
Finding Adam in random growing trees
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Abstract

We investigate algorithms to find the first vertex in large trees generated by either the
uniform attachment or preferential attachment model. We require the algorithm to output a
set of K vertices, such that, with probability at least 1 − ε, the first vertex is in this set. We
show that for any ε, there exist such algorithms with K independent of the size of the input
tree. Moreover, we provide almost tight bounds for the best value of K as a function of ε. In
the uniform attachment case we show that the optimal K is subpolynomial in 1/ε, and that it
has to be at least superpolylogarithmic. On the other hand, the preferential attachment case is
exponentially harder, as we prove that the best K is polynomial in 1/ε. We conclude the paper
with several open problems.

1 Introduction

We consider one of the simplest models of a randomly growing graph: starting from a single node
(referred to as the root), each arriving new node connects uniformly at random to one of the
existing nodes. We are interested in the following question: given a large tree generated from this
uniform attachment model, is it possible to find a small set of vertices for which we can certify with
high probability that the root is in this set? Possible applications include finding the center of an
epidemic, or the origin of a rumor.

In this paper we study root-finding algorithms: given a target accuracy ε ∈ (0, 1) and a tree T
of size n (for some n ∈ N), a root-finding algorithm outputs a set H(T, ε) of K(ε) vertices, such
that, with probability at least 1− ε (with respect to the random generation of T from the uniform
attachment model), the root is in H(T, ε). An important aspect of the definition is that the size
of the output set is allowed to depend on ε, but not on the size n of the input tree. Thus it is not
obvious that root-finding algorithms exist at all. For instance a naive guess would be to output
vertices of large degrees (indeed, the older a vertex, the larger is its expected degree), but for this
to be correct with some constant probability one needs to output a logarithmic in n number of
vertices. One of the main contributions of this paper is to show that root-finding algorithms indeed
exist. Furthermore, we almost tightly characterize the best possible value for K(ε), by showing
that it can be subpolynomial in 1/ε, and that it has to be superpolylogarithmic. More precisely
the core of our contribution can be summarized by the following theorem.
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Theorem 1 There exist constants c, c′ > 0 such that the following holds true in the uniform at-

tachment model. Any root-finding algorithm must satisfy K(ε) ≥ exp
(
c
√

log(1/ε)
)

. Furthermore,

there exists a polynomial time root-finding algorithm with K(ε) ≤ exp
(
c′ log(1/ε)

log log(1/ε)

)
.

We also investigate the existence of root-finding algorithms for the preferential attachment
model, in which each arriving new node connects to an existing node with probability proportional
to its degree. In this model the existence of root-finding algorithm is much less surprising, and, in
fact, we show that considering vertices of large degrees works here. More interestingly, we prove
that the preferential attachment model is exponentially more difficult than the uniform attachment
model, in the sense that K(ε) has to be at least polynomial in 1/ε (while it can be subpolynomial
in uniform attachment). More precisely, we prove the following theorem.

Theorem 2 There exist constants c, c′ > 0 such that the following holds true in the preferential
attachment model. Any root-finding algorithm must satisfy K(ε) ≥ c

ε . Furthermore, there exists a

polynomial time root-finding algorithm with K(ε) ≤ c′ log
2(1/ε)
ε4

.

1.1 Related work

There is a vast and rapidly growing literature on both uniform attachment and preferential attach-
ment models. However, to the best of our knowledge, root-finding algorithms have not yet been
investigated. On the other hand, a local variant of root-finding algorithms is studied for the pref-
erential attachment model in Brautbar and Kearns [2010], Borgs et al. [2012], Frieze and Pegden
[2014]. The restriction to algorithms with only a local access to the graph make the setting quite
different from ours. In this context it is proved that the algorithm only has to visit a polylogarith-
mic (in n) number of vertices, which has to be contrasted with our condition that a root-finding
algorithm has to output a set of size independent of n. We also note that in Shah and Zaman
[2011] the authors study root-finding algorithms that are restricted to output a single vertex (that
is K = 1). They are interested in the attainable probability of correctness for a model which can
be viewed as the uniform attachment on a background graph. Interestingly the (inverse) likelihood
function for this model, which is called the rumor centrality in Shah and Zaman [2011], appears as
a relaxation of the likelihood for our model (see Section 4 for details).

Another recent line of work intimately related to the question studied here is Bubeck et al.
[2014b], Curien et al. [2014], Bubeck et al. [2014a]. In these papers the uniform attachment and
preferential attachment models are initialized with some finite seed tree. It is then proved that
different seeds lead to different distributions, even in the limit as n goes to infinity. In other words,
the uniform attachment and preferential attachment trees are strongly influenced by their state
after a finite number of steps, which gives hope that root-finding algorithms indeed exist1.

