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Abstract

An important part of the legacy of Evarist Giné is his fundamental contributions
to our understanding of U -statistics and U -processes. In this paper we discuss the
estimation of the mean of multivariate functions in case of possibly heavy-tailed distri-
butions. In such situations, reliable estimates of the mean cannot be obtained by usual
U -statistics. We introduce a new estimator, based on the so-called median-of-means
technique. We develop performance bounds for this new estimator that generalizes an
estimate of Arcones and Giné (1993), showing that the new estimator performs, un-
der minimal moment conditions, as well as classical U -statistics for bounded random
variables. We discuss an application of this estimator to clustering.

1 Introduction

Motivated by numerous applications, the theory of U -statistics and U -processes has re-
ceived considerable attention in the past decades. U -statistics appear naturally in ranking
(Clémençon et al., 2008), clustering (Clémençon, 2014) and learning on graphs (Biau and
Bleakley, 2006) or as components of higher-order terms in expansions of smooth statistics,
see, for example, Robins et al. (2009). The general setting may be described as follows. Let
X be a random variable taking values in some measurable space X and let h : Xm → R be
a measurable function of m ≥ 2 variables. Let P be the probability measure of X. Suppose
we have access to n ≥ m independent random variables X1, . . . , Xn, all distributed as X.
We define the U -statistics of order m and kernel h based on the sequence {Xi} as

Un(h) =
(n−m)!

n!

∑
(i1,...,im)∈Imn

h(Xi1 , . . . , Xim) , (1)
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where
Imn = {(i1, . . . , im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k}

is the set of all m-tuples of different integers between 1 and n. U -statistics are unbiased es-
timators of the mean mh = Eh(X1, . . . , Xm) and have minimal variance among all unbiased
estimators (Hoeffding, 1948). Understanding the concentration of a U -statistics around its
expected value has been subject of extensive study. de la Peña and Giné (1999) provide
an excellent summary but see also Giné et al. (2000) for a more recent development.

By a classical inequality of Hoeffding (1963), for a bounded kernel h, for all δ > 0,

P

|Un(h)−mh| > ‖h‖∞

√
log(2

δ )

2bn/mc

 ≤ δ , (2)

and we also have the “Bernstein-type” inequality

P

|Un(h)−mh| >

√
4σ2 log(2

δ )

2bn/mc
∨

4 ‖h‖∞ log(2
δ )

6bn/mc

 ≤ δ ,
where σ2 = Var (h(X1, . . . , Xm)).

However, under certain degeneracy assumptions on the kernel, significantly sharper
bounds have been proved. Following the exposition of de la Peña and Giné (1999), for
convenience, we restrict out attention to symmetric kernels. A kernel h is symmetric if for
all x1, . . . , xm ∈ R and all permutations s,

h(x1, . . . , xm) = h(xs1 , . . . , xsm) .

A symmetric kernel h is said to be P -degenerate of order q − 1, 1 < q ≤ m, if for all
x1, . . . , xq−1 ∈ X ,∫

h(x1, . . . , xm)dPm−q+1(xq, . . . , xm) =

∫
h(x1, . . . , xm)dPm(x1, . . . , xm)

and

(x1, . . . , xq) 7→
∫
f(x1, . . . , xm)dPm−q(xq+1, . . . , xm)

is not a constant function. In the special case of mh = 0 and q = m (i.e., when the kernel
is (m− 1)-degenerate, h is said to be P -canonical. P -canonical kernels appear naturally in
the Hoeffding decomposition of a U -statistic, see de la Peña and Giné (1999).

Arcones and Giné (1993) proved the following important improvement of Hoeffing’s
inequalities for canonical kernels: If h−mh is a bounded, symmetric P -canonical kernel of
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m variables, there exist finite positive constants c1 and c2 depending only on m such that
for all δ ∈ (0, 1),

P

{
|Un(h)−mh| ≥ c1 ‖h‖∞

(
log( c2δ )

n

)m/2}
≤ δ , (3)

and also

P

{
|Un(h)−mh| >

(
σ2 log( c1δ )

c2n

)m/2
∨
‖h‖∞√

n

(
log( c1δ )

c2

)(m+1)/2
}
≤ δ . (4)

In the special case of P -canonical kernels of order m = 2, (3) implies that

|Un(h)−mh| ≤
c1 ‖h‖∞

n
log
(c2

δ

)
, (5)

with probability at least 1 − δ. Note that this rate of convergence is significantly faster
than the rate Op(n

