/2.

Index Terms: Algorithmic efficiency, individual sequences, lossy source coding, minimax

redundancy, sequential coding, scalar quantization.

A. György and T. Linder are with the Department of Mathematics and Statistics, Queen’s University,
Kingston, Ontario, Canada K7L 3N6 (email: {gyorgy}{linder}@mast.queensu.ca). A. György is on
leave from the Computer and Automation Research Institute of the Hungarian Academy of Sciences,
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1 Introduction

Consider the widely used model for fixed-rate lossy source coding at rate R where an

infinite sequence of real-valued source symbols x1, x2, . . . is transformed into a sequence

of channel symbols y1, y2, . . . taking values from the finite channel alphabet {1, 2, . . . ,M},

M = 2R, and these channel symbols are then used to produce the reproduction sequence

x̂1, x̂2, . . .. The scheme is said to have overall delay at most δ if there exist nonnegative

integers d1 and d2 with d1 + d2 ≤ δ such that each channel symbol yn depends only

on the source symbols x1, . . . , xn+d1 and the reproduction x̂n for the source symbol xn

depends only on the channel symbols y1, . . . , yn+d2 . When δ = 0, the scheme is said to

have zero delay. In this case, yn depends only on x1, . . . , xn, and x̂n on y1, . . . , yn, so that

the encoder produces yn as soon as xn is available, and the decoder can produce x̂n when

yn is received.

Lossy source coding schemes with limited delay (in particular with zero delay) are of

obvious practical interest in all applications where small delay is a crucial requirement. In

this paper we investigate the construction of provably efficient and computationally feasi-

ble methods for zero-delay lossy source coding. We mainly concentrate on methods that

perform uniformly well with respect to a given reference coder class on every individual

(deterministic) sequence. In this individual-sequence setting no probabilistic assumptions

are made on the source sequence, which provides a natural model for situations where very

little is known about the source to be encoded. We also investigate the best performance

of zero-delay schemes for probabilistic sources and determine tight performance bounds

for the class of memoryless sources.

The study of zero-delay coding for individual sequences was initiated in [1]. There a

zero-delay scheme was constructed that, uniformly over all individual sequences, performs

essentially as well as the best scalar quantizer that is matched to the particular sequence

to be encoded. More precisely, it was shown that for any bounded sequence of n source

symbols, the scheme’s normalized accumulated mean squared distortion is not larger than

the normalized cumulative distortion of the best scalar quantizer of the same rate plus an

error term (called the distortion redundancy) of order n−1/5 log n. The scheme was based
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on a generalization of exponentially weighted average prediction of individual sequences

(see Vovk [2, 3], Littlestone and Warmuth [4]) and it required that both the encoder and

the decoder have access to a common randomization sequence.

The results in [1] were improved and generalized by Weissman and Merhav [5]. They

considered the construction of schemes that can compete with any finite set of limited-

delay and finite-memory coding schemes without requiring that the decoder have access

to the randomization sequence. In the special case dealt with in [1] where the reference

class is the (zero-delay) family of scalar quantizers of a given rate, the resulting scheme

has distortion redundancy of order n−1/3 log n. Similarly to the method of [1], the basic

idea is to assign a weight to each of a finite collection of quantizers approximating all

possible quantizers of rate R such that the weight is an exponentially decreasing function

of the accumulated distortion of the quantizer. Then a quantizer is chosen randomly with

probabilities proportional to the assigned weights and used in transmitting symbols for a

certain period.

Although both schemes have the attractive property of performing uniformly well on

individual sequences, they are computationally inefficient in that the number of weights

they have to maintain is polynomial in n with degree that is proportional to M = 2R,

where R is the rate of the scheme. In particular, in their straightforward implementation,

they require a computational time of order nc 2R
, where c = 1/5 for the scheme in [1]

and c = 1/3 for the scheme in [5]. This prohibitive complexity comes from the fact

that in order to well approximate the performance of the best scalar quantizer by the

performance of the best quantizer from a finite set of quantizers, these methods have to

calculate and store the cumulative distortion of about nc 2R
quantizers. Clearly, even for

moderate values of the encoding rate, this complexity makes the implementation of both

methods infeasible. It was identified as an important open problem in both [1] and [5] to

find an algorithm with similar performance properties but significantly lower complexity.

The main result of this paper is an algorithm for implementing the scheme of Weissman

and Merhav whose computational complexity is of order 2Rn4/3. The key idea is to use the

special structure of scalar quantizers to efficiently generate randomly chosen quantizers

according to the exponential weighting scheme without having to calculate and store the
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cumulative losses of all nc 2R
reference quantizers. The complexity of the scheme can be

reduced to be of order 2Rn (i.e., linear in the length of the sequence) by increasing the

distortion redundancy to O(n−1/4
√

log n).

In the second part of the paper we investigate the distortion redundancy problem for

zero-delay coding schemes in the probabilistic setting. In particular, we provide lower

and upper bounds for stationary and memoryless random sources. These bounds are

based on learning-theoretic analyses of the minimax distortion redundancy in the design of

empirically optimal quantizers [6, 7]. We show that there exists a simple (not randomized)

zero-delay scheme whose expected distortion redundancy is bounded by a constant times

n−1/2. In the other direction, we show an n−1/2-type lower bound on the maximum

distortion redundancy over the class of memoryless sources for any zero-delay scheme.

This proves that for memoryless sources the minimax distortion redundancy of zero-delay

lossy coding is essentially proportional to n−1/2. Note that this is in contrast to the best

known O(n−1/3 log n) convergence rate for zero-delay coding of individual sequences given

by Weissman and Merhav’s scheme. Whether this O(n−1/3 log n) rate can be improved

for individual sequences remains an open problem.

The rest of the paper is organized as follows. In Section 2, after giving formal defi-

nitions, we construct an algorithm efficiently implementing the scheme of Weissman and

Merhav, and analyze its performance and complexity. In Section 3 we show that the

minimax distortion redundancy of zero-delay schemes for memoryless sources is at least

of order n−1/2, and we also describe and analyze a simplistic scheme which provides a

matching n−1/2-type upper bound. Conclusions are drawn in Section 4.

2 A fast algorithm for individual sequences

In this section, first we formally define the model of fixed-rate zero-delay sequential lossy

source coding and describe the coding scheme of Weissman and Merhav. The main result

of this section is an efficiently computable algorithm to implement their method.