1.2 Content of the paper

We start by presenting a simple root-finding algorithm for the uniform attachment model in Section
2. The idea is to rank vertices according to the size of their largest subtree. Using basic Pólya urn
results, we show that by taking the smallest K = log(1/ε)

ε vertices (according to their largest subtree
size), one obtains a root-finding algorithm.

We prove the impossibility result described in Theorem 1 in Section 3. Using a basic combinato-
rial argument we show that the optimal estimator for the root—the maximum likelihood estimator

1However, chronologically, the work presented here was done before Bubeck et al. [2014a] which proves the influence
of the seed in the uniform attachment model.
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(MLE)—can be computed in polynomial time, and we use well-known results about the uniform
attachment tree (such as the behavior of its height) to exhibit the limits of the MLE (and thus of
any root-finding algorithm).

In Section 4 we observe that the root-finding algorithm studied in Section 2 can be viewed
as a relaxation of the MLE. We then propose a “tighter” relaxation which corresponds to the
subpolynomial root-finding algorithm mentioned in Theorem 1. The analysis of this algorithm is
the most technical part of the paper. It relies on a sharp concentration inequality for sums of
Gamma random variables, as well as a beautiful result of Hardy and Ramanujan on the number of
partitions of an integer, Hardy and Ramanujan [1918].

Observe that, since the MLE can be computed in polynomial-time, the relaxations of Section 2
and Section 4 are mainly introduced to simplify the analysis. We note however that these relaxations
may still have computational advantages in practice (though the worst-case complexity is of the
same order of magnitude).

Finally the preferential attachment model is analyzed in Section 5, where Theorem 2 is proven.
We conclude the paper with several open problems in Section 6.

1.3 Notation

For a labeled tree T we denote by T ◦ the isomorphism class of T . In other words T ◦ is an unlabeled
copy of T . For notational convenience we denote vertices from T ◦ using the labeling of T (formally
one would need to chose an arbitrary labeling of T ◦, and to compare vertices of T ◦ to those of T
one would need to introduce the corresponding isomorphism). We denote by V (T ) the vertex set
of a labeled tree, and again with a slight abuse of notation we extend this notation to unlabeled
trees. The degree of a vertex v is denoted by dT (v), or simply by d(v) if the underlying tree is clear
from the context. An increasing labeling for a tree T with V (T ) = [n] is such that any path away
from vertex 1 has increasing labels. A recursive tree is a tree labeled with an increasing labeling.
A rooted tree (labeled or unlabeled) is denoted by (T, u), with u ∈ V (T ). We sometimes denote a
rooted tree simply as T , in which case we denote the root as ∅. In a recursive tree T it is understood
that ∅ = 1. In a rooted tree T we denote by Tv↓ the subtree starting at v. In a rooted tree the
descendants of a vertex are referred to as its children, and the set of vertices with no children (i.e.,
the leaves) is denoted by L(T ). A plane-oriented recursive tree is a recursive tree together with an
ordering of the children of each vertex.

For α ∈ R we define the random labeled tree Tα(n) with vertex set [n] by induction as follows:
Tα(2) is the unique tree on 2 vertices, and Tα(n + 1) is built from Tα(n) by adding the vertex
n + 1 and an edge {i, n + 1}, where i ∈ [n] is chosen at random with probability proportional to
dTα(n)(i)

α (that is, its degree in Tα(n) raised to the power α). We focus on the case α = 0, which we
alternatively denote UA(n) for uniform attachment model, and on α = 1 which we denote PA(n) for
preferential attachment model. It is well known that UA(n) is equivalently described as a uniformly
chosen tree among all recursive trees, while PA(n) can be described as a uniformly chosen tree
among all plane-oriented trees, see e.g., Drmota [2009]. For this reason UA(n) is also referred to
as the uniform random recursive tree, and PA(n) as the random plane-oriented recursive tree.

We can now formalize the problem introduced at the beginning of the introduction. Let α ∈
{0, 1}, ε ∈ (0, 1), and K ∈ N. We are interested in mappings H from unlabeled trees to subsets of
K vertices with the property that

liminf
n→+∞

P(1 ∈ H(Tα(n)◦)) ≥ 1− ε (1)
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In most instances the input tree will be clear from the context, and thus we often write H instead
of H(Tα(n)◦).

2 A simple root-finding algorithm

For a tree T we introduce the function ψT : V (T )→ N, defined by

ψT (u) = max
v∈V (T )\{u}

|(T, u)v↓|. (2)

In words, viewing u as the root of T , ψT (u) returns the size of the largest subtree starting at a child
of u. We denote by Hψ the mapping which returns the set of K vertices with smallest ψ values
(ties are broken arbitrarily). The following theorem shows that Hψ is a root-finding algorithm for
the uniform attachment model. We also prove in Section 5 that it is a root-finding algorithm for
the preferential attachment.