−1/2) implied by (2).
All the results cited above require boundedness of the kernel. If the kernel is unbounded

but h(X1, . . . , Xm) has sufficiently light (e.g., sub-Gaussian) tails, then some of these results
may be extended, see, for example, Giné et al. (2000). However, if h(X1, . . . , Xm) may
have a heavy-tailed distribution, exponential inequalities do not hold anymore (even in the
univariate m = 1 case). However, even though U -statistics may have an erratic behavior in
the presence of heavy tails, in this paper we show that under minimal moment conditions,
one may construct estimators of mh that satisfy exponential inequalities analogous to (2)
and (3). These are the main results of the paper. In particular, in Section 2 we introduce
a robust estimator of the mean mh. Theorems 1 and 3 establish exponential inequalities
for the performance of the new estimator under minimal moment assumptions. More
precisely, Theorem 1 only requires that h(X1, . . . , Xm) has a finite variance and establishes
inequalities analogous to (3) for P -degenerate kernels. In Theorem 3 we further weaken
the conditions and only assume that there exists 1 < p ≤ 2 such that E|h|p <∞.

The next example illustrates why classical U -statistics fail under heavy-tailed distribu-
tions.

Example. Consider the special case m = 2, EX1 = 0 and h(X1, X2) = X1X2. Note
that this kernel is P -canonical. We define Y1, . . . , Yn as independent copies of X1, . . . , Xn.
By decoupling inequalities for the tail of U -statistics given in Theorem 3.4.1 in de la Peña
and Giné (1999) (see also Theorem 7 in the Appendix), Un(h) has a similar tail behavior

to
(

1
n

∑n
i=1Xi

) (
1

n−1

∑n−1
j=1 Yj

)
. Thus, Un(h) behaves like a product of two independent

empirical mean estimators of the same distribution. When the Xi are heavy tailed, the
empirical mean is known to be a poor estimator of the mean. As an example, assume that
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X follows an α-stable law S(γ, α) for some α ∈ (1, 2) and γ > 0. Recall that a random
variable X has an α-stable law S(γ, α) if for all u ∈ R,

E exp(iuX) = exp(−γα|u|α)

(see Zolotarev (1986), Nolan (2015)). Then it follows from the properties of α-stable
distributions (summarized in Proposition 9 in the Appendix) that there exists a constant
c > 0 depending only on α and γ such that

P
{
Un(h) ≥ n2/α−2

}
≥ c ,

and therefore there is no hope to reproduce an upper bound like (5). Below we show how
this problem can be dealt with by replacing the U -statistics by a more robust estimator.

Our approach is based on robust mean estimators in the univariate setting. Estimation
of the mean of a possibly heavy-tailed random variable X from i.i.d. sample X1, . . . , Xn

has recently received increasing attention. Introduced by Nemirovsky and Yudin (1983),
the median-of-means estimator takes a confidence level δ ∈ (0, 1) and divides the data into
V ≈ log δ−1 blocks. For each block k = 1, . . . , V , one may compute the empirical mean
µ̂k on the variables in the block. The median µ of the µ̂k is the so-called median-of-means
estimator. A short analysis of the resulting estimator shows that

|µ−mh| ≤ c
√

Var (X)

√
log(1/δ)

n

with probability at least 1− δ for a numerical constant c. For the details of the proof see
Lerasle and Oliveira (2011). When the variance is infinite but a moment of order 1 < p ≤ 2
exists, the median-of means estimator is still useful, see Bubeck et al. (2013). This estimator
has recently been studied in various contexts. M -estimation based on this technique has
been developed by Lerasle and Oliveira (2011) and generalizations in a multivariate context
have been discussed by Hsu and Sabato (2013) and Minsker (2015). A similar idea was
used in Alon et al. (2002). An interesting alternative of the median-of-means estimator
has been proposed by Catoni (2012).

The rest of the paper is organized as follows. In Section 2 we introduce a robust
estimator of the mean mh and present performance bounds. In particular, Section 2.1
deals with the finite variance case. Section 2.2 is dedicated to case when h has a finite p-th
moment for some 1 < p < 2 for P -degenerate kernels. Finally, in Section 3, we present an
application to clustering problems.

2 Robust U-estimation

In this section we introduce a “median-of-means”-style estimator of mh = Eh(X1, . . . , Xm).
To define the estimator, one divides the data into V blocks. For any m-tuple of different

4



blocks, one may compute a (decoupled) U -statistics. Finally, one computes the median of
all the obtained values. The rigorous definition is as follows.