A fixed-rate zero-delay sequential source code of rate R = log M (M is a positive

integer and log denotes base-2 logarithm) is defined by an encoder-decoder pair connected
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via a discrete noiseless channel of capacity R. We assume that the encoder has access

to a sequence U1, U2, . . . of independent random variables distributed uniformly over the

interval [0, 1]. The input to the encoder is a sequence of real numbers x1, x2, . . . taking

values in the interval [0, 1]. (All results may be extended trivially for arbitrary bounded

sequences of input symbols.) At each time instant i = 1, 2, . . ., the encoder observes xi

and the random number Ui. Based on xi, Ui, the past input values xi−1 = (x1, . . . , xi−1),

and the past values of the randomization sequence U i−1 = {U1, . . . , Ui−1}, the encoder

produces a channel symbol yi ∈ {1, 2, . . . ,M} which is then transmitted to the decoder.

After receiving yi, the decoder outputs the reconstruction value x̂i based on the channel

symbols yi = (y1, . . . , yi) received so far.

Formally, the code is given by a sequence of encoder-decoder functions {fi, gi}∞i=1,

where

fi : [0, 1]i × [0, 1]i → {1, 2, . . . ,M}

and

gi : {1, 2, . . . ,M}i → [0, 1].

so that yi = fi(x
i, U i) and x̂i = gi(y

i), i = 1, 2, . . .. Note that there is no delay in

the encoding and decoding process. The normalized cumulative squared distortion of the

sequential scheme at time instant n is given by

1

n

n∑
i=1

(xi − x̂i)
2 .

The expected cumulative distortion is

E

[
1

n

n∑
i=1

(xi − x̂i)
2

]

where the expectation is taken with respect to the randomizing sequence Un = (U1, . . . , Un).

An M -level scalar quantizer Q is a measurable mapping R → C, where the codebook

C is a finite subset of R with cardinality |C| = M . The elements of C are called the code

points. The instantaneous squared distortion of Q for input x is (x−Q(x))2. A quantizer
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Q is called a nearest neighbor quantizer if for all x it satisfies

(Q(x)− x)2 = min
y∈C

(x− y)2.

It is immediate from the definition that if Q is a nearest neighbor quantizer and Q̂ has the

same codebook as Q, then (Q(x)−x)2 ≤ (Q̂(x)−x)2 for all x. For this reason, we will only

consider nearest-neighbor quantizers. Also, since we consider sequences with components

in [0, 1], we can assume without loss of generality that the domain of definition of Q is

[0, 1] and that all its code points are in [0, 1].

Let Q denote the collection of all M -level nearest neighbor quantizers. For any se-

quence xn, the minimum normalized cumulative distortion in quantizing xn with an M -

level scalar quantizer is

min
Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2.

Note that to find a Q ∈ Q achieving this minimum one has to know the entire sequence

xn in advance.

The expected distortion redundancy of a scheme (with respect to the class of scalar

quantizers) is the quantity

sup
xn

(
E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2

)
.

where the supremum is over all individual sequences of length n with components in [0, 1]

(recall that the expectation is taken over the randomizing sequence). In [1] a zero-delay

sequential scheme was constructed whose distortion redundancy converges to zero as n

increases without bound. In other words, for any bounded input sequence the scheme

performs asymptotically as well as the best scalar quantizer that is matched to the entire

sequence. The main result of Weissman and Merhav [5], specialized to the zero-delay

case, improves the construction in [1] and yields the best distortion redundancy known to
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date given by

sup
xn

(
E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2

)
≤ cn−1/3 log n

where c is a constant depending only on M .

The coding scheme of [5] works as follows: the source sequence xn is divided into

non-overlapping blocks of length l (for simplicity assume that l divides n). At the end

of the kth block, that is, at time instances t = kl, k = 0, 1, . . . , n/l − 1, a quantizer Qk

is chosen randomly from the class QK of all M -level nearest-neighbor quantizers whose

code points all belong to the finite grid

C(K) = {1/(2K), 3/(2K), . . . , (2K − 1)/(2K)}

according to the probabilities

P{Qk = Q} = pk(Q) =
e−ηDkl(Q)∑ bQ∈QK

e−ηDkl( bQ)
(1)

where η > 0 is a parameter to be specified later,

Dt(Q) =
1

t

t∑
i=1

(xi −Q(xi))
2 for all t = 1, . . . , n

and D0(Q) = 0 for all Q ∈ QK . At the beginning of the (k + 1)st block the encoder uses

the first d 1
R

log
(

K
M

)
e time instants to describe the selected quantizer Qk to the receiver

(dxe denotes the smallest integer not less than x), that is, for time instants

i = kl + 1, . . . , kl +

⌈
1

R
log

(
K

M

)⌉

an index identifying Qk is transmitted (note that |QK | =
(

K
M

)
). In the rest of the block,

that is, for time instants

i = kl +

⌈
1

R
log

(
K

M

)⌉
+ 1, . . . , (k + 1)l
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the encoder uses Qk to encode the source symbol xi and transmits Qk(xi) to the receiver.

In the first d 1
R

log
(

K
M

)
e time instances of the (k + 1)st block, that is, while the index

of the quantizer Qk is communicated, the decoder emits an arbitrary symbol x̂i. In the

remainder of the block, the decoder uses Qk to decode the transmitted x̂i = Qk(xi).

Choosing η = c1

√
log n/(nl) one obtains, as it is implicitly proven in Theorem 1 and

Corollary 2 in [5], that for all xn ∈ [0, 1]n, the expected cumulative distortion of this

scheme is bounded as

1

n
E

[
n∑

i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2 ≤ C1

√
l log K

n
+

C2 log K

l
+

1

K
(2)

where c1, C1, and C2 are positive constants depending only on M . The right-hand side

of (2) is asymptotically minimized by setting l = c2n
1/3 and K = c3n

1/3 for positive

constants c2 and c3; in this case one obtains that

1

n
E

[
n∑

i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2 = O(n−1/3 log n).

To be able to set l and K this way, the encoder and the decoder need to know the sequence

length n in advance. However, using the well-known method of exponentially increasing

block lengths (see, e.g., [8]), the algorithm can be modified so that it performs essentially

just as well without the prior knowledge of n (only the constants will slightly increase).

In the straightforward implementation of this algorithm, one has to compute the dis-

tortion for all the
(

K
M

)
quantizers in QK in parallel. This method is computationally

inefficient since it has to perform O(KM) computations for each input symbol, which

becomes O(nM/3) with the optimal choice K = c3n
1/3. Thus, the overall computational

complexity of encoding a sequence of length n becomes O(n1+M/3), and the space com-

plexity1 of the algorithm is O(KM) = O(nM/3), since the cumulative distortion for each

quantizer in QK has to be stored. Clearly, this complexity is prohibitive for all except

very low coding rates.