Theorem 3 Let K ≥ 2.5 log(1/ε)
ε . One has liminf

n→+∞
P(1 ∈ Hψ(UA(n)◦)) ≥ 1− 4ε

1−ε .

We observe that the theorem is optimal up to a logarithmic factor. Indeed, leaves clearly maximize
the value of ψ and one can easily see that, with probability at least Ω(1/K), the true root is a leaf in
UA(K). Nonetheless, perhaps surprisingly, there is an exponentially better root-finding algorithm
than Hψ for the uniform attachment model.
Proof In this proof vertices are labeled by chronological order. We also introduce a notation
which will prove useful; for 1 ≤ i ≤ k we denote by Ti,k the tree containing vertex i in the forest
obtained by removing in UA(n) all edges between vertices {1, . . . , k}. In particular the vector
(|T1,k|, . . . , |Tk,k|) follows a standard Pólya urn with k colors, and thus, using a classical result,

1

n
(|T1,k|, . . . , |Tk,k|)

converges, in distribution, to a Dirichlet distribution with parameters (1, . . . , 1). Now observe first
that

P(1 6∈ Hψ) ≤ P(∃i > K : ψ(i) ≤ ψ(1)) ≤ P(ψ(1) ≥ (1− ε)n) + P(∃i > K : ψ(i) ≤ (1− ε)n).

Clearly
ψ(1) ≤ max(|T1,2|, |T2,2|),

and thus since |T1,2|/n and |T2,2|/n are identically distributed and converge in distribution to a
uniform random variable in [0, 1],

lim sup
n→+∞

P(ψ(1) ≥ (1− ε)n) ≤ 2 lim
n→+∞

P(|T1,2| ≥ (1− ε)n) = 2ε.

On the other hand, for any i > K,

ψ(i) ≥ min
1≤k≤K

K∑
j=1,j 6=k

|Tj,K |,

and 1
n

∑K
j=1,j 6=k |Tj,K | converges, in distribution, to the Beta(K − 1, 1) distribution, which implies

lim sup
n→+∞

P(∃i > K : ψ(i) ≤ (1− ε)n) ≤ lim
n→+∞

P

∃1 ≤ k ≤ K :
K∑

j=1,j 6=k
|Tj,K | ≤ (1− ε)n


≤ K(1− ε)K−1.
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Thus we proved
lim sup
n→+∞

P(1 6∈ Hψ) ≤ 2ε+K(1− ε)K−1,

which clearly concludes the proof.

3 Maximum likelihood estimator for UA(n)

For a rooted tree T and a vertex v, we define Aut(v, T ) as follows. Let T1, . . . , Tk be the subtrees
of T rooted at the children of v (in particular k ∈ {d(v)− 1, d(v)}). Let S1, . . . , SL be the different
isomorphism classes realized by these rooted subtrees. For i ∈ [L], let `i = |{j ∈ [k] : T ◦j = Si}|.
Finally we let Aut(v, T ) :=

∏L
i=1 `i!.

Proposition 1 Let T be an unlabeled rooted tree, then

|{t recursive tree : t◦ = T}| = |T |!∏
v∈V (T )\L(T ) (|Tv↓| ·Aut(v, T ))

.

Proof We prove this result by induction on the number of vertices in T , which we denote by n
(the formula is clearly true for n = 2). Let T1, . . . , Tk be the subtrees rooted at the children of ∅
(in particular k = d(∅)). An increasing labeling for T is obtained by partitioning {2, . . . , n} into
k subsets of sizes |T1|, . . . , |Tk|, and then labeling correctly each subtree with the corresponding

element of the partition. Clearly the number of possibilities for choosing the partition is (n−1)!∏k
i=1 |Ti|!

,

and given the partition the number of correct labelings is
∏k
i=1 |{t recursive tree : t◦ = Ti}|. In this

calculation we have counted multiple times similar recursive trees (of size n). Indeed if Ti and Tj
are isomorphic then we have considered separately the case where Ti is labeled with S ⊂ {2, . . . , n}
and Tj is labeled with S′, and the case where Ti is labeled with S′ and Tj is labeled with S. In fact
we have precisely overcounted by a factor Aut(∅, T ). Thus we obtain the formula

|{t recursive tree : t◦ = T}| = (n− 1)!

Aut(∅, T )
∏k
i=1 |Ti|!

k∏
i=1

|{t recursive tree : t◦ = Ti}|,

which easily concludes the proof (by using the induction hypothesis).