The estimator has a parameter V ≤ n, the number of blocks. A partition B =
(B1, . . . , BV ) of {1, . . . , n} is called regular if for all K = 1, . . . , V ,∣∣∣|BK | − n

V

∣∣∣ ≤ 1 .

For any Bi1 , . . . , Bim in B, we set

IBi1
,...,Bim

=
{

(k1, . . . , km) : kj ∈ Bij
}

and

UBi1
,...,Bim

(h) =
1

|Bi1 | · · · |Bim |
∑

(k1,...,km)∈IBi1
,...,Bim

h(Xk1 , . . . , Xkm) .

For any integer N and any vector (a1, . . . , aN ) ∈ RN , we define the median Med(a1, . . . , aN )
as any number b such that∣∣{i ≤ N : ai ≤ b}

∣∣ ≥ N

2
and

∣∣{i ≤ N : ai ≥ b}
∣∣ ≥ N

2
.

Finally, we define the robust estimator:

UB(h) = Med{UBi1
,...,Bim

(h) : ij ∈ {1, . . . , V }, 1 ≤ i1 < . . . < im ≤ V } . (6)

Note that, mostly in order to simplify notation, we only take those values of UBi1
,...,Bim

(h)
into account that correspond to distinct indices i1 < · · · < im. Thus, each UBi1

,...,Bim
(h)

is a so-called decoupled U -statistics (see the Appendix for the definition). One may in-
corporate all m-tuples (not necessarily with distinct indices) in the computation of the
median. However, this has a minor effect on the performance. Similar bounds may be
proven though with a more complicated notation.

A simpler alternative is obtained by taking only “diagonal” blocks into account. More
precisely, let UBi(h) be the U -statistics calculated using the variables in block Bi (as defined
in (1)). One may simply calculate the median of the V different U -statistics UBi(h). This
version is easy to analyze because

∣∣{i ≤ V : UBi(h) ≥ b}
∣∣ is a sum of independent random

variables. However, this simple version is wasteful in the sense that only a small fraction
of possible m-tuples are taken into account.

In the next two sections we analyze the performance of the estimator UB(h).

2.1 Exponential inequalities for P -degenerate kernels with finite vari-
ance.

Next we present a performance bound of the estimator UB(h) in the case when σ2 is finite.
The somewhat more complicated case of infinite second moment is treated in Section 2.2.

5



Theorem 1. Let X1, . . . , Xn be i.i.d. random variables taking values in X . Let h : Xm 7→ R
be a symmetric kernel that is P -degenerate of order q− 1. Assume Var (h(X1, . . . , Xm)) =
σ2 < ∞. Let δ ∈ (0, 1

2) be such that dlog(1/δ)e ≤ n
64m . Let B be a regular partition of

{1, . . . , n} with |B| = 32m dlog(1/δ)e. Then, with probability at least 1− 2δ, we have

∣∣UB(h)−mh

∣∣ ≤ Kmσ

(
dlog(1/δ)e

n

)q/2
, (7)

where Km = 2
7
2
m+1m

m
2 .

When q = m, the kernel h − mh is P -canonical and the rate of convergence is then
given by (log δ−1/n)m/2. Thus, the new estimator has a performance similar to standard
U -statistics as in (3) and (4) but without the boundedness assumption for the kernel. It
is important to note that a disadvantage of the estimator UB(h) is that it depends on the
confidence level δ (through the number of blocks). For different confidence levels, different
estimators are used.

Because of its importance in applications, we spell out the special case when m = q = 2.
In Section 3 we use this result in an example of cluster analysis.

Corollary 2. Let δ ∈ (0, 1/2). Let h : X 2 7→ R be a P -canonical kernel with σ2 =
Var (h(X1, X2)) and let n ≥ 128(1 + log(1/δ)). Then, with probability at least 1− 2δ,

|UB(h)−mh| ≤ 512σ
1 + log(1/δ)

n
. (8)

In the proof of Theorem 1 we need the notion of Hoeffding decomposition (Hoeffd-
ing, 1948) of U -statistics. For probability measures P1, . . . , Pm, define P1 × · · · × Pmh =∫
h d(P1, . . . , Pm). For a symmetric kernel h : Xm 7→ R the Hoeffding projections are

defined, for 0 ≤ k ≤ m and x1, . . . , xk ∈ X , as

πkh(x1, . . . , xk) := (δx1 − P )× · · · × (δxk − P )× Pm−kh

where δx denotes the Dirac measure at the point x. Observe that π0h = Pmh and for
k > 0, πkh is a P -canonical kernel. h can be decomposed as

h(x1, . . . , xm) =

m∑
k=0

∑
1≤i1<...<ik≤m

πkh(xi1 , . . . , xik) . (9)

If h is assumed to be square-integrable (i.e., Pmh2 <∞), the terms in (9) are orthogonal.
If h is degenerate of order q − 1, then for any 1 ≤ k ≤ q − 1, πkh = 0.

