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Detection of Correlations with Adaptive

Sensing
Rui M. Castro, Gábor Lugosi, Pierre-André Savalle

Abstract

The problem of detecting correlations from samples of a high-dimensional Gaussian vector has recently received

a lot of attention. In most existing work, detection procedures are provided with a full sample. However, following

common wisdom in experimental design, the experimenter may have the capacity to make targeted measurements

in an on-line and adaptive manner. In this work, we investigate such adaptive sensing procedures for detecting

positive correlations. It it shown that, using the same number of measurements, adaptive procedures are able to detect

significantly weaker correlations than their non-adaptive counterparts. We also establish minimax lower bounds that

show the limitations of any procedure.

Index Terms

sequential testing, adaptive sensing, sparse covariance matrices, sparse principal component analysis, high-dimensional

detection

I. INTRODUCTION

In this paper we consider a statistical testing problem related to anomaly detection: the detection of correlations

between signals. In the general problem of anomaly detection, one aims to identify unexpected activity in data. It

has applications in numerous domains [14], such as finance [9], computer security [21], health monitoring [29], or

detection of activity in sensor networks [24], [33], [39]. In many situations, anomalies can be detected by looking

at unusual signal values at any of the sensors. For instance, a home security alarm is usually comprised of various

infrared or related sensors, and an alert is raised as soon as a single sensor detects an unusual signal. However, in

other situations, when signals are “weak”, they may never appear anomalous in isolation, and anomalies may only be

detected when considering the signals together as a collection. This type of phenomena may be referred to as either

contextual anomaly detection [35], or collective anomaly detection [34], depending on the setup. A prototypical

example of such a problem is the detection of Distributed Denial-of-Service (DDoS) attacks in computer networks,
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which has become an important challenge in recent years [32], [37], [40]. In a DDoS attack, the attacker usually

controls a large number of computers distributed around the world. These machines are used to simultaneously send

requests to a target server, which is then flooded by the amount of packets, and can become unavailable as a result.

As a side effect, this type of attack can produce high volumes of traffic in various parts of the worldwide internet

infrastructure. However, packets sent by the attacker through the machines that he/she controls cannot usually be

detected as anomalous in isolation [27], and detection of DDoS requires to correlate signals obtained at different

points in the network. Collective anomalies also appear, for instance, in the context of detection of the outbreak

of diseases [28]. Another important type of anomaly detection problem appears when dealing with sensor data

arranged on a two-dimensional grid (e.g., loop detectors in lanes of road networks, or wireless sensor networks

[2]). In this case, collective anomalies may be characterised by neighbouring signals being correlated. Besides

anomaly detection, detection of correlations is also of interest to assess to what extent dimensionality reduction can

be performed on a data stream. Reduction of dimensionality is a workhorse of data analysis, and there has been

a strong recent interest in modifying principal component analysis to deal with high-dimensional data [10], [12],

[26]. Testing when this type of transformation is justified is thus an important problem.

In this work, we consider a simple correlation model: given multiple observations from a Gaussian multivariate

distribution we want to test whether the corresponding covariance matrix is diagonal against non-diagonal alterna-

tives. Such problems have recently received a lot of attention in the literature, where different models and choices

of non-diagonal covariance alternatives were considered [4], [5], [10], [12], [20]. We consider the detection of sparse

positive correlations, which has been treated in the case of a unique multivariate sample [4], or of multiple samples

[5]. However, this paper deviates from the existing literature in that we consider an adaptive sensing or sequential

experimental design setting. More precisely, data is collected in a sequential and adaptive way, where data collected

at earlier stages informs the collection of data in future stages. Adaptive sensing has been studied in the context

of other detection and estimation problems, such as in detection of a shift in the mean of a Gaussian vector [13],

[19], in compressed sensing [6], [13], [18], in experimental design, optimization with Gaussian processes [36],

and in active learning [15]. Adaptive sensing procedures are quite flexible, as the data collection procedure can be

“steered” to ensure most collected data provides important information. As a consequence, procedures based on

adaptive sensing are often associated with better detection or estimation performances than those based on non-

adaptive sensing with a similar measurement budget. In this paper, our objective is to determine whether this is

also the case for detection of sparse positive correlations, and if so, to quantify how much can be gained.

A. Model

Let U t ∈ Rn, t = 1, 2, . . . be independent and identically distributed (i.i.d.) normal random vectors with zero

mean and covariance matrix ΣS , where S is a subset of [n] = {1, . . . , n}. Let ρ > 0 and define the covariance
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matrix as

(ΣS)i,j =


1, i = j

ρ, i 6= j, with i, j ∈ S

0, otherwise

.

Our main goal is to solve the hypothesis testing problem

H0 :S = ∅

H1 :S ∈ C ,

where C is some class of non-empty subsets of {1, . . . , n}, each of size k. In other words, under the alternative

hypothesis, there exists an unknown subset S ∈ C such that corresponding components are positively correlated

with strength ρ > 0. We often refer to the elements of S as the subset of contaminated coordinates. The model of

correlations we consider appears naturally in the problem of detecting a sparse signal embedded in noise. Indeed,

with (Y ti ) and N t being independent standard normal random variables, and

U ti =

 Y ti , i /∈ S,
√

1− ρY ti +
√
ρN t, i ∈ S

for some S ∈ C, then the vectors U t are independent multivariate zero-mean normal vectors with covariance matrix

ΣS . The variable Nt represent a common signal present at each contaminated coordinate and Y ti the additive white

noise. In all cases we assume that the cardinality of each S ∈ C is the same: |S| = k. We consider the following

types of classes C for the contaminated coordinates:

• k-intervals: all sets of k contiguous coordinates, of the form {z, z+1, . . . , z+k−1} for some 1 ≤ z ≤ n−k+1;

this class has size linear in n, and we denote it by C[k].

• disjoint k-intervals: the class D[k] defined as

D[k] = {I1, . . . , Ibn/kc}, Ij = {(j − 1)k + 1, . . . , jk}, j ∈ {1, . . . , bn/kc} .

• k-sets: all subsets of {1, . . . , n} of cardinality k. We denote this class by Ck.

In addition, it is of interest for applications to consider settings where the coordinates {1, . . . , n} are laid out

according to a two-dimensional grid [n1]× [n2] with n1n2 = n, similarly to a spatially arranged array of sensors.

Although k-sets still make sense in this setting, the contaminated set can be further assumed in this case to be

connected and spatially localized in some sense. The following example is most intuitive:

• (k1, k2)-rectangles: for k1k2 = k, this comprises all sets of the form

{i0, . . . , i0 + k1 − 1} × {j0, . . . , j0 + k2 − 1}

for i0 ∈ [n1 − k1 + 1], j0 ∈ [n2 − k2 + 1].

Results for rectangles or similar two-dimensional shapes can be obtained easily from our results for k-intervals,

and are identical up to constants. We omit the rather straightforward details here.
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For any t = 1, 2, . . . denote by P∅ the distribution of U t under the null, and by PS the distribution under the

alternative with contaminated set S ∈ C. In addition, for a positive integer q, we denote by P⊗q the product measure

P⊗ . . .⊗ P with q factors. As previously, we let [q] = {1, . . . , q}.

B. Adaptive vs. Non-Adaptive Sensing and Testing

Clearly, the above hypothesis testing problem would be trivial if one has access to an infinite number of i.i.d.

samples (U t)t∈{1,...,∞}. Therefore, one must include some further restrictions on the data that is made available

for testing. In particular, we only consider testing procedures that make use of at most M entries of the matrix

(U ti )t∈{1,...,∞},i∈[n]. It is useful to regard this as a matrix with n columns and an infinite number of rows.

The key idea of adaptive sensing is that information gleaned from previous observations can be used to guide

the collection of future observations. To formalize this idea consider the following notation: for any subset A ⊆ [n]

we denote by |A| the cardinality of A. When A is nonempty we write UA = (Ui)i∈A ∈ R|A| for the subvector of

a vector U ∈ Rn indexed by coordinates in A. Finally, if U is a random variable taking values in Rn denote by

P|A the distribution of UA.