1Throughout this paper we do not consider specific models for storing real numbers; for simplicity we
assume that a real number can be stored in a memory space of fixed size.
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In the following we describe an efficient way to implement the above algorithm. The

main point is that one can draw a quantizer according to the distribution in (1) without

computing the cumulative distortions Dt(Q) for all Q ∈ QK .

Theorem 1 For any n ≥ 1, M ≥ 2, K > M , and l > log
(

K
M

)
/ log M , there exists a

zero-delay source coding scheme of rate R = log M for coding sequences of length n such

that for all xn ∈ [0, 1]n,

E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2 ≤ C1

√
l log K

n
+ C2

log K

l
+

3

K

where C1, C2 are positive constants that depend only on M , and the coding procedure has

O(MK2n/l) computational complexity and O(MK2) space complexity.

Remarks. It is easy to check that to minimize the above upper bound one has to

choose l = c′2n
1/3 and K = c′3n

1/3 for positive constants c′2 and c′3. This way a distortion

redundancy of O(n−1/3 log n) is achieved. As a result, the computational complexity

becomes O(Mn4/3) and the memory need of the algorithm is O(Mn2/3). The algorithm

can also be implemented with computational complexity O(Mn) (that is, linear both in n

and M). In this case, to minimize the distortion we have to set l = c′′2n
1/2 and K = c′′3n

1/4,

implying a distortion redundancy of order n−1/4
√

log n and O(Mn1/2) space complexity.

It can be shown that the actual distortion of the scheme (for the current realization

of the randomizing sequence U1, . . . , Un) is, with high probability, close to the expected

performance given in the theorem. In particular, by a straightforward application of the

Azuma-Hoeffding inequality (see [5] for details), for any ε > 0,

P

{
1

n

n∑
i=1

(xi − x̂i)
2 − E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
> ε

}
≤ e−nε2/(2l).

Recently, in [9] another low complexity algorithm was developed for the same problem.

This algorithm uses the “follow the perturbed leader”-type prediction method of Hannan

[10] and Kalai and Vempala [11], instead of the exponentially weighted average prediction.

This algorithm, which is conceptually somewhat simpler than the one in the theorem,
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can be implemented in linear O(Mn) time, and it achieves a slightly worse distortion

redundancy of order n−1/4 log n, while having only O(Mn1/4) space complexity. However,

unlike the algorithm in the theorem, the performance of the algorithm of [9] cannot be

improved at the price of increasing its complexity. In other words, that algorithm cannot

achieve the best known O(n−1/3 log n) distortion redundancy.

Proof of Theorem 1 In the proof we use the algorithm of [5] but we draw the random

quantizers Qk in a computationally efficient way.

Let IB denote the indicator function of the event B. For any fixed k and z < ẑ such

that z, ẑ ∈ Ĉ(K) = C(K) ∪ {0, 1}, let

∆k(z, ẑ) =



∑kl
i=1 I{xi≤ẑ}(xi − ẑ)2 if z = 0;∑kl
i=1 I{xi∈(z, z+ẑ

2
]}(xi − z)2 + I{xi∈( z+ẑ

2
,ẑ]}(xi − ẑ)2 if 0 < z < ẑ < 1;∑kl

i=1 I{xi≥z}(xi − z)2 if 0 < z and ẑ = 1.

(3)

Define z0 = 0, zM+1 = 1, and denote the code points of Q ∈ QK by z1 < . . . < zM .

Then for j = 1, . . . ,M + 1, ∆k(zj−1, zj) denotes the partial distortion of Q in the interval

(zj−1, zj) when quantizing the sequence xkl = (x1, . . . , xkl), and the distortion Dkl(Q) of

Q can be decomposed as

Dkl(Q) =
M+1∑
j=1

∆k(zj−1, zj).

Next we provide an algorithm that for any fixed k chooses a quantizer randomly

according to the distribution {pk(Q)} given in (1). This algorithm assumes that the partial

distortions ∆k(z, ẑ) are known for all z < ẑ, z, ẑ ∈ Ĉ(K). The efficient computation of

the ∆k(z, ẑ) will be treated later.

We construct Qk by choosing its code points sequentially, in an increasing order: first

we compute the distribution of the smallest code point and draw the code point randomly

according to this distribution; having chosen the smallest m− 1 code points, we compute

the conditional distribution of the mth smallest code point, and draw the code point

according to this distribution. After having chosen all the M code points, the resulting

quantizer Qk (a random object) will satisfy P(Qk = Q) = pk(Q) for all Q ∈ QK .
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For any 1 ≤ m ≤ M and z1 < . . . < zm, zi ∈ C(K), let Q(z1, . . . , zm) ⊂ QK denote the

set of M -level quantizers in Qk with m smallest code points z1 < . . . < zm. For m = 0

define formally Q(z1, . . . , zm) = QK . Let pk(zm|zm−1, . . . , z1) denote the probability that

the mth code point of QK is zm given the smallest m− 1 code points are z1 < . . . < zm−1.

Clearly, for m = 1 we have

pk(z1) =
∑

Q∈Q(z1)

pk(Q) (4)

and for m ≥ 2,

pk(zm|zm−1, . . . , z1) =

∑
Q∈Q(z1,...,zm) pk(Q)∑

Q∈Q(z1,...,zm−1) pk(Q)
. (5)

To compute these probabilities efficiently, for any z ∈ C
(K)
0 = C(K) ∪ {0} define

Gk(1, z) = e−η∆(z,1)

and for 2 ≤ m ≤ M + 1 and z ∈ C
(K)
0 define

Gk(m, z) =
∑
z2>z

∑
z3>z2

· · ·
∑

zm>zm−1

e−η(∆t(z,z2)+∆t(zm,1))

m−1∏
j=2

e−η∆t(zj ,zj+1).

where zi ∈ C(K) for all i. Setting z1 = z and zm+1 = 1, we can simplify the notation as

Gk(m, z) = Gk(m, z1) =
∑

z2>z1

· · ·
∑

zm>zm−1

m∏
j=1

e−η∆t(zj ,zj+1).

