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Abstract. We study the problem of estimating the common mean µ of n independent symmetric random variables with different and
unknown standard deviations σ1 ≤ σ2 ≤ · · · ≤ σn. We show that, under some mild regularity assumptions on the distribution, there
is an adaptive estimator µ̂ such that it is invariant to permutations of the elements of the sample and satisfies that, up to logarithmic
factors, with high probability,

|µ̂− µ|.min

{
σm∗ ,

√
n∑n

i=
√
n σ
−1
i

}
,

where the index m∗ .
√
n satisfies m∗ ≈

√
σm∗

∑n
i=m∗ σ

−1
i .

Résumé. Nous étudions le problème de l’estimation de la moyenne commune µ de n variables aléatoires symétriques indépendantes
avec des écarts types différents et inconnus σ1 ≤ σ2 ≤ · · · ≤ σn. Nous montrons que, sous certaines hypothèses de régularité modérée
sur la distribution, il existe un estimateur adaptatif µ̂ tel qu’il est invariant aux permutations des éléments de l’échantillon et satisfait
qu’ à facteurs logarithmiques près, avec une probabilité élevée,

|µ̂− µ|.min

{
σm∗ ,

√
n∑n

i=
√
n σ
−1
i

}
,

où l’indice m∗ .
√
n satisfait m∗ ≈

√
σm∗

∑n
i=m∗ σ

−1
i .
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In this note we study the problem of estimating the common mean µ ∈ R of n independent real random variables
X1, . . . ,Xn. These random variables do not need to be identically distributed. Moreover, the variances of the Xi may
greatly vary and therefore the information each observation carries about the mean may be different. For the sake of this in-
troductory discussion, assume that theXi all have normal distribution so thatXi ∼N (µ,σ2

i ) for some 0< σ1 ≤ · · · ≤ σn.
If the values of the standard deviations σi were known, then one could choose the maximum likelihood estimator

µ̂=

∑n
i=1

Xi
σ2
i∑n

i=1
1
σ2
i

,

leading to an expected error E|µ̂− µ| ≤
(∑n

i=1 σ
−2
i

)−1/2
. The general study of such estimators goes back to Ibragimov

and Has’minskii [14, Chapter 3, Section 4] where the estimation of a single parameter based on independent but non-
identically distributed observations is studied. However, this idealistic estimator assumes that the standard deviation of
each sample point is known to the statistician.
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In this note we consider the situation where nothing is known about the values of the σi (or their assignments to the
data points). In particular, we focus on the estimators invariant to permutations of the elements of the sample. Naturally,
one may always compute the sample mean (1/n)

∑n
i=1Xi. However, the sample mean has an error of the order of

(1/n)
(∑n

i=1 σ
2
i

)1/2
whose performance deteriorates even if a single data point has a large variance.

For symmetric distributions like the normal distribution, another – and more robust – natural estimator of the mean is
the sample median. One of the contributions of this note is to provide new non-asymptotic performance guarantees for
the sample median. In particular, we show that under some mild assumptions the error of the sample median is bounded,
with high probability, by

(1)
c
√
n logn∑n

i=
√
cn logn σ

−1
i

for some constant c (see Proposition 1 for the rigorous statement).
As simple as the sample median is, it has the disadvantage that it does not take advantage of the presence of data points

with very small variance. Indeed, the performance of the sample median is essentially insensitive to the approximately
√
n

smallest variances. This can be demonstrated by the following argument: since we consider the symmetric distribution,
each observation has an equal probability of being larger or smaller than the true mean. By an anti-concentration argument
for Bernoulli random variables, we have that with constant probability the number of the observations larger (smaller)
than µ minus the number of the observations smaller (larger) than µ is of order

√
n. Therefore, on this event, the median

will not choose the true mean even if approximately
√
n first variances are all equal to zero.

At the same time, the presence of data with very small variances makes the problem much easier. A simple way to
exploit such situations is in using the so-called modal interval estimator introduced by Chernoff [8] for estimating the
mode of a density function. The modal interval estimator looks for the most populated interval of a certain length s > 0
and outputs its mid-point. The main challenge in applying this method in our setting is that without any knowledge of
the variances σ1, σ2, . . . it is a hard to establish a good value of s a priori. In Proposition 2 below we establish a simple
sufficient condition for the length s that guarantees that the modal interval contains the mean µ. Roughly speaking, this
condition guarantees that random fluctuations of the data far from the mean cannot produce an interval of length s that has
more points than the expected number of points in the interval of same length centered at the mean µ. We call such “good”
values of s admissible. Admissibility of an interval length depends, in a complex way, on the entire sequence σ1, . . . , σn.
Ideally, one would like to use the modal interval estimator with the smallest possible admissible interval length. The main
contribution of this note is an adaptive estimator that essentially achieves this goal. More precisely, without any previous
knowledge of the σi, we show that one can construct a completely data-driven estimator that has a performance at least
as good (up to constant factors in the error) as the best of the sample median and the modal interval estimator with the
smallest admissible interval length.