Let S ∈ C ∪ {∅} be the set of contaminated coordinates, and M ≥ 2 be an integer. In our model we are allowed

to collect information as follows. We consider successive rounds. At round t ∈ N, one chooses a non-empty query

subset At ⊆ [n] of the components, and observes U tAt . To avoid technical difficulties later on, we define the

observation made at time t as Xt, so that Xt
At = U tAt and Xt

[n]\At = 0. In words, one observes the At coordinates

of U t, while the remaining coordinates are completely uninformative. Each successive round proceeds in the same

fashion, under the requirement that the budget constraint
∞∑
t=1

|At| ≤M (1)

is satisfied. Note that clearly, the number of rounds is not larger than M . Again, to avoid technical difficulties we

assume the total number of rounds to be M in what follows, even if this means At = ∅ for some values of t. See

Figure 1 for an illustration.

In our setting, one can select the query sequence randomly and sequentially, and hence, we write the query

sequence (a1, . . . , aM ) as a realization of a sequence (A1, . . . , AM ) of M random subsets of [n], some of which

may be empty, and such that
∑M
t=1 |At| ≤M .

A key aspect of adaptive sensing is that the query at round T may depend on all the information available up to

that point. We assume At can depend on the history at time t− 1, which we denote by Ht−1 = (Aj , Xj)j∈[t−1].

More precisely, we assume At is a measurable function of Ht−1, and possibly of additional randomization. We call

the collection of all the conditional distributions of At given Ht−1 for t ∈ [M ] the sensing strategy. In particular,

if there is no additional randomization, At is a deterministic function of Ht−1. We denote the set of all possible

adaptive sensing strategies with sensing budget M as AS(M).

At this point, it is important to formally clarify what is meant by non-adaptive sensing. This is simply the scenario

where (At)t∈[M ] is independent of (U ti )t∈[M ], i ∈ [n]. In other words, all the decisions regarding the collection of
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Fig. 1: Adaptive sensing over a two dimensional grid of sensors. The figure illustrates how information can be

obtained within the sensing model for n = 40 and k = 6, under the alternative hypothesis with S being a (2, 3)-

rectangle in a 8× 5 grid. The correlated coordinates form a clique in the graph of correlations, and this is shown

through light edges. At every step, the experimenter selects coordinates to be sensed, and these are shown circled.

At the first step, the experimenter samples all the coordinates, while at the two subsequent steps, the experimenter

reduced the amount of coordinates sampled. This corresponds to a total budget of |A1|+|A2|+|A3| = 40+22+13 =

75 coordinate measurements.

data must be taken before any observations are made. The collection (At)t∈[M ] is known as a non-adaptive sensing

strategy. A natural and important choice is uniform sensing, where At = [n] for t = 1, . . . ,M/n (assume M is

divisible by n). In words, one collects m = M/n i.i.d. samples from PS . This problem has been thoroughly studied

in [4]; we summarize some of the main results of [4] in Section I-C.

Now that we have formalized how data is collected, we can perform statistical tests. Formally, a test is a

measurable binary function φ : HM 7→ φ(HM ) ∈ {0, 1}, that is, a binary function of all the information obtained

by the (adaptive or non-adaptive) sensing strategy. The result of the test is φ(HM ), and if this is one we declare

the rejection of the null hypothesis. Finally, an adaptive testing procedure is a pair (A, φ) where A is a sensing

strategy and φ is a test.

For any sensing strategy A and S ∈ C, define PA∅ (resp. PAS ) as the distribution under the null (resp. under the

alternative with contaminated set S) of the joint sequence (A1, X1, . . . , AM , XM ) of queries and observations. The

performance of an adaptive testing procedure (A, φ) is evaluated by comparing the worst-case risk

R(A, φ) = PA∅ (φ 6= 0) + max
S∈C

PAS (φ 6= 1)

to the corresponding minimax risk R∗AS = infA∈AS(M),φR(A, φ), where the infimum is over all adaptive testing

procedures (A, φ) with a budget of M coordinate measurements. The minimax risk R∗AS depends on M , although

we do not write this dependence explicitly for notational ease.

Let m = M/n be the equivalent number of full vector measurements. In the following, we will just say m

measurements for simplicity. This change of parameters allows for easier comparison with the special case of

uniform sensing, where a full vector of length n is measured m times. In particular, when m = M/n is an integer,

uniform sensing corresponds to the deterministic sensing procedure with At = [n] for t ∈ [m], At = ∅ for t > m,

and PAS = P⊗mS for S ∈ C ∪ {∅}.

We are interested in the high-dimensional setting, where the ambient dimension n is high. All quantities such as
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the correlation coefficient ρ, the contaminated set size k, and the number of vector measurements m will thus be

allowed to depend on n. In particular, we always assume that n, k and m all go to infinity simultaneously, albeit

possibly at different rates, and our main concern is to identify the range of parameters in which it is possible to

construct adaptive tests whose risks converge to zero. We consider the sparse regime where k = o(n). Although the

case of fixed ρ is of interest, most of our results will be concerned with the case where ρ converges to zero with

n. When ρ = 1, the problem is trivial as detecting duplicate entries in a single sample vector from the distribution

allows one to perform detection perfectly, while for fixed ρ < 1, the problem essentially becomes easier as the

measurement budget m increases.

C. Uniform Sensing and Testing

The simplest and most-natural type of non-adaptive sensing strategy we can consider is uniform sensing. As

stated before, this corresponds to the choice At = [n] for t = 1, . . . ,m (recall that m = M/n), that is one collects

m i.i.d. samples from PS . The minimax risk and the performance of several uniform sensing testing procedures

have been analyzed in [4]. The authors of that work analyzed the performance of tests based on the localized

squared sum statistic

Tloc = max
S∈C

m∑
t=1

(∑
i∈S

Xt
i

)2

,

which was shown to be near-optimal in a variety of scenarios. The localized squared sum test that rejects the null

hypothesis when Tloc exceeds a properly chosen threshold was shown to have an asymptotically vanishing risk

when, for some positive constant c,

ρk ≥ c max

(√
log |C|
m

,
log |C|
m

)
. (2)

This condition was shown to be near-optimal in most regimes for the classes of k-sets and k-intervals, unless k ex-

ceeds
√
n. In this latter and rather easier case, the simple non-localized squared sum statistic Ts =

∑m
t=1 (

∑n
i=1X

t
i )

2

is near optimal. From (2), it is easy to see that the size of the class plays an important role, as a smaller class C

leads to a weaker sufficient condition for detection. In particular, the localized squared sum test has asymptotically

vanishing risk when

k-sets: ρ ≥ c max

(√
log n

km
,

log n

m

)
, k-intervals: ρ ≥ c max

(
1

k

√
log n

m
,

log n

km

)
.

Necessary conditions for detection almost matching the previous sufficient conditions have been derived in [4].

Although the dependence on the ambient dimension n is only logarithmic, this can still be significant in regimes

where n is large but m is small.

D. Related Work

A closely related problem is that of detecting non zero mean components of a Gaussian vector X , referred to

as the detection-of-means problem. This problem has received ample attention in the literature, see, for instance,
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[1], [7], [8], [16], [17], [22], [23] and references therein. The detection-of-means problem can be formulated as the

multiple hypothesis testing problem

H0 : X ∼ N (0, In),

H1 : X ∼ N (µ1S , In), for some S ∈ C .

where 1S is the indicator vector of S, In is the identity matrix, and µ 6= 0. In other words, one needs to decide

whether the components of X are independent standard normal random variables or they are independent normals

with unit variance, and there is a (unknown) subset S of k components that have non-zero mean. The set of

contaminated components S is assumed to belong to a class C of subsets of [n]. The behavior of the minimax

risk has been analyzed for various class choices C [1], [7], [11], [22]. Detection and estimation in this model has

been analyzed under adaptive sensing in [13], [19], where it is shown that, perhaps surprisingly, all sufficiently

symmetric classes C lead to the same almost matching necessary and sufficient conditions for detection. This is

quite different from the non-adaptive version of the problem where size and structure of C influence, in a significant

way, possibilities of detection (see [1]).