For an unrooted unlabelled tree T let Aut(u, T ) be the number of vertices v such that (T, v) is
isomorphic to (T, u). Observe that the probability that a vertex u in T is the root (in the UA(n)
model) is equal to the probability of observing the rooted tree (T, u) (which is proportional to the
number of recursive trees t such that t◦ = (T, u)) divided by Aut(u, T ). In particular Proposition 1
implies that, given an observation T (i.e., an unlabeled tree on n vertices), the maximum likelihood
estimator for the root in the uniform attachment model is the vertex minimizing the function

ζT (u) = Aut(u, T )
∏

v∈V (T )\L((T,u))

(|(T, u)v↓| ·Aut(v, (T, u))) . (3)

In fact it implies more generally that the optimal strategy to output a set of K vertices is to choose
those with the smallest values of ζ. This follows from the fact that, conditionally on the observation
T , the probability that a set of vertices contains the root is proportional to the sum of the inverse ζ
values for the vertices in this set. We denote the mapping corresponding to this optimal strategy by
Hζ . Using this representation for the optimal procedure we prove now the following impossibility
result:
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Theorem 4 There exists ε0 > 0 such that for all ε ≤ ε0, any procedure that satisfies (1) in the

uniform attachment model must have K ≥ exp
(√

1
30 log 1

2ε

)
.

Proof Let2 K = exp
(√

1
30 log 1

2ε

)
, which we assume to be large enough (that is ε is small enough,

see below). Since Hζ is the optimal procedure, one clearly has that P(1 6∈ Hζ(UA(n)◦)) is non-
decreasing with n (since any procedure for trees of size n+1 can be simulated given a tree of size n),
and thus to prove the theorem it is enough to show that P(1 6∈ Hζ(UA(K+ 1)◦)) > ε. Equivalently
we need to show that there is a set T of recursive trees on K+1 vertices such P(UA(K+1) ∈ T ) > ε
and for any T ∈ T one has ζT (1) > ζT (i), ∀i ∈ {2, . . . ,K + 1}.

The set of recursive trees T we consider consists of those where (i) vertices {1, . . . , 10 log(K)}
form a path with 1 being an endpoint, (ii) all vertices in {10 log(K)+1, . . . ,K+1} are descendants
of 10 log(K), and (iii) the height of the subtree rooted at 10 log(K) is smaller than 4 log(K). Next
we verify that this set of recursive trees has probability at least 1

2 exp(−30 log2(K)) = ε. More
precisely the probability that (i) happens is exactly 1/(10 log(K) − 1)! ≥ exp(−10 log2(K)); the
probability that (iii) happens conditionally on (ii) is at least 1/2 for K large enough (indeed it is
well-known that the height of UA(n) rescaled by log(n) converges in probability to e, see Devroye
[1987]); and the probability that (ii) happens is equal to

K∏
i=10 log(K)

(
1− 10 log(K)− 1

i

)
≥ exp(−20 log2(K)).

We show now that for trees in T , the root 1 has the largest ζ value, thus concluding the proof.
First observe that, in general for any tree T and vertices u, v, with (u1, . . . , uk) being the unique
path with u1 = u and uk = v,

ζT (u) > ζT (v)

⇔ Aut(u, T )
k∏
i=1

(
|(T, u)ui↓| ·Aut(ui, (T, u))

)
> Aut(v, T )

k∏
i=1

(
|(T, v)ui↓| ·Aut(ui, (T, v))

)
.

Furthermore it is easy to verify that one always has

Aut(ui, (T, v)) ≤ |(T, v)ui↓| ·Aut(ui, (T, u)).

Indeed the computation of Aut(ui, (T, v)) is based on a list of subtrees T1, . . . , Tk, and only one of
those subtrees is modified in the computation of Aut(ui, (T, u)) (or possibly a subtree is added if
i = 1), which results in a mutiplicative change of at most k + 1 ≤ |(T, v)ui↓|.

Putting together the two displays above, and using the trivial bound 1 ≤ Aut(u, T ) ≤ |T | one
obtains

k∏
i=1

|(T, u)ui↓| > |T |
k∏
i=1

|(T, v)ui↓|
2 ⇒ ζT (u) > ζT (v). (4)

Now consider T ∈ T , and v ∈ {10 log(K) + 1, . . . ,K+ 1}. Let (u1, . . . , uk) be the unique path with
u1 = 1 and uk = v. Clearly

k∏
i=1

|(T, v)ui↓| ≤ (K + 1)4 log(K) · (10 log(K))! ≤ (K + 1)4 log(K) · (10 log(K))10 log(K),

2For clarity of the presentation we ignore integer rounding issues in this paper.
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and
k∏
i=1

|(T, u)ui↓| ≥ (K + 1− 10 log(K))10 log(K).

Thus using (4) one has that for K large enough, ζT (1) > ζT (v). Furthermore it is obvious that
ζT (1) > ζT (v) for v ∈ {2, . . . , 10 log(K)}. This concludes the proof.