Proof of Theorem 1. We begin with a “weak” concentration result on each UBi1
,...,Bim

(h).

Let Bi1 , . . . , Bim be elements of B. For any B ∈ B, we have n
2|B| ≤ |B| ≤

2n
|B| . We denote by
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k = (k1, . . . , km) an element of IBi1
,...,Bim

. We have, by the above-mentioned orthogonality
property,

Var
(
UBi1

,...,Bim
(h)
)

= E
[
(UBi1

,...,Bim
(h)− Pmh)2

]
=

1

|Bi1 |2 . . . |Bim |2
∑

k∈IBi1
,...,Bim

l∈IBi1
,...,Bim

E [(h(Xk1 , . . . , Xkm)− Pmh)(h(Xl1 , . . . , Xlm)− Pmh)]

=
1

|Bi1 |2 . . . |Bim |2
∑

k∈IBi1
,...,Bim

l∈IBi1
,...,Bim

m∑
s=q

(
|k ∩ l|
s

)
E
[
πsh(X1, . . . , Xs)

2
]

(by orthogonality)

≤ 1

|Bi1 |2 . . . |Bim |2
∑

k∈IBi1
,...,Bim

m∑
s=q

m∑
t=0

(
t

s

)
E
[
πsh(X1, . . . , Xs)

2
]
×
(

2n

|B|

)m−t
.

The last inequality is obtained by counting, for any fixed k and t, the number of elements
l such that |k ∩ l| = t. Thus,

Var
(
UBi1

,...,Bim
(h)
)
≤ 1

|Bi1 | . . . |Bim |

m∑
s=q

m∑
t=q

(
t

s

)
E
[
πsh(X1, . . . , Xs)

2
]
×
(

2n

|B|

)m−t
≤ 1

|Bi1 | . . . |Bim |

m∑
s=q

(
m

s

)
E
[
πsh(X1, . . . , Xs)

2
]
×

m∑
t=q

(
2n

|B|

)m−t
≤ 1(

n
2|B|

)m m∑
s=q

(
m

s

)
E
[
πsh(X1, . . . , Xs)

2
]
× 2

(
2n

|B|

)m−q

≤ 22m−q+1|B|q

nq

m∑
s=q

(
m

s

)
E
[
πsh(X1, . . . , Xs)

2
]
.

On the other hand, we have, by (9),

Var (h) = E

 m∑
s=q

∑
1≤i1<...<is≤m

πsh(Xi1 , . . . , Xis)

2
=

m∑
s=q

∑
1≤i1<...<is≤m

E
[
(πsh(Xi1 , . . . , Xis))

2
]

=

m∑
s=q

(
m

s

)
E
[
(πsh(X1, . . . , Xs))

2
]
.
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Combining the two displayed equations above,

Var
(
UBi1

,...,Bim
(h)
)
≤ 22m−q+1|B|q

nq
σ2 ≤ 22m|B|q

nq
σ2 .

By Chebyshev’s inequality, for all r ∈ (0, 1),

P

{
UBi1

,...,Bim
(h)− Pmh > 2mσ

|B|q/2

nq/2r1/2

}
≤ r . (10)

We set x = 2mσ |B|q/2
nq/2r1/2

, and

Nx =
∣∣∣{(i1, . . . , im) ∈ {1, . . . , V }m : 1 ≤ i1 < . . . < im ≤ |B|, UBi1

,...,Bim
(h)− Pmh > x

}∣∣∣ .
The random variable 1

(|B|m )
Nx is a U -statistics of order m with the symmetric kernel

g : (i1, . . . , im) 7→ 1{UBi1
,...,Bim

(h)−Pmh>x}. Thus, Hoeffding’s inequality for centered U -

statistics (2) gives

P
{
Nx − ENx ≥ t

(
|B|
m

)}
≤ exp

(
−|B|t

2

2m

)
. (11)

By (10) we have ENx ≤
(|B|
m

)
r. Taking t = r = 1

4 in (11), by the definition of the median,
we have

P
{
UB(h)− Pm(h) > x

}
≤ P

{
Nx ≥

(|B|
m

)
2

}

≤ exp

(
− |B|

32m

)
.