Recall that the correlation model of Section I-A can be rewritten as

H0 : U ti = Y ti , i ∈ {1, . . . , n},

H1 : U ti =

Y
t
i , i /∈ S,
√

1− ρY ti +
√
ρN t, i ∈ S

for some S ∈ C,

with (Y ti ), N t independent standard normals, and that, as a consequence, the correlation model can be seen as a

random mean shift model, with a slightly different normalization. However, most results on adaptive sensing for

detection-of-means heavily hinge on the independence assumption between coordinates, which is not applicable for

the detection of correlations. In particular, we shall see that the picture is more subtle in the presence of correlations.

A second problem, perhaps even more related, is that of detection in sparse principal component analysis (sparse

PCA) within the rank one spiked covariance model, defined as the testing problem

H0 : X ∼ N (0, In),

H1 : X ∼ N (0, In + θuuT ), for some u ∈ Rn with ‖u‖0 = k , ‖u‖2 = 1 ,

where ‖u‖0 is the number of nonzero elements of u, and ‖u‖2 is the Euclidean norm of u. There is, also for this

problem, a growing literature, see [10], [12], [26]. Note that when the coordinates of u are constrained in {0, 1/
√
k},

we recover a problem akin to that of detection of positive correlations, but with unnormalized variances over the

contaminated set. The related problem of support estimation has been considered in [3] under the similar assumption

that coordinates of u are constrained in
{

0,±1/
√
k
}

.
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E. Results and Contributions

The main contribution of this paper is to show that adaptive sensing procedures can significantly outperform the

best non-adaptive tests for the model in Section I-A. We tackle the classes of k-intervals and k-sets. For k-intervals,

necessary and sufficient conditions are almost matching. In particular, the number of measurements m necessary

and sufficient to ensure that the risk approaches zero has almost no dependence on the signal dimension n. This is

in stark contrast with the non-adaptive sensing results, where it is necessary for m to grow logarithmically with n.

For k-sets, we obtain sufficient conditions that still depend logarithmically in n, but which improve nonetheless

upon uniform sensing in some regimes. Although not uniform, the proposed sensing strategy is still non-adaptive.

In addition to this, in a slightly different model akin to that of sparse PCA mentioned above, we show that all

previous results (both non-adaptive and adaptive) carry on, and we obtain a tighter sufficient condition for detection

of k-sets, that is nearly independent of the dimension n, and also improves significantly over non-adaptive sensing.

Our results are summarized in Table I. The paper is structured as follows. We obtain a general lower bound in

Section II, and study various classes of contaminated sets. In Section III, we propose procedures for k-sets and

k-intervals. In Section IV, we prove a tighter sufficient condition under a slightly different model, for k-sets. Finally,

we conclude with a discussion in Section V.

reference ρk → 0 ρk →∞

k-sets

necessary condition Thm. 1 ρk
√
m→∞ -

sufficient condition Prop. 4 ρ
√
km ≥

√
log n

k
, and ρkm ≥ log n

k
identical

sufficient condition (unnormalized model) Prop. 6 ρ
√
km ≥ log log n

k
identical

sufficient condition (uniform, k = o(
√
n)) [5] ρ

√
km ≥

√
logn, and ρm ≥ logn identical

necessary condition (uniform) [5] ρ
√
km ≥

√
log n

k2 , and ρm ≥ log n
k2 identical

k-intervals

necessary condition Thm. 1 ρk
√
m→∞ -

sufficient condition Prop. 3 ρk
√
m ≥

√
log log n

k
ρkm ≥ log log n

k

sufficient condition (uniform) [5] ρk
√
m ≥

√
log n

k
ρkm ≥ log n

k

necessary condition (uniform) [5] ρk
√
m ≥

√
log n

k
, ρkm ≥ log n

k

TABLE I: Summary of results (constants omitted).

F. Notation

We denote by EP the expectation with respect to a distribution P. The Kullback-Leibler (KL) divergence between

two probability distributions P and Q such that P is absolutely continuous with respect to Q is KL(P ||Q) =

EP [log (dP/dQ)], with dP/dQ the Radon-Nikodym derivative of P with respect to Q. When P and Q admit

densities f and g, respectively, with respect to the same dominating measure, we write KL(P ||Q) = KL(f || g).

We denote by 1A the indicator function of an event or condition A.
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II. LOWER BOUNDS

We say that a sequence z = (a1, x1, . . . , aM , xM ) ∈
(
2[n] × Rn

)M
is M -admissible if

∑M
t=1 |at| ≤M . Consider

an adaptive testing procedure (A, φ), with query sequence (A1, . . . , AM ) ∈
(
2[n]
)M

, and (X1, . . . , XM ) ∈ (Rn)
M

the corresponding sequence of observations. Let S ∈ C ∪ {∅} be the set of contaminated coordinates. For t ∈ [M ],

we denote by fAt |Ht−1(· |ht−1) the probability mass function of At given Ht−1 = ht−1, and by fXt |At;S(·|at)

the density of Xt |At = at over Rn with respect to a suitable dominating measure over Rn (e.g., the product of the

Lebesgue measure and a point mass at 0). Therefore, the joint sequence Z = (A1, X1, . . . , AM , XM ) admits a den-

sity fS with respect to some appropriate dominating measure. For any M -admissible sequence (a1, x1, . . . , aM , xM ),

this density factorizes as

fS(a1, x1, . . . , aM , xM ) =

M∏
t=1

fAt |Ht−1(at | a1, x1, . . . , at−1, xt−1) fXt |At;S(xt | at) .

For concreteness, let the density fS be zero on any joint subsequence that is not M -admissible. It is crucial to note

that all the terms in the factorization corresponding to the sensing strategy (i.e., corresponding to the selection of

At given the history) do not depend on S. This is central to our arguments, as likelihood ratios simplify. More

precisely, for any M -admissible sequence (a1, x1, . . . , aM , xM ),

f∅(a
1, x1, . . . , aM , xM )

fS(a1, x1, . . . , aM , xM )
=

M∏
t=1

fXt |At; ∅(x
t | at)

fXt |At;S(xt | at)
=

M∏
t=1

fXt
At
|At; ∅(x

t
at | at)

fXt
At
|At;S(xtat | at)

,

where the second equality follows from the sensing model.

Likelihood ratios play a crucial role in the characterization of testing performance. In particular, a classical

argument (see, e.g., [38, Lemma 2.6]) shows that, for any distributions P,Q over a common measurable space Ω

and any measurable function φ : Ω→ {0, 1},

P(φ 6= 0) + Q(φ 6= 1) ≥ 1

4
exp (−KL(P ||Q)) .

Therefore

R∗ = inf
(A,φ)

[
PA0 (φ 6= 0) + max

S∈C
PAS (φ 6= 1)

]
= inf

(A,φ)
max
S∈C

[
PA0 (φ 6= 0) + PAS (φ 6= 1)

]
≥ inf
A

max
S∈C

[
1

4
exp(−KL(PA0 ||PAS ))

]
=

1

4
exp(− sup

A
min
S∈C

KL(PA0 ||PAS )).

This entails that the minimax risk under adaptive sensing can be lower bounded by upper bounding the maximin

KL divergence. Here, in order to bound the maximum KL divergence, we will take an approach similar to [13]

for detection-of-means under adaptive sensing, although our setup differs slightly. In [13], the testing procedures

measure a single coordinate at a time, while we need multiple measures per step in order to capture correlations.

We have the following necessary condition.

Theorem 1. Let C be either the class of k-sets or k-intervals or disjoint k-intervals, and define

D(ρ, k) = min

[
ρ

2(1− ρ)
, ρ2(k + 1)

]
.
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Then the minimax risk R∗AS of adaptive testing procedures with a measurement budget of M = mn coordinates is

lower bounded as

R∗AS ≥
exp (−mkD(ρ, k))

4
.