Expressions (4) and (5) can be rewritten in terms of Gk(·, ·). Introducing the notation

z0 = ẑ0 = 0 and zM+1 = ẑM+1 = 1, for m = 1 we have

pk(z1) =

∑
z2>z1

· · ·
∑

zM>zM−1

∏M
j=0 e−η∆k(zj ,zj+1)∑

ẑ1>ẑ0
· · ·
∑

ẑM>ẑM−1

∏M
j=0 e−η∆k(ẑj ,ẑj+1)

= e−η∆k(z0,z1) Gk(M, z1)

Gk(M + 1, 0)
. (6)
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For 2 ≤ m ≤ M , letting ẑj = zj for j = 1, . . . ,m− 1, we have

pk(zm|zm−1, . . . , z1)

=

∑
zm+1>zm

· · ·
∑

zM>zM−1

∏M
j=0 e−η∆k(zj ,zj+1)∑

ẑm>ẑm−1
· · ·
∑

ẑM>ẑM−1

∏M
j=0 e−η∆k(ẑj ,ẑj+1)

=
e−η(∆k(0,z1)+···+∆k(zm−1,zm))

∑
zm+1>zm

· · ·
∑

zM>zM−1

∏M
j=m e−η∆k(zj ,zj+1)

e−η(∆k(0,z1)+···+∆k(zm−2,zm−1))
∑

ẑm>ẑm−1
· · ·
∑

ẑM>ẑM−1

∏M
j=m−1 e−η∆k(ẑj ,ẑj+1)

= e−η∆k(zm−1,zm) Gk(M −m + 1, zm)

Gk(M −m + 2, zm−1)
. (7)

Note that (7) reduces to (6) for m = 1.

The values of Gk(m, z) can be computed for all z ∈ C
(K)
0 and m = 2, . . . ,M + 1 via

the following recursion.

Gk(m, z)

=
∑
z2>z

∑
z3>z2

· · ·
∑

zm>zm−1

e−η(∆k(z,z2)+∆k(zm,1))

m−1∏
j=2

e−η∆k(zj ,zj+1)

=
∑
z2>z

e−η∆k(z,z2)
∑

z3>z2

· · ·
∑

zm>zm−1

e−η∆k(zm,1)

m−1∏
j=2

e−η∆k(zj ,zj+1)

=
∑
ẑ>z

e−η∆k(z,ẑ)Gk(m− 1, ẑ). (8)

Note that the case z = 0 has to be considered only when m = M + 1.

In summary, we have the following algorithm.
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Algorithm 1 (Drawing a random quantizer according to (1))

Input: M, K, ∆k(·, ·).

Gk(1, z) := e−η∆(z,1) for all z ∈ C(K), z0 := 0.

For m := 2 to M + 1

compute Gk(m, z) using (8) for all z ∈ C(K) (also for z = 0 if m = M + 1).

For m := 1 to M

compute pk(zm|zm−1, . . . , z1) for all zm > zm−1, zm ∈ C(K) according to (7);

choose zm randomly according to the computed conditional probability

distribution.

Let Qk be a nearest-neighbor quantizer with code points z1 < . . . < zM.

From the derivation of the algorithm the following lemma is straightforward:

Lemma 1 The quantizer Qk generated by Algorithm 1 satisfies (1).

Since |C(K)| = K, the complexity to compute Gk(m, z) from the function Gk(m− 1, ·)

is proportional to K, and since z can be chosen in K ways, the computation of Gk(m, ·)

from Gk(m − 1, ·) has complexity O(K2). Thus the computation of Gk for all possible

values has complexity O(MK2), which in turn implies that the computational complexity

of Algorithm 1 is also O(MK2), provided the partial distortions ∆k(z, ẑ) are known.

To maintain these distortion values, for each input symbol xi we have to update the

distortion of each interval (z, ẑ) containing xi. Since the number of such intervals can

vary from approximately K to K2/4, this implies extra computations of the order of

O(nK2) for the whole sequence, making the overall computational complexity O(nK2) +

O(MK2n/l), which becomes O(Mn5/3) in the minimum distortion case when both l and

K are proportional to n1/3.

The amount of necessary computations can be reduced by storing only approximate

distortion values, at the price of only slightly increasing the normalized cumulative dis-

tortion. The idea is that instead of the original sequence xn, we use its finely quantized

version x̄n = (x̄1, . . . , x̄n) to compute the approximate distortion values which are then
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used to determine the distribution for generating the random quantizers. The x̄i are

obtained via a K-level uniform scalar quantizer, that is,

x̄i =


bKxic

K
+ 1

2K
if xi < 1;

2K−1
2K

if xi = 1

(here bxc denotes the largest integer not greater than x). It is easy to check that for any

nearest neighbor quantizer Q with code points in [0, 1], we have

max
x∈[0,1]

|(x−Q(x))2 − (x̄−Q(x̄))2| ≤ 1/K

where x̄ is the K-level uniform scalar quantized version of x. Thus for any sequence

Q0, Q1, . . . , Qn/l−1 of quantizers in Q,

E

 1

n

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(xi −Qk(xi))
2

− min
Q′∈Q

1

n

n∑
i=1

(xi −Q′(xi))
2

≤ E

 1

n

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i −Qk(x̄i))
2

− min
Q′∈Q

1

n

n∑
i=1

(x̄i −Q′(x̄i))
2 +

2

K
. (9)

Define ∆̂k(z, ẑ) for all z < ẑ and k as ∆k(z, ẑ) was defined in (3), but with x̄i in place

of xi. That is,

∆̂k(z, ẑ) =



∑kl
i=1 I{x̄i≤ẑ}(x̄i − ẑ)2 if z = 0;∑kl
i=1 I{x̄i∈(z, z+ẑ

2
]}(x̄i − z)2 + I{x̄i∈( z+ẑ

2
,ẑ]}(x̄i − ẑ)2 if 0 < z < ẑ < 1;∑kl

i=1 I{x̄i≥z}(x̄i − z)2 if 0 < z and ẑ = 1.

(10)

Then for j = 1, . . . ,M + 1, ∆̂k(zj−1, zj) denotes the partial distortion of the quantizer Q

with code points z1 < . . . < zM in the interval (zj−1, zj) when applied to the sequence

x̄1, . . . , x̄kl. Unlike ∆k, ∆̂k can be computed efficiently for all k.
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For each time instant t, define the histogram

ht(j) =
t∑

i=1

I{x̄i=
2j−1
2K

} j = 1, . . . , K

counting the number of input symbols falling in the jth cell of the K-level uniform quan-

tizer. Clearly, ht(j) can easily be computed using constant computational capacity in each

time instant. (The index j satisfying x̄i = (2j − 1)/(2K) can be identified in constant

time; then ht(j) is increased by one.) This way the hkl(i) are immediately available at

the end of the kth block. The next lemma, which is proved in the Appendix (Algorithms

3–5) shows that using hkl, ∆̂k(·, ·) can be computed efficiently.

Lemma 2 Given K and hkl(i), i = 1, . . . , K, the values of ∆̂k(z, ẑ) for all z < ẑ (z, ẑ ∈

Ĉ(K)) can be computed in O(K2) time.

Using this lemma we obtain the following zero-delay source coding scheme:

Algorithm 2 (Universal low-complexity zero-delay source coding scheme)

Input: n, M, K, l, x1, . . . , xn.

k := 0 and h0(j) := 0 for all j.