In the remainder of this introduction we discuss previous related work. In Section 1 the analysis of the sample median
is presented. We also show that an appropriately chosen median interval is a valid empirical confidence interval. This
is important in the construction of the adaptive estimator. The modal interval estimator is analyzed in Section 2. The
adaptive estimator is described in Section 3 and its performance guarantees are established in Theorem 3.1. In Section 4
we take a closer look at some concrete examples and compare our performance bounds with those of previous work.

Related work
For some classical references on the maximum likelihood estimator in our setup we refer to the work of Ibragimov and
Has’minskii [15] and Beran [2]. The sample median has been analyzed in the literature in our setup. For example, Mizera
and Wellner [19] provide necessary and sufficient conditions for the consistency of the sample median for triangular
arrays of independent, not identically distributed random variables (in a more general setting than ours). The role of the
sum of the reciprocals of the standard deviations as in (1) appears in early work. In particular, the result of Nevzorov
[20, Theorem 2] can be used to provide rates of convergence of the sample median to the normal law for non-identically
distributed Gaussian data that involves

∑n
i=1 σ

−1
i . The work of Gordon, Litvak, Schütt and Werner [12, Theorem 7] uses

this quantity in the context of the moments of order statistics for non-identically distributed random variables. Moreover,
the work of Xia [23, Corollary 6] makes direct connections between the sum of reciprocals and the performance of
the sample median, see Section 4 for a detailed comparison. The same quantity appears in the analysis of the iterative
trimming algorithm of Liang and Yuan [18, Remark following Theorem 1]. Importantly, in the context of the mean
estimation problem, some of the above-mentioned results provide performance guarantees when the value of

∑n
i=1 σ

−1
i

is large, whereas our bounds provide sharp guarantees for the entire range of values of the sum of reciprocals of the
standard deviations.
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The most related papers are [9], [21], and [18]. For example, Chierichetti, Dasgupta, Kumar and Lattanzi [9] construct
an estimator whose error is bounded, with high probability, by Õ (

√
nσlogn), where Õ(·) suppresses multiplicative poly-

logarithmic factors. The hybrid estimator of Pensia, Jog and Loh [21, Algorithm 2] uses a combination of the shortest gap
with the median estimators, quite similar to our estimator. However, in contrast to these previous results, the estimator
proposed here is adaptive to unknown parameters. Our estimator also compares favourably with the iterative trimming
algorithm of Liang and Yuan [18], which does not cover the entire range of the values of σ1, . . . , σn and depends on some
tuning parameters and the initialization. Section 4 includes extensive comparisons with these papers. In particular, we
show that, up to logarithmic factors, our bounds are never worse than the previous (non-adaptive) bounds.

Notation
In what follows, we denote a ∧ b= min{a, b} and a ∨ b= max{a, b}. Given X1, . . . ,Xn let X(1), . . . ,X(n) denote the
non-decreasing rearrangement of its elements. The value X(i) is usually referred to as the i-th order statistic. In what
follows, a . b and b & a denote the existence of a numerical constant c such that a ≤ cb. The numerical constants are
denoted by c, c1, c2, . . . > 0. Their values may change from line to line. We also use the standard O(·) notation as well as
its version Õ(·) that suppresses multiplicative poly-logarithmic factors. Finally, let [n] denote the set {1, . . . , n}.

1. Analysis of the α-median interval

When the distribution of each random variable Xi is symmetric about the mean µ, the empirical median is a natural
estimator of the mean. In this section we present an analysis of the empirical median. We assume the following regularity
conditions.

Assumption A. Let X1, . . . ,Xn be independent random variables and let 0< σ1 ≤ · · · ≤ σn. We assume that

(i) EXi = µ for all i ∈ [n] ;
(ii) Symmetry: for each i ∈ [n], Xi − µ and µ−Xi have the same distribution ;

(iii) Tail assumption: for some constant β > 0, we have that for any t > 0,

(2) P{|(Xi − µ)/σi| ≥ t} ≤ exp(−βt) .

A canonical example satisfying Assumption A is when Xi ∼N (µ,σ2
i ). In this case one may choose β =

√
2
π . Note

that we do not need to assume that the (Xi − µ)/σi are identically distributed. It suffices that they are independent,
symmetric, and satisfy the tail assumption (2). Note also that condition (iii) implies that P{|(Xi − µ)/σi|< t} is lower
bounded by βt/2 for t ≤ 2/β. In particular, if Xi has an absolute continuous distribution, this assumption implies that
the density of (Xi − µ)/σi is bounded away from zero near zero. An unfavorable example excluded by condition (iii) is
the case of independent Rademacher random variables. Indeed, in this case if n is odd, the median is equal to either 1
or −1 and does not converge to the expected value 0. However, in this case there is no β > 0 such that P{|Xi| ≥ t} =
11≥t ≤ exp(−βt) for all t > 0.

For reasons that will become apparent later, we consider not only the empirical median as a point estimator but also
the so-called median interval, defined as the interval whose endpoints are X(n/2−k) and X(n/2+k) for an appropriately
chosen value of k. This will allow us to obtain an empirical confidence interval that is essential for our adaptive procedure.