Since |B| ≥ 32m log(δ−1), with probability at least 1− δ, we have

UB(h)− Pmh ≤ Kmσ

(⌈
log δ−1

⌉
n

)q/2

with Km = 2
7
2
m+1m

m
2 . The upper bound for the lower tail holds by the same argument.

2.2 Bounded moment of order p with 1 < p ≤ 2

In this section, we weaken the assumption of finite variance and only assume the existence
of a centered moment of order p for some 1 < p ≤ 2. The outline of the argument is similar
as in the case of finite variance. First we obtain a “weak” concentration inequality for
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the U -statistics is each block and then use the property of the median to boost the weak
inequality. While for the case of finite variance weak concentration could be proved by a
direct calculation of the variance, here we need the randomization inequalities for convex
functions of U -statistics established by de la Peña (1992) and Arcones and Giné (1993).
Note that, here, a P -canonical technical assumption is needed.

Theorem 3. Let h be a symmetric kernel of order m such that h − mh is P -canonical.

Assume that Mp := E
[∣∣h(X1, . . . , Xm)−mh

∣∣p]1/p <∞ for some 1 < p ≤ 2. Let δ ∈ (0, 1
2)

be such that
⌈
log(δ−1)

⌉
≤ n

64m . Let B be a regular partition of {1, . . . , n} with |B| =
32m

⌈
log(δ−1)

⌉
. Then, with probability at least 1− 2δ, we have

|UB(h)−mh| ≤ KmMp

(⌈
log(δ−1)

⌉
n

)m(p−1)/p

(12)

where Km = 24m+1m
m
2 .

Proof. Define the centered version of h by g(x1, . . . , xm) := h(x1, . . . , xm) − mh. Let
ε1, . . . , εn be i.i.d. Rademacher random variables (i.e., P {ε1 = −1} = P {ε1 = 1} = 1/2)
independent of X1, . . . , Xn. By the randomization inequalities (see Theorem 3.5.3 in de la
Peña and Giné (1999) and also Theorem 8 in the Appendix), we have

E


∣∣∣∣∣∣∣

∑
(k1,...,km)∈IBi1

,...,Bim

g(Xk1 , . . . , Xkm)

∣∣∣∣∣∣∣
p

≤ 2mpEXEε


∣∣∣∣∣∣∣

∑
(k1,...,km)∈IBi1

,...,Bim

εk1 . . . εkmg(Xk1 , . . . , Xkm)

∣∣∣∣∣∣∣
p (13)

≤ 2mpEX


∣∣∣∣∣∣∣Eε

 ∑

(k1,...,km)∈IBi1
,...,Bim

εk1 . . . εkmg(Xk1 , . . . , Xkm)


2
∣∣∣∣∣∣∣
p/2


= 2mpEX


∣∣∣∣∣∣∣

∑
(k1,...,km)∈IBi1

,...,Bim

g(Xk1 , . . . , Xkm)2

∣∣∣∣∣∣∣
p/2


≤ 2mp
∑

(k1,...,km)∈IBi1
,...,Bim

E|g(Xk1 , . . . , Xkm)|p

= 2mp|Bi1 | · · · |Bim |E|g|p . (14)
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Thus, we have E
[
|UBi1

,...,Bim
(h)−mh|p

]
≤ 2mp(|Bi1 | . . . |Bim |)1−pE|g|p and by Markov’s

inequality,

P

{
UBi1

,...,Bim
(h)−mh >

2mMp

r
1
p

(
n

(2|B|)

)m 1−p
p

}
≤ r . (15)

Another use of (11) with t = r = 1
4 gives

UB(h)− Pmh ≤ 24m+1m
m
2 Mp

(⌈
log δ−1

⌉
n

)m p−1
p

.

To see why the bound of Theorem 3 gives essentially the right order of magnitude,
consider again the example described in the introduction, when m = 2, h(X1, X2) = X1X2,
and the Xi have an α-stable law S(γ, α) for some γ > 0 and 1 < α ≤ 2. Note that an
α-stable random variable has finite moments up to (but not including) α and therefore we
may take any p = α − ε for any ε ∈ (0, 1 − α). As we noted it in the introduction, there
exists a constant c depending on α and γ only such that for all 1 ≤ i1 < i2 ≤ V ,

P

{∣∣∣UBi1
,Bi2

(h)−mh

∣∣∣ ≥ c( n

|B|

)2/α−2
}
≥ 2/3 ,

and therefore (15) is essentially the best rate one can hope for.