As a consequence, for the risk R∗AS to converge to zero, it is necessary that mkD(ρ, k)→∞.

Proof. First remark the following: for ρ ≤ 1/2, and for any A ⊆ [n],

KL(P0|A ||PS |A) ≤ D(ρ, k) |A ∩ S| .

The proof is given in Appendix A-B. The KL divergence between the joint probability models can we written as

KL(PA0 |PAS ) =

M∑
t=1

EPA0

[
EPA0

[
log

fXt
At
|At; ∅(x

t
At |At)

fXt
At
|At;S(xtAt |At)

∣∣∣∣At
]]

=

M∑
t=1

EPA0

[
KL(fXt

At
|At; ∅(·|At) || fXt

At
|At;S(·|At))

]
=

M∑
t=1

EPA0 [KL(P0|At ||PS |At)]

≤ D(ρ, k)

M∑
t=1

EPA0

[
|At ∩ S|

]
= D(ρ, k)

∑
i∈S

bi

using the shorthand bi =
∑M
t=1 EPA0 [1i∈At ]. Hence,

sup
A

min
S∈C

KL(PA0 ||PAS ) ≤ D(ρ, k) sup
A

min
S∈C

∑
i∈S

bi .

Define the class complexity

C(C,M) = sup
A∈AS

{
min
S∈C

∑
i∈S

bi : b ∈ Rn+,
n∑
i=1

bi ≤M

}
.

For any sensing strategy A, it holds that
∑n
i=1 bi =

∑M
t=1 EPA0 [|At ∩ S|] ≤M, such that

sup
A

min
S∈C

KL(PA0 ||PAS ) ≤ D(ρ, k) C(C,M) .

From [13, Lemma 3.1], we conclude that, for the both classes Ck and D[k], respectively k-sets and disjoint k-intervals

we have C(Ck,M) = C(D[k],M) = Mk
n = mk (assuming without loss of generality for disjoint k-intervals that

n/k is an integer1). As C(·,M) is decreasing with respect to set inclusion for any fixed M , C(C[k],M) = mk as

well, and the result follows.

1If n/k is not an integer, one can directly show that C(D[k],M) ≤ 2mk and the result of the theorem for this class follows with mk

replaced by 2mk.
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The lower bound argument in Theorem 1 yields the same lower bound for detection using any of the three classes

of interest. This phenomenon is akin to what was observed in the context of detection-of-means under adaptive

sensing, where the lower bounds are the same provided the classes of contaminated components are symmetric.

In this setting, it was shown in addition in [13] that the condition in the lower bound is essentially sufficient and

therefore, unlike in the non-adaptive counterpart of the problem, knowledge of the structure of C does not make

the detection problem any easier. However, the problem of detection of correlations considered here seems to be

more subtle in that one lacks matching upper bounds for all cases. Namely, we do not know whether: (a) for

detection-of-correlations structure does not help; or (b) the lower bound is loose for some classes, in particular the

class of k-sets.

Recall that we are interested in the characterization of the regimes for which the risk R∗AS converges to zero

as m, k, n → ∞. Clearly, if ρ decays at a rate no faster than 1/k, the previous necessary condition for the risk

to vanish asymptotically is always satisfied. Nevertheless, the lower bound gives an indication about the rate at

which the risk converges to zero. However, when ρ = o (1/k) the situation is different, and Theorem 1 leads to the

following necessary condition.

Corollary 1. Let C denote either the class of k-sets, k-intervals or disjoint k-intervals, and suppose ρ = o (1/k).

For R∗AS to converge to zero it is necessary that ρk
√
m→∞.

Proof. From the previous results, it is necessary that

mk min

[
ρ

2(1− ρ)
, ρ2(k + 1)

]
goes to infinity for the risk to converge to zero. This quantity is asymptotically equivalent to mρ2k2, and mρ2k2 →

∞ if and only if ρk
√
m→∞.

Recall that a sufficient condition for non-adaptive detection of k-intervals with the localized squared sum test is

ρk
√
m > c

√
log(n) and ρkm > c log(n) .

When ρ = o(1/k) one has, asymptotically, ρk < 1 and the first condition is stronger than the second. Non-adaptive

detection with k-intervals is thus possible asymptotically for ρk
√
m > c

√
log(n). This corresponds to the condition

of Corollary 1 up to a logarithmic factor in n, which implies that in the case of k-intervals, one can improve at

most by a factor logarithmic in n with adaptive sensing. This can be still quite significant, and we show in Section

III that this can indeed be achieved.

III. ADAPTIVE TESTS

A. The Case of k-intervals

In this section, we study the case of the class C[k] of intervals of length k. It is sufficient to work with the class

D[k] of disjoint intervals for the following reason: assume that one has a procedure for detection of disjoint k-

intervals. Then, for detection of general k-intervals, this procedure can be applied as if the objective was detection
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of disjoint k/2-intervals. Indeed, if S is any k-interval, there exist at most two sets in D[k/2] that intersect S,

and at least one of them, say S′, has a full intersection with S, i.e., |S ∩ S′| = k/2. As a consequence, under

mild conditions on the procedure, this leads to a sufficient condition for detection of k-intervals identical up to

constants to that associated with the original procedure for disjoint k-intervals. Since up to two of the disjoint

intervals can contain contaminated coordinates, the theoretical analysis still has to be slightly amended, but these

technical modifications are straightforward for the methods that we propose. To keep the presentation simple, we

only show how to perform detection in the case of disjoint k-intervals. Recall that D[k] = {I1, . . . , Ibn/kc}, where

Ij = {(j − 1)k + 1, . . . , jk} for j ∈ [bn/kc]. For simplicity, we assume that n/k is an integer. As the intervals

are disjoint, the problem is equivalent to n/k independent hypothesis testing problems, each of them over vectors

in Rk that are mutually independent. Formally, this can be cast as a testing problem over a matrix Z ∈ Rn
k×k,

where Z has independent standard Gaussian entries except under the alternative where Z has a single row whose

entries are mutually correlated standard Gaussian random variables with correlation ρ. In this framework, each row

corresponds to one of the n/k disjoint k-intervals.

In the context of support recovery from signals with independent entries using adaptive sensing, [30], [31]

have proposed the sequential thresholding (ST) procedure, which is based on an intuitive bisection idea. Although

initially introduced for support estimation, ST can be easily adapted to detection, and we present such results here.

In addition, we present a slight generalization to signals with independent vector entries, which will allow us to

apply the modified procedure to the disjoint k-intervals problem. We will also use the original ST procedure in

Section IV-B, and for this reason, we first present the method using general notations here. Let Q0 and Q1 be two

probability distributions over Rd̃, and let Z ∈ Rñ×d̃ be a random matrix. Consider the multiple testing problem

defined as follows. Under the null, Z has rows identically distributed according to Q0. Under the alternative, a

small unknown subset of k̃ rows of Z are distributed according to Q1, while the remaining rows are distributed

according to Q0. In both cases, all rows are independent. More formally, denote by Z1, . . . , Zñ the rows of Z, such

that the testing problem is

H0 :Z ∼ Q⊗ñ0 ,

H1 :Zi ∼ Q0 for i /∈ S, Zi ∼ Q1 for i ∈ S, for some S ∈ C with |S| = k̃,

where, as already mentioned, all rows are independent in both cases. We refer to this testing problem as that of

detection from signals with independent (vector) entries. The framework of adaptive sensing introduced in Section

I-B can be easily adapted to this model. In this case, in order to allow for vector entries, we consider that the

experimenter is allowed to obtain samples from rows of Z, and that he can select which rows to query in a

sequential manner as previously, under the constraint that the total number of rows measured be less than M .

We also refer to this straightforward extension as adaptive sensing, and we say that m̃ = M/ñ is the number of

measurements (i.e., m̃ is the equivalent number of times the full matrix Z was observed).

Sequential thresholding is a procedure for testing with adaptive sensing within the type of model just mentioned.