4 A subpolynomial root-finding algorithm for UA(n)

The performance of the maximum likelihood estimate is complicated to analyze due to the presence
of the automorphism numbers in the expression (11). In order to circumvent this difficulty, we
analyze algorithms that minimize modified versions of the maximum likelihood criterion. The
function ψ defined in (2) can be viewed as such a “relaxation” of the likelihood function ζ defined
in (11). In this section we analyze a tighter relaxation, which we denote ϕ and define as

ϕT (u) =
∏

v∈V (T )\{u}

|(T, u)v↓|. (5)

We denote by Hϕ the mapping which returns the set of K vertices with smallest ϕ values. We also
note that 1/ϕT (u) is referred to as the rumor centrality of vertex u in Shah and Zaman [2011].

Theorem 5 There exist universal constants a, b > 0 such that if K ≥ a exp
(
b log(1/ε)
log log(1/ε)

)
, then

one has liminf
n→+∞

P(1 ∈ Hϕ(UA(n)◦)) ≥ 1− ε.

Before going into the proof of the above result, we start with a technical lemma on the concen-
tration of sums of Gamma random variables.

Lemma 1 Let j1, . . . j` ∈ N, and s =
∑`

k=1 kjk. For k ∈ [`], let3 Xk ∼ Ga(jk, k), with X1, . . . , X`

being independent. Then for any t ∈ (0, s),

P

(∑̀
k=1

Xk < t

)
≤ exp

(
−
√
s

2
log
( s
et

))
.

Proof Recall that for any λ ≥ 0, one has

EX∼Ga(a,b) exp(−λX) =
1

(1 + λb)a
.

Thus using Chernoff’s method one obtains (using also that x 7→ log(1+x)
x is non-increasing for the

second inequality)

P

(∑̀
k=1

Xk < t

)
≤ exp(λt)E exp

(
−λ
∑̀
k=1

Xk

)
= exp

(
λt−

∑̀
k=1

jk log(1 + λk)

)

≤ exp

(
λt−

∑̀
k=1

λkjk
log(1 + λ`)

λ`

)
= exp

(
λt− s

`
log(1 + λ`)

)
.

3We denote Ga(a, b) for the Gamma distribution with density proportional to xa−1 exp(−x/b)1{x>0}.
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Taking λ = (s/t− 1)/` > 0 yields

P

(∑̀
k=1

Xk < t

)
≤ exp

(
−
s log

(
s
et

)
`

)
.

It remains to observe that s ≥ `2/2 to conclude the proof.

We also recall Erdős’ non-asymptotic version of the Hardy-Ramanujan formula on the number
of partitions of an integer, Erdős [1942],∣∣∣∣∣

{
(j1, . . . , j`) ∈ N` s.t. ` ∈ N,

∑̀
k=1

kjk = s

}∣∣∣∣∣ ≤ exp

(
π

√
2

3
s

)
. (6)

Proof We decompose the proof into four steps. Denote T = UA(n)◦, and let S ≥ 1 be a value
appropriately chosen later.

Step 1. We first introduce an alternative labeling of the vertices in UA(n). We define this labeling
by induction as follows. The root is labeled with the empty set ∅. Node (j1, . . . , j`) ∈ N` with
` ∈ N is defined to be the jth` children (in birth order) of node (j1, . . . , j`−1). Thus instead of
labeling vertices with elements of N, they are labeled with elements of N∗ := ∪∞`=0N`. For any
vertex v ∈ N∗ we define `(v) to be such that v ∈ N`(v) (in other words `(v) is the depth of v), and

s(v) =
∑`(v)

k=1(`(v) + 1− k)jk.
We observe the following important property: for any vertex v such that s(v) > 3S, one has

either

(i) there exists u such that s(u) ∈ (S, 3S] and v ∈ (T, ∅)u↓, or,

(ii) there exists u such that s(u) ≤ S and v ∈ (T, ∅)(u,j)↓ for some j > S.

We prove this property by induction on the depth `(v) of v. For `(v) = 1, (ii) is clearly true with
u = ∅. For `(v) > 1, let u be the parent of v. We now have three cases:

(a) If s(u) > 3S, then one can apply the induction hypothesis on u.

(b) If s(u) ∈ (S, 3S], then (i) is true.

(c) Finally if s(u) ≤ S, then v is the jth children of u with j > S (this uses the fact that
s((u, j)) ≤ j + 2S, and s(v) > 3S), and thus (ii) is true.