For i := 1 to n

if i− 1 = kl then

compute ∆̂k(z, ẑ) for all z < ẑ (using Algorithms 3-5 with input K, hkl(·));

choose randomly Qk using Algorithm 1 with input M, K, ∆̂k(·, ·);

hi(j) := hi−1(j) + I{xi= 2j−1

2K
} for all j

if i− kl ≤
⌈
1
R
log
(
K
M

)⌉
then transmit the corresponding index symbol for Qk;

else transmit Qk(xi);

if i = (k + 1)l then k := k + 1.

By (2) and (9), the above coding scheme can be decoded with expected distortion
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redundancy

C1

√
l log K

n
+

C2 log K

l
+

3

K

and the encoding procedure has a computational complexity O(MK2n/l) and O(MK2)

space complexity (decoding can obviously be performed in linear time with O(M)+O(K)

space complexity). �

Remarks. Algorithm 2 may be difficult to implement on-line since in order to choose a

quantizer randomly at the end of each block, O(MK2) computations have to be performed

during a single time slot. With the choice of parameters l = c′′2n
1/2 and K = c′′3n

1/4 yielding

linear complexity in n, this amounts to O(Mn1/2) computations during one time slot. To

alleviate this problem, one can modify the algorithm so that Qk is determined during the

(k + 1)st block which is of length O(n1/2), and then Qk can be applied in the (k + 2)nd

block instead of the (k+1)st block. This way at each time instant only a constant number

of computations is carried out. It is not difficult to see that this modification results in

essentially the same distortion redundancy, and only the constants will slightly increase.

Although, in principle, only one random number is needed to generate the code points

z1, . . . , zM in Algorithm 1, in practice one may want to use M random numbers (one for

each code point). In this case, the additional condition l ≥ M should be satisfied (this

always holds for large enough n if either l = c′2n
1/3 or l = c′′2n

1/2).

Even though here we only consider squared distortion, most of the arguments presented

above generalize in a quite straightforward way to more general distortion measures. In

particular, it is easy to see that for difference distortion measures of the form ρ(|x −

x̂|) where ρ is nondecreasing and Lipschitz on [0, 1], Algorithm 1 can be modified in

a natural manner so that Lemma 1 remains true. The modified algorithm preserves

the computational complexity of order nK2 + MK2n/l. Moreover, a bound similar to

Theorem 1 holds with modified constants. To construct an algorithm with a reduced

complexity similar to Algorithm 2, additional assumptions on the distortion measure may

be needed. If, for example, ρ(|x− x̂|) = |x− x̂|r for a positive integer r, then Algorithm 2

may be modified by straightforward adjustments in Algorithms 3–5.
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3 Minimax distortion redundancy for memoryless

sources

The purpose of this section is to show that if the source is a stationary and memoryless

random sequence, then the rate of convergence may be speeded up so that the distortion

redundancy is of order n−1/2, as opposed to the O(n−1/3 log n) proved by Weissman and

Merhav [5] for individual sequences. We first prove a lower bound of order n−1/2 that holds

not only for the reference class of all scalar quantizers, but also for the entire reference

class of all zero-delay coding schemes.

We assume that the source is a sequence of independent and identically distributed

(i.i.d.) random variables {Xi}∞i=1, the randomizing sequence {Ui}∞i=1 is independent of

the source, and both the source and the randomizing sequence take values in the interval

[0, 1]. Consider any zero-delay encoder-decoder sequence {fi, gi}∞i=1, where, as before

fi : [0, 1]i × [0, 1]i → {1, 2, . . . ,M}

and

gi : {1, 2, . . . ,M}i → [0, 1]

so that the channel input at time i is Yi = fi(X
i, U i) and the reconstruction is X̂i = gi(Y

i),

i = 1, 2, . . ..

The following lemma was proved (in different forms) by Ericson [12] and Gaarder and

Slepian [13] (see also [14]). It states that, for memoryless sources, the best performance

over the class of zero-delay codes is achieved by a (memoryless) scalar quantizer. We give

the short proof for completeness.

Lemma 3 If {Xi}∞i=1 is a sequence of independent random variables, then for any se-

quence {fi, gi}∞i=1 we have for all i ≥ 1,

E
[
(Xi − X̂i)

2
]
≥ min

Q∈Q
E
[
(Xi −Q(Xi))

2
]

where Q denotes the class of scalar nearest-neighbor quantizers with M reconstruction
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levels.

Proof. Define the “reproduction coder” ĝi : [0, 1]i × [0, 1]i → [0, 1] by

X̂i = ĝi(X
i, U i) = gi(f1(X1, U1), . . . , fi(X

i, Ui)).

Denote the distribution of (X i−1, U i) by µ and recall that (X i−1, U i) and Xi are indepen-

dent. Thus

E
[
(Xi − X̂i)

2
]

= E
[
(Xi − ĝi(X

i, U i))2
]

=

∫
E
[
(Xi − ĝi(X

i, U i))2
∣∣X i−1 = xi−1, U i = ui

]
dµ(xi−1, ui)

=

∫
E
[
(Xi − ĝi(Xi, x

i−1, ui))2
]
dµ(xi−1, ui).

Since among f1, . . . , fi only fi depends on xi and it can take at most M values, the

function ĝi( · , xi−1, ui) can take at most M values for each fixed (xi−1, ui). Hence, if G

denotes the class of measurable real functions of a real variable with at most M distinct

values, then for µ almost all (xi−1, ui),

E
[
(Xi − ĝi(Xi, x

i−1, ui))2
]
≥ inf

g∈G
E
[
(Xi − g(Xi))

2
]
.

Since the class of M -level scalar nearest-neighbor quantizers achieves the infimum on the

right-hand side,

inf
g∈G

E
[
(Xi − g(Xi))

2
]

= min
Q∈Q

E
[
(Xi −Q(Xi))

2
]

and the lemma is proved. �

It was shown in [7, Theorem 1] that for any M ≥ 3 there exists a bounded i.i.d.

sequence {Xi}∞i=1 such that for some c > 0 and all n ≥ 2
3
M ,

min
Q∈Q

E

[
1

n

n∑
i=1

(Xi −Q(Xi))
2

]
≥ E

[
min
Q∈Q

1

n

n∑
i=1

(Xi −Q(Xi))
2

]
+

c√
n

.

Combining this with Lemma 3 gives the following lower bound for bounded memoryless
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sequences of length n on the normalized distortion redundancy of any zero-delay scheme

with respect to the best scalar quantizer matched to the entire sequence.