Assume that Q0 and Q1 admit densities f0 and f1, respectively, with respect to some common dominating measure,
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and for i ∈ [n] , denote by

LR(f1|f0; z1
i , . . . , z

m̃
i ) =

∏m̃
t=1 f0(zti)∏m̃
t=1 f1(zti)

the likelihood ratio associated to i.i.d. observations z1
i , . . . , z

m̃
i ∈ Rd̃ of Zi, the i-th row of Z. ST proceeds as

outlined in Figure 3. Initially, ST measures all ñ rows m̄ = m̃/4 times, and throws away a fraction (of about half

under the null) of the ñ rows based on the values of the likelihood ratios. This is repeated with the remaining rows

a number of times logarithmic in ñ, at which point ST calls detection if some coordinates have not been thrown

away. This is illustrated in Figure 2.

Fig. 2: Illustration of sequential thresholding with k = 10, n = 60: contaminated coordinates are the first ten on

the left. Bars depict likelihood ratios associated with each coordinate: at each step, coordinates with likelihood ratio

below a threshold are thrown away. First step shown in top row, last step shown in bottom row.

The following result is easily deduced from the analysis of ST for support estimation.

Proposition 1 (Sufficient condition for ST). Assume k̃/ñ→ 0, and

lim inf
ñ→∞

m̃KL(f0 || f1)

4 log log2 ñ
> 1,

then the sequential thresholding procedure with a budget of m̃ measurements has risk tending to zero as ñ goes to

infinity.

Proof. We begin by showing that the event of termination upon
∑K
r=0 |Sr| > ñ has an asymptotically vanishing

probability. Assume the alternative hypothesis with contaminated set S. Then, similarly as in [13, Proposition 4.1],

using Bernstein’s inequality for sums of truncated hypergeometric variables,

P

(
K∑
r=0

|Sr| > ñ

)
≤ exp

(
− ñ/4− k̃

4 + 2K
3

)
,

2Here, z1
1 , . . . , z

m̄
1 denote without loss of generality observations of the first row, as rows are exchangeable under the null.
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Input: K = blog2(ñ)c (number of steps),

m̄ = m̃
4 ,

γ = medianz1
1 ,...,z

m̄
1 ∼f0

(LR(f1|f0; z1
1 , . . . , z

m̄
1 )) (threshold) 2

Initialization: S0 = {1, . . . , ñ}

for all r = 1, . . . ,K do

for all i ∈ Sr−1 do

measure z1
i , . . . , z

m̄
i ∼ Zi

compute LRi = LR(f1|f0; z1
i , . . . , z

m̄
i )

end for

Sr = {i ∈ Sr−1 : LRi > γ}

if
∑K
r=0 |Sr| > ñ then

return no detection

end if

end for

return detection if SK 6= ∅

Fig. 3: Sequential thresholding procedure

which converges to zero. The application of the Chernoff-Stein lemma as in [30] allows us to bound the probability

of error as follows. The type I error of the procedure is bounded by

ñ− k̃
2K

.

Let Ei,t denote the event that the likelihood ratio is below γ for coordinate i at step t (in which case, coordinate

i will not be included in St). Without loss of generality, assume that 1 ∈ S. The type II error is

Q1

(
∩i∈S

(
∪Kt=1Ei,t

))
≤ (KQ1 (E1,1))

k̃
.

We write a .
= e−m̄D for limm̄→∞

log a
m̄ = D. From the Chernoff-Stein lemma,

Q1 (E1,1)
.
= e−m̄KL(f0 || f1).

Hence, for K = (1 + ε1) log2 n and ε2 > 0, there exists m̄0 such that for m̄ ≥ m̄0, the type II error is bounded by(
Ke−m̄(KL(f0 || f1)−ε2)

)k̃
= exp

(
k̃ log [(1 + ε1) log2 n]− m̄k̃(KL(f0 || f1)− ε2)

)
.

Hence, the risk goes to zero if for some ε1, ε2 > 0, it holds that

lim inf
ñ→∞

m̄(KL(f0 || f1)− ε2)

log [(1 + ε1) log2 n]
> 1.

As a consequence, for the risk to go to zero, it is sufficient that

lim inf
ñ→∞

m̄KL(f0 || f1)

log log2 n
> 1.
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The result follows by substituting m̄ with m̃
4 .

Note that the ST procedure does not require knowledge of k̃. ST can be applied to the case of k-intervals, as we

demonstrate in the next section.

We now show how the previous procedure can be used for adaptive detection with disjoint k-intervals. As before,

we assume that n/k is an integer. Define ñ = n/k, k̃ = 1, m̃ = m, and d̃ = k. Let Q0 = P0|I1 be the joint

Fig. 4: Illustration of sequential thresholding for k-intervals, with n/k = 6 intervals of size k. Bars depict likelihood

ratios associated with the intervals.

probability distribution over an interval under the null, and Q1 = PS |S be the joint probability distribution over the

contaminated interval under the alternative with contaminated interval S ∈ D[k]. Here, the choice of the interval

used in Q0 does not matter, as intervals are exchangeable under the null hypothesis. We refer to the corresponding

sequential thresholding procedure as ST for disjoint k-intervals. This procedure is illustrated in Figure 4. This

provides the following sufficient condition for detection of disjoint k-intervals.

Proposition 2. Assume that ρ converges to zero. There exists numerical constants C3 and C4 such that, when either

ρk →∞ and m log(1 + ρk) ≥ C3 log log(n/k),

or

ρk → 0 and ρk
√
m ≥ C4

√
log log(n/k),

the sequential thresholding procedure for disjoint k-intervals has risk converging to zero.

Proof. The detailed computations can be found in Appendix A-C. Assume that ρk > 1, then

KL(Q0 ||Q1) ≥ log(1 + ρk)

10
.
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Similarly, when ρk < 1/2 and k > 32,

KL(Q0 ||Q1) ≥ ρ2k2

16
.

Combined with Proposition 1, this gives the desired result.

Consider the case where ρk →∞. In that case, omitting constant factors, sequential thresholding would succeed

for m ≥ log log(n)
log(1+ρk) . Recall that uniform non-adaptive testing is possible for m ≥ c logn

ρk . When ρk > log(n)

asymptotically, both conditions are trivially satisfied for m constant, while when ρk < log(n), we already improve

upon non-adaptive tests. In spite of this, the dependence on ρk of our sufficient condition when ρk → ∞ is

logarithmic, while it is only linear for ρk → 0. This may appear surprising, as one may argue the former case

corresponds to a regime where the signal is stronger (and so the problem should be easier). However, this surprising

fact is solely an artifact from the sequential thresholding procedure, and from the fact that ST does not require

knowledge of k. This results in a sufficient condition that is independent of k. In particular, it does not become

easier to satisfy as k increases, but it can be fixed through a small modification of the sensing methodology that

we present in the following.

In order to recover the same linear dependence in both cases, we propose to add a subsampling stage prior to

sequential thresholding. This subsampling can be decided before any data is collected, and thus can be viewed as

a non-adaptive aspect of the entire procedure. Consider the simple deterministic subsampling scheme wherein one

keeps the first p coordinates per interval, for some p ∈ {2, . . . , k}, and measures each p-tuple
⌊
mn
pn/k

⌋
=
⌊
mk
p

⌋
times. This prompts the following question: is there a value of p that allows one to detect more easily? Define the

p-truncated intervals as Ipj = {(j−1)k+1, . . . , (j−1)k+p} for j ∈ [n/k]. Formally, we consider the deterministic

sensing strategy Ap = (At) where for t ∈
[⌊

mk
p

⌋]
,

At =
⋃

j∈[n/k]

Ipj .