This concludes the proof that either (i) or (ii) is always true. Also note that ϕ satisfies for any
vertex w on a path from u to v, ϕ(w) ≤ max(ϕ(u), ϕ(v)). Putting these facts together we proved
that

P (∃ v : s(v) > 3S and ϕ(v) ≤ ϕ(1))

≤ P (∃ v : s(v) ∈ (S, 3S] and ϕ(v) ≤ ϕ(1)) + P (∃ v, j : s(v) ≤ S, j > S, and ϕ((v, j)) ≤ ϕ(1)) .
(7)

Step 2. We show here that, after a union bound on v, the second term in (7) is bounded by the
first term. First observe that, for v = (j1, . . . , j`), one has

ϕ(v) ≤ ϕ(1)⇔
`(v)∏
i=1

|(T, ∅)(j1,...,ji)↓| ≥
`(v)−1∏
i=0

|(T, v)(j1,...,ji)↓| =
`(v)∏
i=1

(
n− |(T, ∅)(j1,...,ji)↓|

)
. (8)
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In particular, this implies that

∃ j > S : ϕ((v, j)) ≤ ϕ(1)

⇒
`(v)∏
i=1

|(T, ∅)(j1,...,ji)↓| ·

 +∞∑
j=S+1

|(T, ∅)(v,j)↓|

 ≥ `(v)∏
i=1

(
n− |(T, ∅)(j1,...,ji)↓|

)
·

n− +∞∑
j=S+1

|(T, ∅)(v,j)↓|

 .

Now it is easy to see that the random variable
∑+∞

j=S+1 |(T, ∅)(v,j)↓| is stochastically dominated by
|(T, ∅)(v,S)↓|, which, together with the two above displays, show that

P(∃ j > S : ϕ((v, j)) ≤ ϕ(1)) ≤ P(ϕ((v, S)) ≤ ϕ(1)).

In particular, putting this together with (7) and an union bound, one obtains:

P (∃ v : s(v) > 3S and ϕ(v) ≤ ϕ(1)) ≤ 2
∑

v:s(v)∈(S,3S]

P (ϕ(v) ≤ ϕ(1)) . (9)

Step 3. This is the main step of the proof, where we show that for any vertex v with s(v) ≥ 1010,

lim sup
n→+∞

P(ϕ(v) ≤ ϕ(1)) ≤ 7 exp
(
−0.21

√
s(v) log(s(v))

)
. (10)

Observe that the random vector
(
1
n |(T, ∅)(j1,...,ji)↓|

)
i=1,...,`(v)

evolves according to a ”pile” of Pólya

urns, and thus using a standard argument it converges in distribution to the random vector(∏i
k=1 Ujk,k

)
i=1,...,`(v)

, where Uj,1, Uj,2, . . . are (independent) products of j independent uniform

random variables in [0, 1]. In particular, by (8) this gives

lim sup
n→+∞

P(ϕ(v) ≤ ϕ(1))

= P

`(v)∏
i=1

i∏
k=1

Ujk,k ≥
`(v)∏
i=1

(
1−

i∏
k=1

Ujk,k

)
= P

`(v)∏
i=1

U
`(v)+1−i
ji,i

≥
`(v)∏
i=1

(
1−

i∏
k=1

Ujk,k

)
≤ P

`(v)∏
i=1

U
`(v)+1−i
ji,i

≥ exp

(
−s(v)

R

)+ P

`(v)∏
i=1

(
1−

i∏
k=1

Ujk,k

)
≤ exp

(
−s(v)

R

) .

where R > 0 will be appropriately chosen later. Using Lemma 1, one directly obtains

P

`(v)∏
i=1

U
`(v)+1−i
ji,i

≥ exp

(
−s(v)

R

) ≤ exp

(
−
√
s(v)

2
log

(
R

e

))
.

Furthermore, using that 1− exp(−x) ≥ 1
2 min(x, 1) for any x ≥ 0, one can check that

`(v)∏
i=1

(
1−

i∏
k=1

Ujk,k

)
≥ 1

2`(v)

`(v)∏
i=1

min

(
i∑

k=1

log(1/Ujk,k), 1

)
≥ 1

2`(v)
X,

9



where X is equal in distribution to
∏+∞
i=1 min

(∑i
k=1 log(1/U1,k), 1

)
. Thus, using Lemma 2 in the

Appendix, one gets,

P

`(v)∏
i=1

(
1−

i∏
k=1

Ujk,k

)
≤ exp

(
−s(v)

R

) ≤ 6 · 2
`(v)
4 exp

(
−s(v)

4R

)
≤ 6 exp

(√
s(v)

4
− s(v)

4R

)
,

where we used s(v) ≥ `(v)/2 for the second inequality. Taking R = e · s(v)0.3 easily concludes the
proof of (10).

Step 4. Putting together (9) and (10) one obtains that for S ≥ 1010,

lim sup
n→+∞

P (∃ v : s(v) > 3S and ϕ(v) ≤ ϕ(1)) ≤ 14 · |{v : s(v) ≤ 3S}| · exp
(
−0.21

√
S log(S)

)
.