Theorem 2 For any M ≥ 3 there exist a stationary and memoryless source {Xi}∞i=1

taking values in [0, 1] and a constant c > 0 such that for any randomizing sequence {Ui}∞i=1,

zero-delay encoder-decoder sequence {fi, gi}∞i=1 of rate R = log M , and all n ≥ 2
3
M ,

E

[
1

n

n∑
i=1

(Xi − X̂i)
2 −min

Q∈Q

1

n

n∑
i=1

(Xi −Q(Xi))
2

]
≥ c√

n
.

Remark. The theorem immediately implies that the minimax distortion redundancy for

individual sequences is lower bounded as

inf
{fi,gi}n

i=1

sup
xn

(
E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
−min

Q∈Q

1

n

n∑
i=1

(xi −Q(xi))
2

)
≥ c√

n
.

Note that there is a gap between this lower bound and the best known n−1/3 log n-type

upper bound given in [5].

Next we show that the n−1/2 convergence rate is in fact achievable by a simplistic zero-

delay scheme described as follows. Time is divided into exponentially increasing blocks of

length 1, 2, 22, 23, . . .. At the end of the kth block, the encoder selects an M -level nearest

neighbor quantizer Qk, minimizing the empirical distortion, that is,

Dm(Qk) = arg min
Q∈QKk

Dm(Q)

where m = 1 + 2 + · · ·+ 2k−1 = 2k − 1,

Dm(Q) =
1

m

m∑
i=1

(Xi −Q(Xi))
2

and the minimum is taken over the class QKk
of all M -level nearest neighbor quantizers

whose code points all belong to the finite grid

C(Kk) = {1/(2Kk), 3/(2Kk), . . . , (2Kk − 1)/(2Kk)}
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where we choose Kk = b2k/2c. At the beginning of the (k + 1)st block, the encoder

describes the selected quantizer Qk to the receiver. This may be done using dMk/2e bits,

that is, in at most dMk/(2 log M)e time periods. In the rest of the (k + 1)st block, the

encoder uses the quantizer Qk to transmit Qk(Xi) at each time instant i.

Remark. Wu and Zhang [15] gave an algorithm with computational complexity O(Mn)

which finds an M -level empirically optimal quantizer for an ordered input sequence of

length n. Using this algorithm it is easy to see that the zero-delay scheme defined above

may be implemented at a total computational cost of O(Mn) + O(n log n), where the

second term is the time needed to sort the input sequence in each block.

The performance of this zero-delay scheme may be bounded as follows.

Theorem 3 Consider the scheme described above and assume that X1, X2, . . . are inde-

pendent and identically distributed random variables taking values in [0, 1]. Then there

exists a constant c, depending on M only, such that

E

[
1

n

n∑
i=1

(Xi − X̂i)
2 −min

Q∈Q

1

n

n∑
i=1

(Xi −Q(Xi))
2

]
≤ c√

n
.

Moreover, almost surely, for n sufficiently large,

1

n

n∑
i=1

(Xi − X̂i)
2 −min

Q∈Q

1

n

n∑
i=1

(Xi −Q(Xi))
2 ≤

√
c log log n

n
.

Remarks. It follows from Lemma 3 that the upper bound for the expectation also holds

if the minimum is taken over all rate-R zero-delay schemes instead of the class of M -

level scalar quantizers. Thus Theorems 2 and 3 also imply that the minimax expected

distortion redundancy over the class of memoryless sources and for the reference class of

all zero-delay schemes is sandwiched between constant multiples of n−1/2.

It is easy to see that the above described simplistic scheme fails in the individual

sequence setting. This can be shown by constructing a sequence for which the scheme

performs poorly (we use a construction from [5] where the Hamming distortion measure

was considered). For simplicity consider the case M = 2 and assume that xi ∈ {0, 1/2, 1}
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for all i = 1, . . . , 2k − 1. Since the empirically optimal quantizer Qk has only two code

points, it is always possible in the (k + 1)st block to choose xmax
k+1 ∈ {0, 1/2, 1} such that

|xmax
k+1 − Qk(x

max
k+1)| ≥ 1

4
. We let all xi in the (k + 1)st block be equal to xmax

k+1, so that

(xi − Qk(xi))
2 ≥ 1

16
for all 2k ≤ i < 2k+1. Thus the normalized cumulative distortion

for this sequence is at least 1
16

for all n. On the other hand, for any 2k ≤ i < 2k+1, let

Q∗
i denote a quantizer with two code points that is empirically optimal for xi. Let p0, p,

and p1 denote the empirical frequencies in the sequence xi of 0, 1/2, and 1, respectively,

and assume without loss of generality that p0 < p1 (i.e., p0 < (1− p)/2). Then the Lloyd

conditions for quantizer optimality [16] imply that 1 must be a code point of Q∗
i , and the

other code point of Q∗
i lies in the interval [0, 1/2]. The distortion of Q∗

i on xi is easily seen

to equal p0p
4(p0+p)

, an expression whose maximum in p0 under the constraint p0 ≤ (1− p)/2

is 3
4
− 1√

2
. Thus the empirical distortion of Q∗

i on xi is at most 3
4
− 1√

2
, so the distortion

redundancy of the simplistic scheme is at least 1
16
−
(

3
4
− 1√

2

)
> 0 for all n.

Proof of Theorem 3. Denote the “expected” distortion of the empirically selected

quantizer Qk by

D(Qk) = E
[
(X −Qk(X))2|X1, . . . , Xm

]
where X has the same distribution as the Xi and is independent of them. Also, let the

distortion of the optimal quantizer be denoted by

D∗ = min
Q∈Q

E(X −Q(X))2.

It was shown by Linder, Lugosi, and Zeger [6] (see also Linder [17]) that

D(Qk)− min
Q∈QKk

D(Q) ≤ 2 max
Q∈QKk

|D(Q)−Dm(Q)| ≤ 2 sup
Q∈Q

|D(Q)−Dm(Q)| (11)

and also that

E sup
Q∈Q

|D(Q)−Dm(Q)| ≤ c√
m

(12)

where the constant c only depends on M . (In the rest of the proof c denotes a constant

depending on M only whose value may change from line to line.) Combining these results
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with the fact that, by Lemma 2 in [1],

min
Q∈QKk

D(Q)−D∗ ≤ 1

Kk

≤ 2√
m

,

we conclude that ED(Qk) −D∗ ≤ cm−1/2 for a constant c depending on M . To analyze

the expected distortion of the zero-delay scheme, recall that in the (k + 1)st block the

first at most dMk/(2 log M)e time instances are used to transmit the quantizer Qk and

the contribution of this part to the cumulative distortion is at most dMk/(2 log M)e. In

the rest of the (k + 1)st block, the cumulative distortion

2m−1∑
i=m+dMk/(2 log M)e

(Xi − X̂i)
2

conditionally, given X1, . . . , Xm, is a sum of i.i.d. random variables, with expected value

D(Qk).