To define the median interval, assume, for simplicity, that n is even and recall thatX(1) ≤X(2) ≤ · · · ≤X(n) denote the
order statistics of X1, . . . ,Xn. In order to avoid complications arising from ties, we assume that the Xi have a nonatomic
distribution.

We fix α ∈ (0,
√
n/2) such that α

√
n is an integer. Consider the random interval

(3) Iα = [X(n/2−α
√
n),X(n/2+α

√
n)] .

We refer to Iα as the α-median interval. Our first result provides two key properties of the median interval: if α is
proportional to

√
log(1/δ), the interval Iα contains the mean µ with probability at least 1− δ. Moreover, we provide an

upper bound for the length of Iα in terms of the sum of the reciprocals of the standard deviations.

Proposition 1. Let Assumption A be satisfied. Fix δ ∈ (0,1) such that 128 log 6
δ ≤ n and set α=

√
2 log 6

δ . The median
interval Iα satisfies, with probability at least 1− δ, that µ ∈ Iα and

|Iα| ≤ 8e
√

2

(
log

3

δ
∨ log (n+ 1)

)
β−1 max

1≤j≤8α
√
n

8α
√
n+ 1− j∑n
i=j σ

−1
i

.
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Note that by ignoring constant factors, Proposition 1 implies

(4) |Iα|. β−1 log
(n
δ

) α
√
n∑n

i=8α
√
n σ
−1
i

.

The key to the proof of Proposition 1 is following rearrangement inequality due to Gordon et al. [12, Theorem 7]. Let
|X|(1), . . . , |X|(n) denote the non-decreasing rearrangement of |X1|, . . . , |Xn|.

Lemma 1.1. Let X1, . . . ,Xn be independent random variables such that for 0< σ1 ≤ · · · ≤ σn and β > 0, for all t > 0,
P (|Xi/σi| ≥ t)≤ exp(−βt). Then for all p≥ 1 and 1≤ k ≤ n,

(
E(|X|(k))

p
) 1
p ≤ 4

√
2 max{p, log(k+ 1)}β−1 max

1≤j≤k

k+ 1− j∑n
i=j σ

−1
i

.

Proof of Proposition 1. First, we show that µ ∈ Iα. Without loss of generality, we may assume that µ = 0 for the rest
of the proof. Let ε1, . . . , εn be independent Rademacher random variables. Since the distribution of each Xi is assumed
to be symmetric, (ε1|X1|, . . . , εn|Xn|) has the same distribution as (X1, . . . ,Xn). Conditioning on the X1, . . . ,Xn, we
have, by Hoeffding’s inequality,

P (µ /∈ Iα) = P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣>α
√
n

)
≤ 2 exp

(
−α

2

2

)
.

We denote the event that µ ∈ Iα by E1 and proceed with the bound on the length of the interval |Iα|. Fix k ≤ n and
consider |X|(1), . . . , |X|(k) — these are the absolute values of the k observations closest to µ= 0. Note that, depending
on the realizations of the random signs εi, the corresponding values ε1|Xi| may be on either side of µ= 0. Let E2 be the
event that there are more than k/4 of these k observations on both sides of µ. By a simple binomial estimate,

P(E2)≥ 1− 2 exp

(
−k

8

)
.

Consider the event E1 ∩E2 and choose k = 8α
√
n so that at least 2α

√
n+ 1 of these closest observations are on both

sides of µ. On this event since Iα contains µ= 0 and exactly 2α
√
n+ 1 observations, both |X(n/2−α

√
n)| ≤ |X|(8α√n)

and |X(n/2+α
√
n)| ≤ |X|(8α√n) hold. Therefore, on the event E1 ∩E2,

(5) |Iα| ≤ 2|X|(8α√n) .

Finally, we use Lemma 1.1 to control |X|(8α√n). By Markov’s inequality and Lemma 1.1, we have

P
(
|X|(8α√n) ≥ t

)
≤
E|X|p

(8α
√
n)

tp
≤ t−p

(
4
√

2 max{p, log(8α
√
n+ 1)}β−1 max

1≤j≤8α
√
n

k+ 1− j∑n
i=j σ

−1
i

)p
.

Denote γ = 4
√

2β−1 max
1≤j≤8α

√
n

k+1−j∑n
i=j σ

−1
i

. Provided that t
γ e
−1 ≥ log(8α

√
n+ 1), we may fix p= t

γ e
−1 and get

P
(
|X|(8α√n) ≥ t

)
≤ exp

(
− t

eγ

)
.

Fixing t=
(
log 3

δ ∨ log(8α
√
n+ 1)

)
eγ we have that, with probability at least 1− δ/3,

|X|(8α√n) ≤ 4e
√

2

(
log

3

δ
∨ log(8α

√
n+ 1)

)
β−1 max

1≤j≤8α
√
n

k+ 1− j∑n
i=j σ

−1
i

.

Denote this event by E3.