3 Cluster analysis with U-statistics

In this section we illustrate the use of the proposed mean estimator in a clustering problem
when the presence of possibly heavy-tailed data requires robust techniques.

We consider the general statistical framework defined by Clémençon (2014), described
as follows: Let X,X ′ be i.i.d. random variables taking values in X where typically but not
necessarily, X is a subset of Rd). For a partition P of X into K disjoint sets–the so-called
“cells”–, define ΦP(x, x′) =

∑
C∈P 1{(x,x′)∈C2} the {0, 1}-valued function that indicates

whether two elements x and x′ belong to the same cell C. Given a dissimilarity measure
D : X 2 → R∗+, the clustering task consists in finding a partition of X minimizing the
clustering risk

W (P) = E
[
D(X,X ′)ΦP(X,X ′)

]
.

Let ΠK be a finite class of partitions P of X into K cells and define W ∗ = minP∈ΠK
W (P).

Given X1, . . . , Xn be i.i.d. random variables distributed as X, the goal is to find a
partition P ∈ ΠK with risk as close to W ∗ as possible. A natural idea–and this is the
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approach of Clémençon (2014)–is to estimate W (P) by the U -statistics

Ŵn(P) =
2

n(n− 1)

∑
1≤i<j≤n

D(Xi, Xj)ΦP(Xi, Xj)

and choose a partition minimizing the empirical clustering risk Ŵn(P). Clémençon (2014)
uses the theory of U -processes to analyze the performance of such minimizers of U -statistics.
However, in order to control uniform deviations of the form supP∈ΠK

|Ŵn(P) − W (P)|,
exponential concentration inequalities are needed for U -statistics. This restricts one to
consider bounded dissimilarity measures D(X,X ′). When D(X,X ′) may have a heavy tail,
we propose to replace U -statistics by the median-of-means estimators of W (P) introduced
in this paper.

Let B be a regular partition of {1, . . . , n} and define the median-of-means estimator
WB(P) of W (P) as in (6). Then Theorem 1 applies and we have the following simple
corollary.

Corollary 4. Let ΠK be a class of partitions of cardinality |ΠK | = N . Assume that
σ2 := E

[
D(X1, X2)2

]
< ∞. Let δ ∈ (0, 1/2) be such that n ≥ 128 dlog(N/δ)e. Let B be

a regular partition of {1, . . . , n} with |B| = 64 dlog(N/δ)e. Then there exists a constant C
such that, with probability at least 1− 2δ,

sup
P∈ΠK

|WB(P)−W (P)| ≤ Cσ
(
dlog(N/δ)e

n

)1/2

. (16)

Proof. Since ΦP(x, x′) is bounded by 1, Var (D(X1, X2)ΦP(X1, X2)) ≤ E
[
D(X1, X2)2

]
.

For a fixed P ∈ ΠK , Theorem 1 applies with m = 2 and q = 1. The inequality follows from
the union bound.

Once uniform deviations of WB(P) from its expected value are controlled, it is a routine
exercise to derive performance bounds for clustering based on minimizing WB(P) over
P ∈ ΠK .

Let P̂ = argminP∈ΠK
WB(P) denote the empirical minimizer. (In case of multiple

minimizers, one may select one arbitrarily.) Now for any P0 ∈ ΠK ,

W (P̂)−W ∗ = W (P̂)−WB(P̂) +WB(P̂)−W ∗

≤ W (P̂)−WB(P̂) +WB(P0)−W (P0) +W (P0)−W ∗

≤ 2 sup
P∈ΠK

|WB(P)−W (P)|+W (P0)−W ∗ .

Taking the infimum over ΠK ,

W (P̂)−W ∗ ≤ 2 sup
P∈ΠK

|WB(P)−W (P)| . (17)

11



Finally, (16) implies that

W (P̂)−W ∗ ≤ 2Cσ

(
1 + log(N/δ)

n

)1/2

.

This result is to be compared with Theorem 2 of Clémençon (2014). Our result holds under
the only assumption that D(X,X ′) has a finite second moment. (This may be weakened
to assuming the existence of a finite p-th moment for some 1 < p ≤ 2 by using Theorem 3).
On the other hand, our result holds only for a finite class of partitions while Clémençon
(2014) uses the theory of U -processes to obtain more sophisticated bounds for uniform
deviations over possibly infinite classes of partitions. It remains a challenge to develop a
theory to control processes of median-of-means estimators–in the style of Arcones and Giné
(1993)–and not having to resort to the use of simple union bounds.