As this involves one simple testing problem per interval, the difficulty of testing is essentially characterized by

the KL divergence KL(PAp0 ||P
Ap
S ) between the distributions under the null and the alternative. In this section, we

make explicit the dependence of PS on p by using the notation PpS . Consider any fixed S ∈ D[k], then the best KL

divergence that can be obtained is

max
p∈{2,...,k}

KL
(
PAp0 ||P

Ap
S

)
= max
p∈{2,...,k}

bmkp c∑
t=1

KL(Pp0 ||P
p
S)

 =

⌊
mk

p

⌋
max

p∈{2,...,k}
KL(Pp0 ||P

p
S),

which is independent of S . Due to nonlinearity in the KL divergence the optimal value of p is generally different

than k, as illustrated in Figure 5. The optimal p and corresponding optimal value seem hard to compute analytically,

but numerical evidence shows that, for ρ away from zero, the optimal p is of the order of ρ−1. This observation is

sufficient for our purposes, and is formalized below. Remark that when ρk < 1, the optimal value of p is clamped

to k.
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Fig. 5: Optimal p as a function of ρ, for k = 100

Equipped with this subsampling stage when ρk → ∞, we can now modify the ST for k-intervals procedure as

follows: when ρk → ∞, set m̃ =
⌊
mk
p

⌋
, d̃ =

⌈
1
ρ

⌉
, and use only observations corresponding to d̃ coordinates per

interval. We refer to this new procedure as the modified sequential thresholding for disjoint k-intervals.

Proposition 3. Assume that ρ converges to zero. There exists numerical constants C5 and C6 such that, when either

ρk →∞ and ρkm ≥ C5 log log(n/k),

or

ρk → 0 and ρk
√
m ≥ C6

√
log log(n/k),

the modified sequential thresholding procedure for disjoint k-intervals has risk converging to zero.

Proof. We have the following straightforward new lower bound: with p =
⌈

1
ρ

⌉
, when ρk > 1, we have

⌈
1
ρ

⌉
< k+1,

and as a consequence,

KL(Pp0 ||P
p
S) ≥ log 2− 1/2

2
≥ 1

11
.

Although the lower bound appears weaker than previously, this corresponds to a setting where more measurements

can be carried out. The sufficient condition for ST leads to the result.

The adaptive procedure allows us to obtain a mild dependence on the original dimension n of the problem. When

ρ = o(1/k), this sufficient condition almost matches the lower bound of Corollary 1, while when ρk → ∞, the

sufficient condition is already satisfied for m = log log(n/k).

B. The Case of k-sets: Randomized Subsampling

In this section, we consider the class Ck of k-sets. In this case, we do not currently know whether a procedure

along the lines of ST can be successfully applied. However, the idea of subsampling the coordinates can still be

used to yield modest but important performance gains. While for disjoint k-intervals a deterministic subsampling

was sufficient, this is not the case for k-sets, where any deterministic subsampling that selects less than about n−k
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coordinates cannot have risk converging to zero. For this reason, we consider a randomized subsampling of the

coordinates.

Consider a sample B of
⌊

2np
k

⌋
elements drawn without replacement from [n] for some p ≥ 2. Let θ : Rb2np/kc →

{0, 1} be the localized squared sum test with ambient dimension
⌊

2np
k

⌋
, and contaminated sets C = Cbpc of size

bpc, and consider the sensing strategy defined by

A1 = . . . = Ab
mk
2p c = B.

We refer to the adaptive sensing procedure ((At), θ) as the randomized testing procedure. Define Y = |B ∩ S|

(resp. Y = 0) under the alternative with contaminated S ∈ Ck (resp. under the null), which is the number of

contaminated elements in the subsample. Clearly Y is a hypergeometric random variable with expectation k
n

⌊
2n
k p
⌋
∈

[2p− k/n, 2p]. In words, we consider a subsample of the coordinates, with about 2p contaminated coordinates (in

expectation) under the alternative, and we apply the (non-adaptive) localized squared sum test.

Note that the procedure is strictly non-adaptive, as the subsampling can be decided in advance. However, this

sensing strategy is a bit different than uniform sensing, as not all coordinates are measured. Nonetheless, this allows

one to detect under weaker conditions than with uniform non-adaptive sensing when k is large enough.

Proposition 4. Let 2 ≤ p ≤ k such that p goes to infinity. Assume that ρ converges to zero and that

ρmk ≥ C1[
1− 1

m −
1
k

] log
2pn

k
, and ρ

√
mk ≥ C1√

1− 1
m −

1
k

√
log

2pn

k
,

for some constant C1, then the randomized testing procedure has risk converging to zero.

Proof. Let ηI (resp. ηII ) be the risk of type I (resp. of type II) for θ. The type I error of the randomized testing

procedure is pI = ηI . Let p+ = P (Y ≥ bpc) the probability of the sample containing at least bpc contaminated

elements, and p− = 1 − p+. Note that since 2np
k

k
n = 2p goes to infinity, we can assume that Y is distributed

according to a Poisson distribution with parameter 2p, as this is asymptotically equivalent to the hypergeometric

distribution. Hence, we have p− = P (Y < bpc) ≤
(

1 + p(2p)p

p!

)
exp(−2p). Using p! ≥

√
2πp

(
p
e

)p
, we have that

p− ≤ exp(−2p) +
√
p exp(−p/4), which converges to zero. The type II error of the randomized testing procedure

is pII = p+ηII + p−(1 − ηI) ≤ ηII + p−. It remains to show that ηI and ηII both go to zero. This follows

from the sufficient conditions for the localized squared sum test, and from bpc
⌊
mk
2p

⌋
≥ mk

2

[
1− 1/p+ 2(1−p)

mk

]
≥

mk
2 [1− 1/p− 1/m]. Hence, the sufficient conditions for the localized squared sum test θ provides the result.

In particular, for p = log log n, it is sufficient that, omitting constants,

ρmk ≥ log
n

k
, ρ
√
mk ≥

√
log

n

k
,

to ensure the detection risk converges to zero. This does not match the adaptive lower bound, and the dependence

on n is still logarithmic. However, this already improves upon the setting of uniform non-adaptive sensing when

k ≥ m
logn . Indeed, recall that using uniform sensing, the sufficient condition is

ρm ≥ log n, ρ
√
mk ≥

√
log n.
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The first condition is insensitive to subsampling, due to the dependence in mk, and we do not improve with respect

to it. The second condition, however, only depends on m, and does not get easier to satisfy when k is large. Hence,

our result shows that it is more efficient when k is large enough to reduce to a problem with an almost constant

contaminated set size, but with an increased budget of full vector measurements.

IV. UNNORMALIZED CORRELATION MODEL

A. Model and Extensions of Previous Results

An alternative choice to the previous correlation model is the following unnormalized model with covariance

matrix

(Σ̄S)i,j =



1, i = j, i /∈ S,

1 + ρ, i = j, i ∈ S,

ρ, i 6= j, and i, j ∈ S,

0 otherwise.

under the alternative with contaminated set S ∈ C. This model is a special case of the rank one spiked covariance

model introduced in [25]. Observe that this correlation model can also be rewritten as

H0 : Xt
i = Y ti , i ∈ {1, . . . , n},

H1 : Xt
i =

Y
t
i , i /∈ S,

Y ti +
√
ρN t, i ∈ S

for some S ∈ C.

with (Y ti ), N t independent standard normals. This can thus be interpreted as a random additive noise model, as for

the model of Section I-A. Observe that our original correlation detection model is obtained by normalizing each

component such that the components have unit variance. This is a minor difference that does not essentially change

the difficulty of detection in the non-adaptive setting (indeed all upper and lower bounds proved in [4] can be

reproved for this model with minor modifications). Interestingly, however, under adaptive sensing the information

provided by the higher variance in the contaminated components can be exploited to give a major improvement

over the normalized model. This may be done by applying the sequential thresholding algorithm to the squares of

the components as described below.