Choosing α =
√

2 log 6
δ we have P(E1) ≥ 1 − δ/3. Since α

√
n ≥ 2α2, we have P(E2) ≥ 1 − 2 exp (−α

√
n) ≥

1 − 2 exp
(
−4 log 6

δ

)
≥ 1 − δ/3. Therefore, we have by the union bound, that E1 ∩ E2 ∩ E3 is of probability at least
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1− δ. On this event due to (5) we have

|Iα| ≤ 8e
√

2

(
log

3

δ
∨ log

(
8α
√
n+ 1

))
β−1 max

1≤j≤8
√

2n log 6
δ

k+ 1− j∑n
i=j σ

−1
i

.

The claim follows by observing that k = 8α
√
n≤ n is equivalent to 128 log 6

δ ≤ n.

Corollary 1. Under the assumptions of Proposition 1 the median X(n/2) satisfies, with probability at least 1− δ,

|X(n/2) − µ| ≤ 8e
√

2

(
log

3

δ
∨ log (n+ 1)

)
β−1 max

1≤j≤8
√

2n log 6
δ

8
√

2n log 6
δ + 1− j∑n

i=j σ
−1
i

.

Proof. Indeed, with probability at least 1− δ, both µ and X(n/2) belong to Iα for α as in Proposition 1, and therefore,
|X(n/2) − µ| ≤ |Iα|. �

2. Modal interval estimator

The second component of our adaptive estimator is the simple and natural estimator that looks for an interval of a given
length containing the maximum number of data points. This is the so-called modal interval estimator introduced by
Chernoff [8] for estimating the mode of a density function. Pensia et al. [21] also analyze this estimator though their
bounds have some limitations for our purposes. We make a detailed comparison in Section 4 below.

In this section we work under the following assumptions.

Assumption B. Let X1, . . . ,Xn be independent random variables such that Xi has density (1/σi)φ((x−µ)/σi) where
φ is some fixed density function, µ is a location parameter and σ1 ≤ · · · ≤ σn are positive scale parameters. Assume that

(i)
∫
xφ(x)dx= 0. This implies that EXi = µ for all i ∈ [n].

(ii)
∫
x2φ(x)dx= 1. This implies that Var(Xi) = σ2

i for all i ∈ [n].
(iii) Symmetry: φ(−x) = φ(x) for all x ∈R.
(iv) Unimodality: φ(x) is non-increasing for x > 0 and non-decreasing for x < 0.

An important example satisfying Assumption B is the Gaussian case, that is, when φ(x) = (1/
√

2π)e−x
2/2. However,

in general, φ may have a heavy tail as long as the second moment exists. We also do not need to assume that φ is bounded.
Introduce the notation

Φ(t) =

∫ t

−t
φ(x)dx .

For s > 0, denote the interval As(x) = [x− s,x+ s]. Let

Ds(x) =

n∑
i=1

1Xi∈As(x)

be the number of points in the interval As(x). Denoting qi(s) = P{Xi ∈As(µ)}= Φ(s/σi), we have

EDs(µ) =

n∑
i=1

qi(s) .

Define the modal interval estimator which returns the center of the densest interval of length 2s. That is,

(6) µ̂n,s ∈ argmax
x∈R

Ds(x) .

For the modal interval estimator to work (in the sense that it contains the common mean µ), the length s has to satisfy
certain conditions. Such a sufficient condition is formulated in the following definition that intuitively captures the fact
that the densest interval should contain µ, even after accounting for random fluctuations. In Proposition 2 below we prove
the condition of admissibility specified here is indeed sufficient.
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Definition 1. Fix the confidence δ > 0 and the interval length s > 0. Define

ms = max{m ∈ [n] : σm ≤ s} .

We say that the length s is admissible if

ms ≥ κ

(√
EDs(µ) log

2n

δ
+ log

2n

δ

)
,

where κ > 0 is a numerical constant. Finally, we set

(7) s(δ) = inf {s > 0 : s is admissible} .

Remark 1. The value of the constant κ > 0 depends on a universal constant appearing in Lemma A.1 below. While it
is possible to extract a specific value, it is somewhat tedious and not crucial for our arguments, so we prefer to keep it
unspecified. All results below hold for all values of κ ≥ κ0 for some constant κ0. Changing the value only effects the
constants in the results below.

Remark 2. Observe that if the density is bounded, that is, if φ(0) is finite, we have qi(s)≤min{1,2φ(0)s/σi}. Therefore,
adjusting the constant κ, we may replace the admissibility criterion by the condition

ms ≥ κ


√√√√( n∑

i=1

min

{
1,2φ(0)

s

σi

})
log

2n

δ
+ log

2n

δ

 ,

Roughly speaking, whenever φ(0) is finite one may think that s(δ) is approximately equal to σm∗ , where m∗ is the
smallest integer satisfying

m∗ &

√√√√σm∗

(
n∑

i=m∗

1

σi

)
log

n

δ
.

Remark 3. Our arguments can be immediately generalized to the case where each observationXi has its own normalized
density function denoted by φi. In particular, our analysis only requires that

∫ 1

0
φi(x)dx is the same for all i= 1, . . . , n

and minor modifications are needed if these quantities differ from each other by a multiplicative constant factor. However,
to simplify the form of our bounds we assumed that observations come from a single family of distributions.

The main result of this section is the following bound.