In the rest of this section we show that, under certain “low-noise” assumptions, anal-
ogous to the ones introduced by Mammen and Tsybakov (1999) in the context of classifi-
cation, to obtain faster rates of convergence. In this part we need bounds for P -canonical
kernels and use the full power of Corollary 2. Similar arguments for the study of minimizing
U -statistics appear in Clémençon et al. (2008), Clémençon (2014).

We assume the following conditions, also considered by Clémençon (2014):

1. There exists P∗ such that W (P∗) = W ∗

2. There exist α ∈ [0, 1] and κ <∞ such that for all P ∈ ΠK and for all x ∈ X ,

P {ΦP(x,X) 6= ΦP∗(x,X)} ≤ κ(W (P)−W ∗)α .

Note that α ≤ 2 since by the Cauchy-Schwarz inequality,

W (P)−W ∗ ≤ E
[
D(X1, X2)2

]1/2 P {ΦP(X1, X2) 6= ΦP∗(X1, X2)}1/2 .

Corollary 5. Assume the conditions above and that σ2 := E
[
D(X1, X2)2

]
< ∞. Let

δ ∈ (0, 1/2) be such that n ≥ 128 dlog(N/δ)e. Let B be a regular partition of {1, . . . , n}
with |B| = 64 dlog(N/δ)e. Then there exists a constant C such that, with probability at
least 1− 2δ,

W (P̂)−W ∗ ≤ Cσ2/(2−α)

(
dlog(N/δ)e

n

)1/(2−α)

. (18)

The proof Corollary 5 is postponed to the Appendix.

4 Appendix

4.1 Decoupling and randomization

Here we summarize some of the key tools for analyzing U -statistics that we use in the
paper. For an excellent exposition we refer to de la Peña and Giné (1999).
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Let {Xi} be i.i.d. random variables taking values in X and let {Xk
i }, k = 1, . . . ,m,

be sequences of independent copies. Let Φ be a non-negative function. As a corollary of
Theorem 3.1.1 in de la Peña and Giné (1999) we have the following:

Theorem 6. Let h : Xm → R be a measurable function with E|h(X1, . . . , Xm)| < ∞. Let
Φ : [0,∞) → [0,∞) be a convex nondecreasing function such that EΦ (|h(X1, . . . , Xm)|) <
∞. Then

EΦ

∣∣∣∣∣∣
∑
Imn

h(Xi1 , . . . , Xim)

∣∣∣∣∣∣
 ≤ EΦ

Cm
∣∣∣∣∣∣
∑
Imn

h(X1
i1 , . . . , X

m
im)

∣∣∣∣∣∣


where Cm = 2m(mm−1)((m−1)m−1−1)×· · ·×3. Moreover, if the kernel h is symmetric,
then,

EΦ

cm
∣∣∣∣∣∣
∑
Imn

h(X1
i1 , . . . , X

m
im)

∣∣∣∣∣∣
 ≤ EΦ

∣∣∣∣∣∣
∑
Imn

h(Xi1 , . . . , Xim)

∣∣∣∣∣∣


where cm = 1/(22m−2(m− 1)!).

An equivalent result for tail probabilities of U -statistics is the following (see Theorem
3.4.1 in de la Peña and Giné (1999)):

Theorem 7. Under the same hypotheses as Theorem 6, there exists a constant Cm de-
pending on m only such that, for all t > 0,

P


∣∣∣∣∣∣
∑
Imn

h(Xi1 , . . . , Xim)

∣∣∣∣∣∣ > t

 ≤ CmP
Cm

∣∣∣∣∣∣
∑
Imn

h(X1
i1 , . . . , X

m
im)

∣∣∣∣∣∣ > t

 .

If moreover, the kernel h is symmetric then there exists a constant cm depending on m only
such that, for all t > 0,

cmP

cm
∣∣∣∣∣∣
∑
Imn

h(X1
i1 , . . . , X

m
im)

∣∣∣∣∣∣ > t

 ≤ P


∣∣∣∣∣∣
∑
Imn

h(Xi1 , . . . , Xim)

∣∣∣∣∣∣ > t

 .

The next Theorem is a direct corollary of Theorem 3.5.3 in de la Peña and Giné (1999).