In the following, for any quantity X relative to the normalized model of Section I-A, we denote by X̄ the

corresponding quantity related to the unnormalized model. All of previous results can be shown to hold for this

model as well. As already mentioned, this includes the necessary and sufficient conditions of [4] (Proposition 10

in Appendix), but also the lower bound of Theorem 1 (Proposition 11 in Appendix), and sufficient conditions for

k-sets and k-intervals of Propositions 4 and 3 (Proposition 13 in Appendix). In particular, the procedures associated

to the sufficient conditions can be used with little modifications.
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B. The case of k-sets

The procedure proposed below combines randomized subsampling with sequential thresholding, in order to capi-

talize on the unnormalized model. Consider the second moments Yi = X2
i . Under the alternative with contaminated

set S ∈ C, Yi is distributed as follows: (a) for i /∈ S, Yi is distributed according to a chi-squared distribution with

one degree of freedom (that we denote by χ2
1), (b) for i ∈ S, Yi is distributed as (1 + ρ)χ2

1. Note that under our

sensing model, it is perfectly legitimate to sample A1 = {1}, . . . , An = {n}, and thus obtain independent samples

of each of the coordinates of the random vector. In particular, this allows us to obtain independent samples from

the coordinates of Y . As a consequence, we can directly apply ST to detect increased variance over a subset of the

coordinates.

As already mentioned, ST does not require knowledge of k, which results in a sufficient condition that is

independent of k. This condition can, however, be significantly weakened using the random subsampling used in

last section. As in Proposition 4, this is due to the fact that by subsampling, one can increase the budget of full

vector measurements, while the decrease in the contaminated set size does not impact the sufficient condition for

detection. This is summarized in the following result, which can be proved similarly as Proposition 4.

Proposition 5 (Sufficient condition for ST+randomized subsampling). Assume k̃/ñ→ 0, and

lim inf
ñ→∞

m̃k̃KL(f0 || f1)

(log log2 ñ)2
> 1,

then the sequential thresholding procedure with randomized subsampling (p = log log2 ñ) and a budget of 4m̃ full

vector measurements has risk tending to zero as ñ goes to infinity.

Let ñ = n, k̃ = k, and m̃ = m. Let Q0 be the χ2
1 distribution, and Q1 be the (1 + ρ)χ2

1 distribution, both

with respect to Lebesgue’s measure. We consider the associated sequential thresholding procedure (with randomized

subsampling), with the previous modification of sampling independent single coordinates. We refer to this procedure

as variance thresholding. This leads to the following sufficient condition for detection.

Proposition 6. Assume that ρ converges to zero and that

ρ
√
km ≥ C2 log log2 n

for some constant C2. Then, the risk of the variance thresholding procedure converges to zero.

Proof. Let g be the density of a χ2
1-distributed random variable, such that the density of a (1 + ρ)χ2

1-distributed
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random variable is given by 1
1+ρg

(
·

1+ρ

)
. Then, using g(x) ∝ x−1/2e−x/2,

KL(χ2
1 || (1 + ρ)χ2

1) =

∫
R

log

 g(x)

1
1+ρg

(
x

1+ρ

)
 g(x)dx

= log(1 + ρ) +

∫
R

log

 x−1/2e−x/2(
x

1+ρ

)−1/2

e
−x

2(1+ρ)

 g(x)dx

= log(1 + ρ) +

∫
R

log

(
e
−ρx

2(1+ρ)

(1 + ρ)
1/2

)
g(x)dx

=
log(1 + ρ)

2
− ρ

2(1 + ρ)

∫
R
xg(x)dx.

As the expectation of a χ2
1-distributed random variable is one, this leads to

KL(χ2
1 || (1 + ρ)χ2

1) =
1

2

[
log(1 + ρ)− ρ

1 + ρ

]
=
ρ2

4
+ o(ρ2).

Plugging this expression into the sufficient condition of Proposition 5 provides the result.

Assume for the following discussion that ρk → 0. The necessary condition that we have established previously is

that ρk
√
m goes to infinity. Neglecting the double log factor, the sufficient condition that we have just obtained is

that ρ
√
km goes to infinity, which is stronger. Hence, there is a gap between the sufficient and necessary condition.

In particular, that ρk
√
m goes to infinity was shown to be near-sufficient for detection with k-intervals, and the

gap that we observe for k-sets does not allow us to conclude as to whether structure helps for detection (as is the

case under non-adaptive sensing).

Recall that the unnormalized model is similar to that of detection in the problem of sparse PCA. The method

of diagonal thresholding (also referred to as Johnstone’s diagonal method) is a simple and tractable method for

detection (and support estimation) in sparse PCA (with uniform non-adaptive sensing), which consists in testing

based on the diagonal entries of empirical covariance matrix - that is, the empirical variances. Hence, it is similar

to the method that we consider here, except that we estimate variances based on independent samples for each

coordinate. Note that this last point is essential to our method. Indeed, consider the opposite case where we do not

use independent samples for each coordinates. For the sake of illustration, assume ρ = 1, such that the contaminated

components are exactly equal. In this case, the probability of throwing away one component is equal to that of

throwing away all contaminated components, and failure will occur with fixed non small probability due to the use

of dependent samples.

Finally, it is noteworthy that a naı̈ve implementation of the optimal test in the non-adaptive setting has complexity

O(nk), while with adaptive sensing, we obtain a procedure that can be carried out in time and space linear in n,

and still improves significantly with respect to the non-adaptive setting.

V. DISCUSSION

We showed that for k-intervals, adaptive sensing allows one to reduce the logarithmic dependence in n of sufficient

conditions for non-adaptive detection to a mild log log n, and that this is near-optimal in a minimax sense.
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For k-sets, the story is less complete. The sufficient condition obtained in the unnormalized model is still stronger

than the sufficient condition obtained for k-intervals, and does not match our common lower bounds, which leaves

open the question of whether structure helps under adaptive sensing for detection of correlations? The analogous

question for detection-of-means has a negative answer, meaning structure does not provide additional information

for detection. However, for detection-of-correlations a definite answer is still elusive. Another open question is to

what extent adaptive sensing allows one to overcome the exponential computational complexity barrier that one can

encounter in the non-adaptive setting.

Aside from the normalized and unnormalized correlation models, other types of models can be considered. A

more general version of our normalized model has been analyzed in [4], where the correlations need not be all the

same, leading to results that involve the mean correlation coefficient ρavg =
(∑

i,j∈S : i 6=j(ΣS)i,j

)
/ k(k − 1). In

addition, we assume in most procedures that ρ and/or k are known, and it would be of interest to have procedures

that do not require such knowledge.
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APPENDIX A

PROOFS AND COMPUTATIONS

A. Inequalities and KL divergences

In this section, we collect elementary inequalities that we use repeatedly in the computations.

For x > −1, log(1 + x) ≤ x, (3)

For x > 0, log(1 + x) +
1

1 + x
− 1 ≤ x2, (4)

For 0 < x < 1/2, log(1− x) +
1

1− x
− 1 ≤ 2x2, (5)

For x < 1, − log(1− x)− 1

1− x
+ 1 ≤ x2, (6)

For x ∈]− 1, 1], log(1 + x) +
1

1 + x
− 1 ≥ x2

8
, (7)

For x ≥ 1, log(1 + x) +
1

1 + x
− 1 ≥ log(1 + x)

5
. (8)

The following expression of the KL divergence is used throughout the paper.

Proposition 7. We have

KL(P0 ||PS) =
1k≥2

2

[
k

(
−1 +

1

1− ρ
+ log(1− ρ)

)
−
(

1

1− ρ
+ log(1− ρ)

)
(9)

+

(
1

1 + ρ(k − 1)
+ log(1 + ρ(k − 1))

)]
.

Proof. The KL divergence between P0 and PS can be computed using the standard formula for KL divergence

between two centered Gaussian vectors, with covariance matrices

Σ0 = In, Σ1 = ΣS .

When k < 2, the divergence is zero, and we will thus assume k ≥ 2. Up to a simultaneous permutation of rows

and columns,

ΣS =

 In−k

Jρ(k)


where Jρ(k) ∈ Rk×k has unit diagonal and coefficients equal to ρ everywhere else. Jρ(k) is a symmetric matrix,

hence diagonalizable, and has eigenvalues 1− ρ with multiplicity k− 1 and 1 + (k− 1)ρ with multiplicity one. As

a consequence, we have, for k ≥ 2,

log det ΣS = (k − 1) log(1− ρ) + log(1 + ρ(k − 1))

Tr Σ−1
S = (n− k) +

k − 1

1− ρ
+

1

1 + ρ(k − 1)
.
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The KL divergence is thus

KL(P0 ||PS)

=
1

2

[
Tr(Σ−1

1 Σ0)− n− log(det Σ0/ det Σ1)
]

=
1

2

[
(n− k) +

k − 1

1− ρ
+

1

1 + ρ(k − 1)
− n+ (k − 1) log(1− ρ) + log(1 + ρ(k − 1))

]
=

1

2

[
k

(
−1 +

1

1− ρ
+ log(1− ρ)

)
−
(

1

1− ρ
+ log(1− ρ)

)
+

(
1

1 + ρ(k − 1)
+ log(1 + ρ(k − 1))

)]
.