Proposition 2. Let Assumption B be satisfied. Fix δ ∈ (0,1). Then, with probability at least 1− δ, simultaneously for all
admissible s > 0, it holds that

|µ̂n,s − µ| ≤ 4s .

Proof. We start by showing a simple lower bound for Φ(1) = 2
∫ 1

0
φ(x)dx. Fix any t≥ 1 and observe that by property

(iv) in Assumption B, we have tΦ(1) ≥ Φ(t). At the same time, by Chebyshev’s inequality and property (ii) we have
Φ(t)> (1− 1/t2). Therefore,

(8) Φ(1)≥ sup
t≥1

1

t

(
1− 1

t2

)
=

2

3
√

3
.

As the estimator is translation invariant, we may assume, without loss of generality, that µ= 0. We show that, on the one
hand, with probability at least 1− δ/2, simultaneously for all admissible s,

(9) max
x∈R

Ds(x)≥ms
3Φ(1)

4
+
∑
i>ms

qi(s) ,

and, on the other hand, with probability at least 1− δ/2,

(10) max
x∈R:|x|≥4s

Ds(x)<ms
3Φ(1)

4
+
∑
i>ms

qi(s) .
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These two properties together imply the proposition. First, we show (9). Note that for i ≤ ms we have σi ≤ s and
qi(s) = P{Xi ∈As(0)} ≥Φ(1), and therefore,

(11) EDs(0) =

n∑
i=1

qi(s)≥msΦ(1) +
∑
i>ms

qi(s) .

Observe that, since s is admissible, we have

msΦ(1)≥Φ(1)

(
κ

√
EDs(0) log

2n

δ
+ κ log

2n

δ

)

≥ 2

3
√

3

(
κ

√
EDs(0) log

2n

δ
+ κ log

2n

δ

)
.(12)

Denote κ′ = 2
3
√

3
κ. Using (12), we have

P

{
∃s > 0 : s is admissible,max

x∈R
Ds(x)≤ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P

{
∃s > 0 : s is admissible,Ds(0)≤ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P
{
∃s > 0 : s is admissible,Ds(0)≤ EDs(0)−ms

Φ(1)

4

}

≤ P

{
∃s > 0 : s is admissible,EDs(0)−Ds(0)≥ κ′

4

√
EDs(0) log

2n

δ
+
κ′

4
log

2n

δ

}
.

The last quantity can be controlled by the uniform Bernstein-type inequality for non-identically distributed random
variables. By Lemma A.1 in Appendix A, since the VC dimension of the family intervals in R equals 2, one may tune
the value of κ′ such that the last probability is bounded by δ

2 . For the convenience of the reader, we deffer the exact
formulation of this Lemma as well as the definition of the VC dimension to Appendix.

We are now ready to analyze (10) for which it is enough to show that

P
{
∃s≥ 0 and |x| ≥ (1 +

√
2/Φ(1))s : s is admissible and Ds(x)>ms

3Φ(1)

4
+
∑
i>ms

qi

}
≤ δ

2
.(13)

Observe that by (8) we have 1 +
√

2/Φ(1)≤ 4. Given x such that |x|> 4s > (1 +
√

2/Φ(1))s, using the properties
of the density φ together with s≥ σms and Chebyshev’s inequality, we have

EDs(x) =
∑
i≤ms

P{Xi ∈As(x)}+
∑
i>ms

P{Xi ∈As(x)}

≤
∑
i≤ms

P{|Xi| ≥
√

2/Φ(1)s}+
∑
i>ms

P{Xi ∈As(x)}

≤ms
Φ(1)

2
+
∑
i>ms

qi .

Using this inequality together with (12) and recalling that κ′ = 2
3
√

3
κ, we have

P

{
∃s≥ 0 and |x| ≥ 4s : s is admissible,Ds(x)>ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P
{
∃s≥ 0 and |x| ≥ 4s : s is admissible,Ds(x)> EDs(x) +ms

Φ(1)

4

}
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≤ P
{
∃s≥ 0 and |x| ≥ 4s : s is admissible,Ds(x)> EDs(x) +

κ′

4

√
EDs(0) log

2n

δ
+
κ′

4
log

2n

δ

}
.

Using EDs(x)≤ EDs(0), the last line is bounded by

P

{
∃s≥ 0 and |x| ≥ 4s : s is admissible,Ds(x)> EDs(x) +

κ′

4

√
EDs(x) log

2n

δ
+
κ′

4
log

2n

δ

}
.

Finally, the last expression and Lemma A.1, which holds simultaneously for all x and s, implies (13) by adjusting the
constant κ (and thus κ′). The proof is complete. �

3. An adaptive estimator: combining the median and the modal Interval

Proposition 2 shows that, as long as s is an admissible value, the modal interval estimator has an error bounded by 4s.
Hence, to optimize the bound, one should choose s to be the smallest possible admissible value, that is, s(δ) introduced
in Definition 1. However, the value of s(δ) depends on the values σ1, . . . , σn and therefore one doesn’t have access to
s(δ) unless the standard deviations are known (up to a permutation), a typically unrealistic requirement. In this section
we introduce an adaptive estimator that is able to find an approximate value of s(δ) based only on the available data
X1, . . . ,Xn. Furthermore, the adaptive estimator combines the α-median interval estimator with the modal interval esti-
mator and achieves an error that is at least as good as the best of the median and the optimal modal interval estimator, up
to a constant factor.