Theorem 8. Let 1 < p ≤ 2. Let (εi)i≤n be i.i.d Rademacher random variables indepen-
dent of the (Xi)i≤n. Let h : X → R be a P -degenerate measurable function such that
E (|h(X1, . . . , Xm)|p) <∞. Then

cmE
∣∣∣∑
Imn

εi1 . . . εimh(Xi1 , . . . , Xim)
∣∣∣p ≤ E

∣∣∣∑
Imn

h(Xi1 , . . . , Xim)
∣∣∣p

≤ CmE
∣∣∣∑
Imn

εi1 . . . εimh(Xi1 , . . . , Xim)
∣∣∣p ,

where Cm = 2mp and cm = 2−mp.
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The same conclusion holds for decoupled U -statistics.

4.2 α-stable distributions

Proposition 9. Let α ∈ (0, 2). Let X1, . . . , Xn be i.i.d. random variables of law S(γ, α).
Let fγ,α : x 7→ R be the density function of X1. Let Sn =

∑
1≤i≤nXi. Then

(i) fγ,α(x) is an even function.

(ii) fγ,α(x) ∼
x→+∞

αγαcαx
−α−1 with cα = sin(πα2 )Γ(α)/π.

(iii) E [Xp
1 ] is finite for any p < α and is infinite whenever p ≥ α.

(iv) Sn has a α-stable law S(γn1/α, α).

Proof. (i) and (iv) follow directly from the definition. (ii) is proved in the introduction of
Zolotarev (1986). (iii) is a consequence of (ii).

4.3 Proof of Corollary 5

Define Λn(P) = Ŵn(P) − W ∗, the U -statistics based on the sample X1, . . . , Xn, with
symmetric kernel

hP(x, x′) = D(x, x′)
(
ΦP(x, x′)− ΦP∗(x, x

′)
)
.

We denote by Λ(P) = W (P) −W ∗ the expected value of Λn(P). The main argument in
the following analysis is based on the Hoeffding decomposition. For all partitions P,

Λn(P)− Λ(P) = 2Ln(P) +Mn(P)

for Ln(P) = 1
n

∑
i≤n h

(1)(Xi) with h(1)(x) = E [hP(X,x)] − Λ(P) and Mn(P) the U -

statistics based on the canonical kernel given by h(2)(x, x′) = hP(x, x′)−h(1)(x)−h(1)(x′)−
Λ(P). Let B be a regular partition of {1, . . . , n}. For any B ∈ B, ΛB(P) is the U -
statistics on the kernel hP restricted to the set B and ΛB(P) is the median of the sequence
(ΛB(P))B∈B. We define similarly LB(P) and MB(P) on the variables (Xi)i∈B. For any
B ∈ B,

Var (ΛB(P)) = 4Var (LB(P)) + Var (MB(P))

=
4

|B|
Var

(
h(1)(X)

)
+

2

|B|(|B| − 1)
Var

(
h(2)(X1, X2)

)
.

Simple computations show that Var
(
h(2)(X1, X2)

)
= 2Var

(
h(1)(X)

)
and therefore,

Var (ΛB(P)) ≤ 8

|B|
Var

(
h(1)(X)

)
.
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Moreover,

Var
(
h(1)(X)

)
≤ EX′

[
EX
[
hP(X,X ′)

]2]
≤ EX′

[
EX
[
D(X,X ′)2

]
EX
[(

ΦP(X,X ′)− ΦP∗(X,X
′)
)2]]

= EX′
[
EX
[
D(X,X ′)2

]
PX
{

ΦP(X,X ′) 6= ΦP∗(X,X
′)
}]

≤ σ2κ(W (P)−W ∗)α

where EX (resp. EX′) refers to the expectation taken with respect to X (resp. X ′).
Chebyshev’s inequality gives, for r ∈ (0, 1),

P

{
ΛB(P)− Λ(P) > σ(W (P)−W ∗)α/2

√
8κ

r|B|

}
≤ r .

Using again (11) with r = 1
4 , by |B| ≥ n

128dlog(N/δ)e , there exists a constant C such that for

any P ∈ ΠK , with probability at least 1− 2δ/N ,

|ΛB(P)− Λ(P)| ≤ Cσ(W (P)−W ∗)α/2
√
dlog(N/δ)e

n
.

This implies by the union bound, that

|WB(P̂)−W (P̂)| ≤ Kσ(W (P̂)−W ∗)α/2
√
dlog(N/δ)e

n

with probability at least 1− 2δ. Using (17), we obtain

(W (P̂)−W ∗)1−α/2 ≤ 2Kσ

√
dlog(N/δ)e

n
,

concluding the proof.
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study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 48, 1148–1185.
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