Furthermore by (6) one clearly has |{v : s(v) ≤ 3S}| ≤ 3S exp(π
√

2S), and thus for S ≥ 1010 one
can check that

lim sup
n→+∞

P (∃ v : s(v) > 3S and ϕ(v) ≤ ϕ(1)) ≤ exp

(
− 1

100

√
S log(S)

)
,

which easily concludes the proof.

5 Root-finding algorithms for PA(n)

In this section we investigate the preferential attachment model. We first analyze the simple root-
finding algorithm defined in Section 2.

Theorem 6 Let K ≥ C log2(1/ε)
ε4

for some numerical constant C > 0. One has liminf
n→+∞

P(1 ∈
Hψ(PA(n)◦)) ≥ 1− ε.

On the contrary to the situation for uniform attachment it is not clear if the above theorem gives
the correct order of magnitude in ε: With probability at least Ω(1/

√
K), the root is a leaf in

PA(K), and thus for Hψ to be correct with probability at least 1− ε one needs K = Ω(1/ε2). Thus
there is a quadratic gap between this lower bound and the upper bound given by the above result.
We also note that a similar bound to the one given by Theorem 6 could be obtained by simply
considering the vertices with largest degree (it could even give a better polynomial dependency in ε).
However the proof of this latter statement is more involved technically, because degrees behave as
triangular Pólya urns which have more complicated limiting distributions, see, e.g., Janson [2006].
On the contrary, subtree sizes are Pólya urns with diagonal replacement matrix, which allows for
the (relative) simplicity of the following proof.
Proof Similarly to the proof of Theorem 3 we label vertices by chronological order, and for
1 ≤ i ≤ k we denote by Ti,k the tree containing vertex i in the forest obtained by removing in
PA(n) all edges between vertices {1, . . . , k}. Here the vector 2(|T1,k|, . . . , |Tk,k|) follows a Pólya urn
with k colors and replacement matrix 2Ik (where Ik is the k × k identity matrix), and thus using
again a classical result one has the following convergence in distribution, conditionally on PA(k),

1

n
(|T1,k|, . . . , |Tk,k|) −−−−−→

n→+∞
Dir

(
dPA(k)(1)

2
, . . . ,

dPA(k)(k)

2

)
.

10



Let η ∈ (0, 1) and observe that

P(1 6∈ Hψ) ≤ P(∃i > K : ψ(i) ≤ ψ(1)) ≤ P(ψ(1) ≥ (1− η)n) + P(∃i > K : ψ(i) ≤ (1− η)n).

Using that ψ(1) ≤ max(|T1,2|, |T2,2|), and since |T1,2|/n and |T2,2|/n are identically distributed and
converge in distribution to a Beta(1/2, 1/2), one has

lim sup
n→+∞

P(ψ(1) ≥ (1− η)n) ≤ 2 lim
n→+∞

P(|T1,2| ≥ (1− η)n) =
2

π
arcsin(

√
η) ≤ √η.

On the other hand, for any i > K, ψ(i) ≥ min1≤k≤K
∑K

j=1,j 6=k |Tj,K |, and 1
n

∑K
j=1,j 6=k |Tj,K | is

stochastically lower bounded by 1
n

∑K
j=2 |Tj,K | which converges in distribution to a

Beta

(
K − 1−

dPA(K)(1)

2
,
dPA(K)(1)

2

)
.

Thus we have, for some numerical constants C and C ′,

lim sup
n→+∞

P(∃i > K : ψ(i) ≤ (1− η)n) ≤ lim
n→+∞

P

∃1 ≤ k ≤ K :
K∑

j=1,j 6=k
|Tj,K | ≤ (1− η)n


≤ K P

(
Beta

(
K − 1−

dPA(K)(1)

2
,
dPA(K)(1)

2

)
≤ 1− η

)
≤ KC(1− η)K

ηC′
√
K

,

where the last line follows from a rather lengthy calculation using properties of Beta distributions
and triangular Pólya urns. By taking η = ε2 we thus proved

lim sup
n→+∞

P(1 6∈ Hψ) ≤ 2ε+
KC

ε2C′
√
K

(1− ε2)K ,

which clearly concludes the proof.

Next we prove a general impossibility result. On the contrary to the proof of Theorem 4, here
we do not use the structure of the maximum likelihood estimator, as a simple symmetry argument
suffices.

Theorem 7 There exists c > 0 such that for ε ∈ (0, 1), any procedure that satisfies (1) in the
preferential attachment model must have K ≥ c/ε.

Proof As we observed in the proof of Theorem 4, the probability of error for the optimal procedure
is non-decreasing with n, so it suffices to show that the optimal procedure must have a probability
of error of at least ε for some finite n.