To bound the expected cumulative distortion, let n be arbitrary such that n falls in

the (k + 1)st block, that is, 2k ≤ n ≤ 2k+1 − 1. By the argument above,

E
n∑

i=1

(Xi − X̂i)
2 =

k∑
j=1

E
2j−1∑

i=2j−1

(Xi − X̂i)
2 + E

n∑
i=2k

(Xi − X̂i)
2

≤
k∑

j=1

(⌈
M(j − 1)

2 log M

⌉
+ 2j−1ED(Qj−1)

)
+

⌈
Mk

2 log M

⌉
+ (n− 2k)ED(Qk)

≤
k∑

j=1

(
M(j − 1)

2 log M
+ 2j−1

(
D∗ +

c√
2j−1

))
+

Mk

2 log M
+ (n− 2k)

(
D∗ +

c√
2k

)
+ k + 1

≤ M

2 log M

k(k + 1)

2
+ nD∗ + c

k+1∑
j=1

2(j−1)/2 + k + 1.
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Since k ≤ log n, we obtain that

E
n∑

i=1

(Xi − X̂i)
2 − nD∗ ≤ c

(
log2 n +

√
n
)
.

Finally, since nD∗ − n minQ∈Q Dn(Q) ≤ n supQ∈Q |D(Q)−Dn(Q)| whose expected value

is bounded by a constant times n1/2, the proof of the first statement is complete.

In the proof of the second statement, we use the following version of Kolmogorov’s

inequality (see, e.g., Rényi [18]):

Lemma 4 If Y1, . . . , Yn are zero-mean i.i.d. random variables with variance σ2 then for

all t > 0,

P

{
max
i≤n

i∑
`=1

Y` > t

}
≤ 4

3
P

{
n∑

i=1

Yi > t− 2σ
√

n

}
.

In particular, if the Yi take their values in the interval [−1, 1] then σ ≤ 1, and by Hoeffd-

ing’s inequality [19], for any t > 0,

P

{
max
i≤n

i∑
`=1

Y` > 2
√

n + t

}
≤ 4

3
e−t2/2n .

To prove the almost sure statement of the theorem, first note that it follows by the

bounded differences inequality of McDiarmid [20] that for any ε > 0,

P
{

sup
Q∈Q

|D(Q)−Dm(Q)| > E sup
Q∈Q

|D(Q)−Dm(Q)|+ ε

}
≤ e−2mε2 . (13)

Thus, the total distortion over the jth block may be bounded as

2j−1∑
i=2j−1

(Xi − X̂i)
2

≤
⌈

M(j − 1)

2 log M

⌉
+

2j−1∑
i=2j−1

(
(Xi − X̂i)

2 − E
[
(Xi − X̂i)

2|X1, . . . , X2j−1−1

])
+ 2j−1D(Qj−1)

=
M(j − 1)

2 log M
+ 1 +

2j−1∑
i=2j−1

Yi + 2j−1D∗ + 2j−1 (D(Qj−1)−D∗)

22



≤ M(j − 1)

2 log M
+ 1 +

2j−1∑
i=2j−1

Yi + 2j−1D∗ + 2j−1

(
c√
2j−1

+ Zj

)

where we denote

Yi = (Xi − X̂i)
2 − E

[
(Xi − X̂i)

2|X1, . . . , X2j−1−1

]
, i = 2j−1, . . . , 2j − 1

and

Zj = 2

(
sup
Q∈Q

|D(Q)−D2j−1(Q)| − E sup
Q∈Q

|D(Q)−D2j−1(Q)|
)

and the inequality follows from (11) and (12) since

D(Qj−1)−D∗ ≤ 2 sup
Q∈Q

|D(Q)−D2j−1(Q)|

= 2E
(

sup
Q∈Q

|D(Q)−D2j−1(Q)|
)

+ 2

(
sup
Q∈Q

|D(Q)−D2j−1(Q)| − E sup
Q∈Q

|D(Q)−D2j−1(Q)|
)

≤ c√
2j−1

+ Zj.

Note that conditioned on X1, . . . , X2j−1−1, the random variables Y2j−1 , . . . , Y2j−1 are i.i.d.

with zero mean taking values in [−1, 1] and by (13), Zj is a zero-mean random variable

with P{Zj > t/
√

2j−1} ≤ e−t2/2. Thus, by Hoeffding’s inequality, and the union bound,

for any j = 1, . . . , k and tj > 0,

P


2j−1∑

i=2j−1

(Xi − X̂i)
2 − 2j−1D∗ >

M(j − 1)

2 log M
+ 1 + 2j−1 c√

2j−1
+ tj

√
2j−1


≤ P


2j−1∑

i=2j−1

Yi + 2j−1Zj > tj
√

2j−1


≤ P


2j−1∑

i=2j−1

Yi >
tj
√

2j−1

2

+ P
{

Zj >
tj

2
√

2j−1

}
≤ 2e−t2j/8 .
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The distortion accumulated during the (k+1)st period may be bounded similarly, though

here we use Lemma 4 instead of Hoeffding’s inequality. We obtain, for any tk+1 > 0,

P

{
∃n ∈ {2k, . . . , 2k+1 − 1} :

n∑
i=2k

(Xi − X̂i)
2 − (n− 2k)D∗

>
Mk

2 log M
+ 1 + (n− 2k)

c√
2k

+ 2
√

2k + tk+1

√
2k

}
≤ P

{
max

n∈{2k,...,2k+1−1}

n∑
i=2k

Yi + 2kZk+1 > 2
√

2k + tk+1

√
2k

}

≤ P

{
max

n∈{2k,...,2k+1−1}

n∑
i=2k

Yi > 2
√

2k +
tk+1

√
2k

2

}
+ P

{
Zk+1 >

tk+1

2
√

2k

}
≤ 7

3
e−t2k+1/8.

Choosing tj =
√

8 log(7k2j2/3) and using the union bound, we obtain that, for all k ≥ 1

the probability that there exists an n ∈ {2k, . . . , 2k+1 − 1} such that

n∑
i=1

(Xi − X̂i)
2 − nD∗ >

Mk(k + 1)

4 log M
+ k + 1 + c

k∑
j=1

2j/2 + 2
√

n +
k∑

j=1

√
8 log(7k2j2/3)2j/2

is at most
∑k

j=1 k−2j−2 < 2k−2. Since k ≤ log n, we obtain that there exists a constant

(depending on M) such that for all k ≥ 1 the probability that there exists an n ∈

{2k, . . . , 2k+1 − 1} such that

n∑
i=1

(Xi − X̂i)
2 − nD∗ > c

√
n log log n

is at most
∑k

j=1 k−2j−2 < 2k−2. Applying the Borel-Cantelli lemma concludes the proof

of the almost-sure statement of the theorem. �

4 Concluding remarks

We presented an efficiently computable algorithm for zero-delay lossy source coding whose

normalized cumulative distortion is guaranteed to be almost as small as that of the best
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scalar quantizer. We have also determined the best possible convergence rate for the

distortion redundancy in zero-delay lossy coding of memoryless sources.