The key to making the estimator adaptive is an empirical criterion, based on which one can reject values of s that
are not admissible. Once one has such a criterion, standard techniques of adaptive estimation may be applied (such as
Lepski’s method [17]).

Fix δ > 0 and s > 0. Let η, ξ > 0 be numerical constants specified in the proof. Based on X1, . . . ,Xn let µ̂n,s be
any maximizer of Ds(x) defined by (6).

• We ACCEPT the interval As(µ̂n,s) if Ds(µ̂n,s)≥ ξ log 2n
δ and

max
x∈R,|x−µ̂n,s|≥8s

Ds(x)≤Ds(µ̂n,s)− η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)
.

• Otherwise, we REJECT this interval.

Remark 4. Since we only consider Ds(µ̂n,s)≥ ξ log 2n
δ we may instead consider a criterion of the form

max
x∈R,|x−µ̂n,s|≥8s

Ds(x)≤Ds(µ̂n,s)− η′
√
Ds(µ̂n,s) log

2n

δ
,

for some η′ > 0. However, the choice above makes the proof more transparent.

This criterion satisfies the following relation.

Proposition 3. With probability at least 1− δ, simultaneously for all s > 0, no interval with |µ̂n,s − µ|> 8s is accepted
and every admissible interval is accepted.

Proof. Recall that, without the loss of generality, we set µ = 0. From now on we work on the event E1 where the
inequalities of Lemma A.1 hold. We begin by proving that any admissible s > 0 is accepted with high probability. We
have shown in the proof of Proposition 2 that on the event E1, for all admissible values of s,

|µ̂n,s| ≤ 4s .
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Therefore, on this event any x ∈ R such that |x − µ̂n,s| ≥ 8s satisfies |x| ≥ 4s. Also, by the argument in the proof of
Proposition 2 and Lemma A.1 we have for all |x| ≥ 4s,

Ds(x)≤ms
Φ(1)

2
+
∑
i>ms

qi + c1

(√
EDs(x) log

2n

δ
+ log

2n

δ

)

≤ms
Φ(1)

2
+
∑
i>ms

qi + c1

(√
EDs(0) log

2n

δ
+ log

2n

δ

)
,(14)

where c1 > 0 is a numerical constant.
Observe that the function y 7→ y − η

√
y log 2n

δ is increasing whenever y > η2 log 2n
δ /4. Thus, Ds(0) ≥ η2 log 2n

δ /4

implies

(15) Ds(µ̂n,s)− η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)
≥Ds(0)− η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)
.

Observe also that the line (27) in the proof of Lemma A.1 implies that on the event E1 it holds simultaneously for all x
that

(16) Ds(x)≤ 2EDs(x) + c2 log
2n

δ
,

where c2 > 0 is a numerical constant. By (9), on the same event, Ds(0)≥ms
3Φ(1)

4 +
∑
i>ms

qi(s) , and therefore, using
the admissibility of s, the inequality (15) implies

Ds(µ̂n,s)− η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)

≥ms
Φ(1)

2
+ms

Φ(1)

4
+
∑
i>ms

qi(s)− η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)

≥ms
Φ(1)

2
+
κ′

4

√
EDs(0) log

2n

δ
+
κ′

4
log

2n

δ
+
∑
i>ms

qi(s)− η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)

≥ms
Φ(1)

2
+
κ′

4

√
EDs(0) log

2n

δ
+
κ′

4
log

2n

δ
+
∑
i>ms

qi(s)− η

(√
2EDs(0) log

2n

δ
+ (1 + c2) log

2n

δ

)
,

where κ′ is defined in the proof of Proposition 2 and in the last line we used (16) together with
√
a+ b≤

√
a+
√
b for

a, b≥ 0. Comparing this with (14) and choosing a sufficiently large value of κ in Definition 1, we prove that admissible
intervals are accepted with high probability. It is only left to check that Ds(µ̂n,s) ≥ ξ log 2n

δ /4 and that, given that
the constant ξ is properly adjusted, our additional acceptance assumption Ds(µ̂n,s) ≥ ξ log 2n

δ /4 implies, with high
probability, that Ds(0)≥ η2 log 2n

δ /4 which was used in (15). This computation follows immediately from Lemma A.1
and the fact that EDs(x) is maximized at x= 0.