We show that there is some finite n for which, with probability at least 2ε, 1 is isomorphic to
at least 2c/ε vertices in PA(n). This clearly implies a probability of error of at least ε for any
procedure that outputs less than c/ε vertices. To simplify the proof we now use the Θ notation.
First observe that the probability that 1 is a leaf is Θ(1/

√
n), and thus for n = Θ(1/ε2) this happens

11



with probability at least Θ(ε). Furthermore it is an easy exercise4 to verify that, conditioned on 1
being a leaf, with probability at least Θ(1), 2 is connected to Θ(

√
n) = Θ(1/ε) leaves, which are

then isomorphic to 1.

For sake of completeness, we observe that the maximum likelihood estimator in the preferential
attachment model is obtained by minimizing the function

ξT (u) =
Aut(u, T )

dT (u)

∏
v∈V (T )\L((T,u))

(|(T, u)v↓| ·Aut(v, (T, u))). (11)

This is a consequence of the following observation.

Proposition 2 Let T be an unlabeled rooted tree with n vertices, then

|{t plane-oriented recursive tree : t◦ = T}| =
n! · dT (∅)! ·

∏
v∈V (T )\{∅}(dT (v)− 1)!∏

v∈V (T )\L(T ) (|Tv↓| ·Aut(v, T ))
.

Proof Recall that a plane-oriented recursive tree is a recursive tree together with an ordering of
the children of each vertex. For the root there are dT (∅)! possible orderings of the children, while
for any other vertex v 6= ∅ there are only (dT (v)−1)! possible orderings. Together with Proposition
1 this immediately yields the above formula.

6 Open problems

1. Our results leave gaps for both uniform attachment and preferential attachment models. In
particular, is it possible to find a procedure with K ≤ exp(c

√
log(1/ε)) (respectively K ≤ c/ε)

in the uniform attachment (respectively preferential attachment) model?

2. In the seeded models of Bubeck et al. [2014b,a], how large does K need to be to certify that
the obtained set of vertices contains the seed with probability at least 1− ε?

3. In Section 1.3 we introduced the more general non-linear preferential attachment model Tα(n).
What can be said for this model?

4. What about growing graphs instead of trees? For instance one can investigate root-finding
algorithms in the model Tα,m(n), where each arriving new node sends m independent edges
according to the same rule than in Tα(n).

5. If one has to output only a single vertex, what is the best possible success probability? For
instance our results imply a lower bound of at least 1% success probability in the uniform
attachment model (the strategy is to pick at random a vertex in Hψ with K = 35).
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4Simply recall that dPA(n)(1)/
√
n converges in distribution (this follows from Janson [2006]) and at least a constant

fraction of the vertices in {n/2, . . . , n} are leaves.
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Appendix

Lemma 2 Let E1, E2, . . . be an i.i.d. sequence of exponential random variables (of parameter 1),
and let

X =

+∞∏
i=1

min

(
i∑

k=1

Ek, 1

)
.

Then for any t > 0,
P(X ≤ t) ≤ 6t1/4.

Proof First observe that, almost surely, X is a finite product, and thus one can write for t ∈ (0, 1),

P(X ≤ t) = P

(
∃ ` :

`+1∑
k=1

Ek > 1, and
∑̀
k=1

Ek ≤ 1, and
∏̀
i=1

(
i∑

k=1

Ek

)
≤ t

)

≤
+∞∑
`=1

min

(
P

(∑̀
k=1

Ek ≤ 1

)
,P

(
`+1∑
k=1

Ek > 1, and
∏̀
i=1

(
i∑

k=1

Ek

)
≤ t

))
. (12)

One has

P

(∑̀
k=1

Ek ≤ 1

)
=

∫ 1

0

x`−1 exp(−x)

(`− 1)!
dx ≤ 1

`!
.

Furthermore we show below that

P

(
`+1∑
k=1

Ek > 1, and
∏̀
i=1

(
i∑

k=1

Ek

)
≤ t

)
≤ 2`
√
t. (13)

The two above displays together with (12) concludes the proof, since they imply (with min(a, b) ≤√
ab):

P(X ≤ t) ≤
+∞∑
`=1

√
2`
√
t

`!
≤ 6t1/4.

To prove (13) we first write

∏̀
i=1

(
i∑

k=1

Ek

)
=

(
`+1∑
k=1

Ek

)` ∏̀
i=1

(∑i
k=1Ek∑`+1
k=1Ek

)
.

Now observe that the vector
(∑i

k=1Ek/
∑`+1

k=1Ek

)
i=1,...,`

is equal in law to (U(i))i=1,...,` where

U1, . . . , U` is an i.i.d. sequence of uniform random variables in [0, 1] and (U(i)) is an increasing
rearrangement of (Ui). Thus one has

P

(
`+1∑
k=1

Ek > 1, and
∏̀
i=1

(
i∑

k=1

Ek

)
≤ t

)
≤ P

(∏̀
i=1

Ui ≤ t

)
≤ E

 √
t√∏`
i=1 Ui

 ≤ 2`
√
t,

which concludes the proof.
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