Since our algorithm depends on the special structure of the class of all M -level nearest-

neighbor scalar quantizers, it is not clear whether it can be generalized to other, richer

reference classes of encoders. Such an extension would be of both practical and theoretical

interest since the special reference class of all scalar quantizers somewhat limits the scope

of our results. The results of Weissman and Merhav [5] on which we have built our

algorithm cover all finite classes of limited-delay finite-memory coding schemes. Of special

practical importance would be to extend our efficient method to the classes of sliding block

codes, trellis source codes, and codes based on differential pulse code modulation (DPCM).

For these classes an additional difficulty is the efficient approximation of the full reference

class by a finite set of encoders from the class.

On the theoretical side, an interesting open problem is to determine whether the

n−1/3 log n convergence rate obtained in [5] for the distortion redundancy in the case of

individual sequences can be improved.

Appendix

Proof of Lemma 2 To compute ∆̂k(z, ẑ) we have to consider three cases.

Case 1: z = 0 and ẑ ∈ C(K). Obviously we have ∆̂k(0, 1/(2K)) = 0. Since

∆̂k

(
0,

2j − 1

2K

)
=

j−1∑
i=1

hkl(i)

(
2i− 1

2K
− 2j − 1

2K

)2

=
1

K2

j−1∑
i=1

hkl(i)(i− j)2

=
1

K2

(
j2

j−1∑
i=1

hkl(i)− 2j

j−1∑
i=1

ihkl(i) +

j−1∑
i=1

i2hkl(i)

)
4
= (j2s1(j)− 2js2(j) + s3(j))/K

2

we can compute ∆̂k(0,
2j−1
2K

) for increasing j = 2, . . . , K by storing and computing s1, s2, s3

recursively as follows.
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Algorithm 3 (Computing ∆̂k(0,
2j−1
2K

))

Input: K, hkl(·).

s1 := s2 := s3 := 0.

For j := 1 to K

∆̂k(0,
2j−1
2K

) := (j2s1 − 2js2 + s3)/K2;

s1 := s1 + hkl(j);

s2 := s2 + jhkl(j);

s3 := s3 + j2hkl(j).

Case 2: z ∈ C(K), ẑ = 1. Here, similarly to Case 1, we obtain

∆̂k

(
2j − 1

2K
, 1

)
=

1

K2

(
j2

K∑
i=j+1

hkl(i)− 2j
K∑

i=j+1

ihkl(i) +
K∑

i=j+1

i2hkl(i)

)
4
= (j2r1(j)− 2jr2(j) + r3(j))/K

2.

Thus ∆̂k(
2j−1
2K

, 1) can be computed recursively as follows.

Algorithm 4 (Computing ∆̂k(
2j−1
2K

, 1))

Input: K, hkl(·).

r1 := r2 := r3 := 0.

For j := K to 1

∆̂k(
2j−1
2K

, 1) := (j2r1 − 2jr2 + r3)/K2;

r1 := r1 + hkl(j);

r2 := r2 + jhkl(j);

r3 := r3 + j2hkl(j).

Case 3: z, ẑ ∈ C(K). In this case z = (2u − 1)/(2K) and ẑ = (2v − 1)/(2K) for some

integers 1 ≤ u < v ≤ K. For v = u + 1 we have ∆̂k(z, ẑ) = 0; otherwise ∆̂k(z, ẑ) can be
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computed recursively for increasing v, since

∆̂k

(
2u− 1

2K
,
2v + 1

2K

)
− ∆̂k

(
2u− 1

2K
,
2v − 1

2K

)

=

bu+v+1
2 c∑

i=u+1

hkl(i)

(
2i− 1

2K
− 2u− 1

2K

)2

+
v∑

i=bu+v+1
2 c+1

hkl(i)

(
2i− 1

2K
− 2v + 1

2K

)2

−
bu+v

2 c∑
i=u+1

hkl(i)

(
2i− 1

2K
− 2u− 1

2K

)2

−
v−1∑

i=bu+v
2 c+1

hkl(i)

(
2i− 1

2K
− 2v − 1

2K

)2

=
1

K2

(
hkl

(
u + v + 1

2

)((
v − u + 1

2

)2

−
(

v − u− 1

2

)2
)

+hkl(v) +
v−1∑

i=bu+v+1
2 c+1

hkl(i)
(
(v − i + 1)2 − (v − i)2

))

=
1

K2

(
hkl

(
u + v + 1

2

)
(v − u) + hkl(v) +

v−1∑
i=bu+v+1

2 c+1

hkl(i)(2v − 2i + 1)

)

=
1

K2

(
hkl

(
u + v + 1

2

)
(v − u) + hkl(v) + (2v + 1)

v−1∑
i=bu+v+1

2 c+1

hkl(i)− 2
v−1∑

i=bu+v+1
2 c+1

ihkl(i)

)

4
=

1

K2

(
hkl

(
u + v + 1

2

)
(v − u) + hkl(v) + (2v + 1)s1(u, v)− 2s2(u, v)

)

where hkl(a) = 0 if a is not an integer. Thus, ∆̂k(z, ẑ) can be computed in this case by

the following algorithm.
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Algorithm 5 (Computing ∆̂k(
2u−1
2K

, 2v−1
2K

))

Input: K, hkl(·).

For u := 1 to K− 1

for v := u + 1 to K

if v = u + 1 then

∆̂k(2u−1
2K

, 2v−1
2K

) := 0;

s1 := s2 := 0;

else

s1 := s1 + hkl(v− 1)− hkl
(
u+v
2

+ 1
)
;

s2 := s2 + (v− 1)hkl(v− 1)−
(
u+v
2

+ 1
)
hkl
(
u+v
2

+ 1
)
;

∆̂k(2u−1
2K

, 2v−1
2K

) :=
(
hkl
(
u+v+1

2

)
(v− u) + hkl(v) + (2v + 1)s1 − 2s2

)
/K2.

Clearly, the computational complexity of Algorithm 3 and Algorithm 4 is O(K) while

to perform Algorithm 5 we need O(K2) operations. Thus, at the end of the kth block,

determining ∆̂k(z, ẑ) for all z < ẑ has computational complexity O(K2). �
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