It remains to prove that our empirical criterion can never accept the interval with its center µ̂n,s satisfying |µ̂n,s|> 8s.
To do so we observe that if |µ̂n,s|> 8s then the interval A8s(µ̂n,s) does not contain µ= 0 and in the acceptance criterion
we should compare with Ds(0). Assuming that η > 2κ2, where κ2 is defined in Lemma A.1 and using that EDs(x) is
maximized at 0, we have on the event where the inequalities of Lemma A.1 hold

Ds(µ̂n,s)− η
√
Ds(µ̂n,s) log

2n

δ
− η log

2n

δ

< E [Ds(µ̂n,s)|X1, . . . ,Xn]− κ2

√
Ds(µ̂n,s) log

2n

δ
− κ2 log

2n

δ

≤ E [Ds(µ̂n,s)|X1, . . . ,Xn]− κ2

√
Ds(0) log

2n

δ
− κ2 log

2n

δ
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≤ EDs(0)− κ2

√
Ds(0) log

2n

δ
− κ2 log

2n

δ

≤Ds(0) .

Therefore,Ds(µ̂n,s)−η
√
Ds(µ̂n,s) log 2n

δ −η log 2n
δ < max

x∈R,|x−µ̂n,s|≥8s
Ds(x) , which implies that the intervalAs(µ̂n,s)

is rejected. �

The adaptive estimator
We are now ready to define an adaptive estimator that achieves a performance that is at least as good – up to a constant
factor – as the best of our bounds for the median (Proposition 1) and the modal interval with optimally chosen length
(Proposition 2).

We observe a sample of independent random variables X1, . . . ,Xn. Fix the desired confidence level δ ∈ (0,1).
We output the estimator µ̂ defined as follows:

• Fix α=
√

2 log 6
δ and compute the α-median interval Iα.

• Let µ̂ be the midpoint of the interval

(17)

 ⋂
0≤s≤|Iα|

As(µ̂n,s) is ACCEPTed

A8s(µ̂n,s)

∩ Iα,
where µ̂n,s is defined by (6) and let µ̂ be the midpoint of the interval Iα if the set (17) is empty.

• Return µ̂.

Remark 5. In practice there is no need to search through all s > 0 in (17). One may discretize and consider only
si = 2−i|Iα| for integers i≥ 0. Also, due to Lemma A.1 we may essentially replace EDs(x) by Ds(x) in the steps of the
proof where admissibility is used. That is, one may instead consider the random admissibility condition of the form

ms &

√
Ds(µ) log

2n

δ
+ log

2n

δ
.

Due to the discrete nature of the sample, only a finite number of values Ds(µ) is possible and in the set (17) one may
consider only at most

(
n
2

)
values of s that correspond to the distances between pairs of points. For the sake of brevity we

omit the straightforward details of the analysis of the discretized estimator and focus on the estimator defined above.

Theorem 3.1. Let Assumptions A and B be satisfied. Fix δ ∈ (0,1/2) such that 128 log 6
δ ≤ n. There is a numerical

constant c1 > 0 such that, with probability at least 1− 2δ, the estimator µ̂ defined above satisfies

|µ̂− µ| ≤ c1 min

{
s(δ), β−1 log

(n
δ

)
max

1≤j≤8α
√
n

8α
√
n+ 1− j∑n
i=j σ

−1
i

}
,

where s(δ) is given by Definition 1.

Proof. Recalling that |Iα| is a random variable, consider the event E1,

s(δ)≤ |Iα| .

On the complementary event E1 we have that the solution based on the α-median interval is better than what one can get
with the modal interval estimator. In particular, since µ̂ always returns a point in Iα, the proof is complete by Proposition
1.
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Otherwise, we focus on the eventE1. LetE2 be the event that every accepted intervalAs(µ̂n,s) satisfies µ ∈A8s(µ̂n,s).
By Proposition 3, it holds that P{E2} ≥ 1− δ. Therefore, on E2, we have either

(18) µ ∈
⋂

0≤s≤|Iα|
As(µ̂n,s) is ACCEPTed

A8s(µ̂n,s) ,

or there are no accepted intervals in this range. The latter cannot be true on the event E1 ∩ E2 since s(δ) ≤ |Iα| and
As(δ)(µ̂n,s(δ)) is accepted. Therefore, the intersection of intervals in (18) is non-empty and its length is bounded by
16s(δ). Thus, on the event E1 ∩E2 we have |µ̂− µ| ≤ 16s(δ). The claim follows by the union bound. �

4. Examples and a comparison with existing results

To demonstrate the meaning of the derived performance bounds, in this section we discuss several natural examples and
compare our results with existing general bounds. As already mentioned, our adaptive estimator is closely related to the
estimator of Chierichetti et al. [9] and to the hybrid estimator of Pensia et al. [21]. Let us emphasize some technical
differences with the latter work which generalizes the results in [9]:

• The hybrid estimator of Pensia et al. [21, Algorithm 2] depends on the choice of the parameter k2. This parameter
counts the number of points in the k-shortest gap estimator. We believe that one can make an adaptive choice of k2,
though it is not immediately clear to what extent it affects the overall performance of their estimator.

• Even though the results in [21] work under milder assumptions, their bounds depend on the distribution through
the quantity rk which should be “manually” computed in each particular case. In contrast, our results require that
Assumptions A and B hold, but because of this the resulting bound depends explicitly on the standard deviations
σ1, . . . , σn. Moreover, Proposition 5 shows that our Theorem 3.1 is never worse than the best known bound written
in terms of σ1, . . . , σn [9, Theorem 4.1]

• Our analysis of the modal interval estimator is sharper. In particular, while by Pensia et al. [21, Theorem 3.1]
the modal interval estimator can never choose a center that has on average less than 1

2EDs(µ) observations, our
analysis uses the sharper property that the modal interval estimator never chooses a center that has, on the average,
less than EDs(µ)− c

√
EDs(µ) observations, for some c > 0 up to logarithmic factors.