B. Proof of bound on KL divergence

Proof. First note since the KL divergences are independent of n, it is sufficient to use the expressions of Proposition

7 with a contaminated set of size s = |A∩S| ≤ k. As previously, we assume s ≥ 2, as the result is trivial otherwise.

Consider the expression for the KL divergence given in (9). Using (3), we obtain

KL(P0|A ||PS |A)

= KL(P0 ||PS∩A)

≤ 1

2

[
s

(
−1 +

1

1− ρ
+ log(1− ρ) + ρ

)
−
(

1

1− ρ
+ log(1− ρ)

)
+

(
1

1 + ρ
− ρ
)]

=
1

2

[
s

(
ρ+

ρ

1− ρ
+ log(1− ρ)

)
+
−2ρ

1− ρ2
− log(1− ρ)− ρ

]
≤ ρs

2(1− ρ)
.

Using (4) and (6), we obtain

KL(P0 ||PS) ≤ 1

2

[
(s− 1)2ρ2 + 2sρ2 + ρ2

]
=
ρ2

2

[
(s− 1)2 + 2s+ 1

]
≤ ρ2s(k + 1)

2
.

C. Proof of Proposition 2

Proof. We have KL(Q0 ||Q1) = kf(ρ) + h(ρ) with

f(ρ) =
1

2

[
(1− ρ)−1 + log(1− ρ)− 1

]
,

h(ρ) =
1

2

[
−
(

1

1− ρ
+ log(1− ρ)

)
+

(
1

1 + (p− 1)ρ
+ log(1 + (p− 1)ρ)

)]
.
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As previously, using (7), f(ρ) ≥ ρ2

16 . Assume that ρk < 1 and k > 7, then using (5) and (7),

KL(Q0 ||Q1) ≥ ρ2k

16
+ h(ρ)

≥ ρ2k

16
− 1

2

[
1 + 2ρ2

]
+

1

2

[
1 +

ρ2(k − 1)2

8

]
= ρ2

[
k(k − 1)2

16
− 1

]
≥ (ρk)2

32
.

Now assume that ρk > 1, then for k > 32,

KL(Q0 ||Q1) ≥ ρ2k

16
− 1

2

[
1 + 2ρ2

]
+

1

2

[
1

1 + (k − 1)ρ
+ log(1 + (k − 1)ρ)

]
≥ ρ2

[
k

16
− 1

]
+

1

2

[
1

1 + (k − 1)ρ
+ log(1 + (k − 1)ρ)− 1

]
≥ ρ2k

32
+

log(1 + (k − 1)ρ)− 1

2
.

APPENDIX B

EXTENSIONS TO UNNORMALIZED MODEL

A. Uniform (non-adaptive) lower bound for detection of positive correlations

Proposition 8. For any class C, any ρ ∈ [0, 0.9), the minimum risk in the normalized model (resp. the unnormalized

model) under uniform (non-adaptive) sensing is bounded as

R∗ ≥ 1

2
− 1

4

√
E

[
coshm

(
8ρZ

1− ρ

)]
− 1

R̄∗ ≥ 1

2
− 1

4

√
E [coshm (8ρZ)]− 1

where Z is the size of the intersection of two elements of C drawn independently and uniformly at random.

Proof. This is essentially a reproduction of the proof of [4] with minor modifications. The details are omitted.

B. Uniform (non-adaptive) upper bound for detection of positive correlations

Let H(b) = b− 1− log b for b > 1.

Proposition 9. Under uniform (non-adaptive) sensing, the localized square-sum test that rejects when

Yscan = max
S∈C

m∑
t=1

(∑
i∈S

Xt
i

)2

exceeds
1

2

(
ρk2m+H−1(3 log |C|/m)− 1)km

)
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is asymptotically powerful when

ρk ≥ c1 max

(√
log |C|
m

,
log |C|
m

)
both for the normalized and unnormalized models.

Proof. This is proved in [4] for the normalized model. In the case of the unnormalized model, the test statistic is

distributed as kχ2
m under the null, and as (k(1 + ρ) + ρk(k − 1))χ2

m under the alternative, which changes only

mildly the proof with respect to the normalized model.

C. KL divergences

Proposition 10. We have

KL(P̄0 || P̄S) =
1k≥2

2

[
−1 +

1

1 + ρk
+ log(1 + ρk)

]
. (10)

Proof. The KL divergence between P̄0 and P̄S can be computed using the standard formula for KL divergence

between two centered Gaussian vectors, with covariances matrices

Σ0 = In, Σ1 = Σ̄S .

When k = 0, the divergence is zero, and we will thus assume k ≥ 1. Up to a simultaneous permutation of rows

and columns,

Σ̄S =

 In−k

Ik +Kρ(k)


where Kρ(k) ∈ Rk×k has coefficients equal to ρ everywhere. Like previously, Ik + Kρ(k) is diagonalizable, and

has eigenvalue 1 with multiplicity k−1, and eigenvalue 1 +ρk with multiplicity one. As a consequence, for k ≥ 1,

we have

log det Σ̄S = log(1 + ρk)

Tr Σ̄−1
S = (n− 1) +

1

1 + ρk
.

This leads to

KL(P̄0 || P̄S) =
1

2

[
Tr(Σ−1

1 Σ0)− n− log(det Σ0/ det Σ1)
]

=
1

2

[
(n− 1)− n+

1

1 + ρk
+ log(1 + ρk)

]
.

Proposition 11. For any A ⊂ [n],

KL(P̄0|A || P̄S |A) ≤ min

[
ρ

2
,
ρ2k

2

]
|A ∩ S|.
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Proof. First note since the KL divergences are independent of n, it is sufficient to use the expressions of Proposition

7 with a contaminated set of size s = |A ∩ S|. As previously, we assume s ≥ 1, as the result is trivial otherwise.

Consider the unnormalized model, with KL divergence given in (10). Using (3), we obtain

KL(P̄0|A || P̄S |A) = KL(P̄0 || P̄A∩S) ≤ ρs

2
.

Using (4) we obtain

KL(P̄0|A || P̄S |A) = KL(P̄0 || P̄A∩S) ≤ ρ2s2

2
≤ ρ2sk

2
.

Combining these last two inequalities yields the desired result.

Proposition 12. Assume that ρ converges to zero. There exists numerical constants C3 and C4 such that, when

either

ρk →∞ and m log(1 + ρk) ≥ C3 log log(n/k),

or

ρk → 0 and ρk
√
m ≥ C4

√
log log(n/k),

the sequential thresholding procedure for disjoint k-intervals has risk converging to zero.

Proof. For the unnormalized model, when ρk > 1, using (8),

KL(Q̄0 || Q̄1) ≥ log(1 + ρk)

10
.

When ρk < 1, using (7),

KL(Q̄0 || Q̄1) ≥ (ρk)2

16
.

Proposition 13. Assume that ρ converges to zero. There exists numerical constants C5 and C6 such that, when

either

ρk →∞ and ρkm ≥ C5 log log(n/k),

or

ρk → 0 and ρk
√
m ≥ C6

√
log log(n/k),

the modified sequential thresholding procedure for disjoint k-intervals has risk converging to zero.

Proof. For the unnormalized model with p =
⌈

1
ρ

⌉
, when ρk > 1, we have

⌈
1
ρ

⌉
< k + 1, and as a consequence,

KL(P̄p0 || P̄
p
S) ≥ log 2− 1/2

2
≥ 1

11
.
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