Our results can also be compared with the estimator of Liang and Yuan [18, Algorithm 1]. Their iterative truncation
algorithm uses the initial approximation µ(0) and the parameter B satisfying |µ− µ(0)| ≤B. They also assume that the
index m such that σm ≤ 1 is known and their bound depends on m. In Section 4.1 we show that their bounds are implied
by our median estimator alone.

4.1. Examples

Most of our examples appear in [21] and [18]. We show that our bounds written in terms of σ1, . . . , σn are not worse
than any of the previous bounds depending on some more involved distribution dependent quantities, often achieved by
non-adaptive estimators. In all examples we only consider the Gaussian case, that is, we assume Xi ∼N (µ,σ2

i ). Also,
for the sake of presentation we fix the allowed probability of error to be δ = 1

n .

Example 1. (Equal variances.) In the simplest case we have σi = σ for i ∈ [n]. In this example the median interval alone

recovers the optimal error rate Õ
(
σ√
n

)
. Therefore, our adaptive algorithm mimics the optimal behavior of the sample

mean in the i.i.d. scenario.

Example 2. (Two variances.) Consider the case where σi = σ for i ∈ [m] and σi = σ′ > σ for i ∈ [n] \ [m].
There are different cases and we consider the most interesting regimes. First, if m &

√
n logn the median gives the

rate Õ
( √

n
mσ−1+(n−m)(σ′)−1

)
and the interval algorithm can always guarantee the error O(σ) since the interval of length

σ is admissible. Next we consider m .
√
n logn. The median gives the rate Õ

(
σ′√
n

)
in this regime and the interval of

length O(σ) is admissible if m&
√

σ
σ′n logn+ logn. In particular, an application of Theorem 3.1 and shows that, with

probability at least 1− 1
n ,

|µ̂− µ|=

Õ
( √

n
mσ−1+(n−m)(σ′)−1

)
, if m&

√
n logn;

Õ
(
σ ∧ σ′√

n

)
, if

√
σ
σ′n logn+ logn.m.

√
n logn.
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Example 3. (α-mixture distributions.) This is a particular case of the example of two variances above, withm= cblognc,
for some c > 0; σ = 1 and σ′ = nα for some α> 0. This example was thoroughly studied in [21]. When α< 1 the analysis
of the sample median in the example above gives, with probability at least 1− 1

n ,

|µ̂− µ|= Õ(nα−1/2) ,

otherwise, for α≥ 1 provided that c is a large enough numerical constant we have

|µ̂− µ|=O(1) .

Therefore, our algorithm recovers the best known rates in [21, Table 1], in an adaptive manner.

Example 4. (Quadratic variances.) In this setup we assume that for some constant c > 0, σ2
i = c2i2. In this case, an

interval of length s= cj is admissible if

j &

√√√√ n∑
i=j

j

i
logn+ logn .

Using
∑n
i=j

j
i . j log n

j , we see that an interval of length proportional to logn is admissible. A simple computation shows

that the median interval can produce an error Õ(
√
n). Finally, an application of Theorem 3.1 gives, with probability at

least 1− 1
n ,

|µ̂− µ|=O(logn) .

This improves upon the bound of Pensia et al. [21, Table 1] where for the same model an arbitrarily small polynomial
error is established. We remark that this result coincides with the performance of the maximum likelihood estimator(∑n

i=1 σ
−2
i

)−1/2
up to a logarithmic factor.

Example 5. (The subset-of-signals model.) In this setup the only assumption is that, for some m<n, at least m out of n
variances are less or equal to one. In other words, σm ≤ 1. The subset-of-signals model was studied by Liang and Yuan
[18]. The authors prove that if m&

√
n logn, then there is an estimator µ̃ based on iterative truncations (first studied in

[24]) such that, with probability at least 1− 1/n,

|µ̃− µ|.
√
n logn

m
.

Assuming that m&
√
n logn, we have by Proposition 1 and Theorem 3.1, that, with probability at least 1− 1

n ,

|Iα|.
√
n(logn)3/2

m
and thus, |µ̂− µ|= Õ

(√
n

m

)
.

This shows that the sample median (and hence our general adaptive estimator) performs as well as the algorithm of
Liang and Yuan [18], up to a logarithmic factor. The advantage of the median is that its complexity is linear in the
number of observations [3] whereas the iterative truncation algorithm is more complex. As we mentioned, the iterative
truncation algorithm of Liang and Yuan [18] depends on some parameters of the problem as well as on an initialization.
We additionally remark that according to [18] the hybrid estimator of Pensia et al. [21] also recovers the rate Õ

(√
n
m

)
in the subset-of-signals model.

4.2. A comparison with some general bounds

Finally, we compare our results with several recent general bounds. These bounds can also be explicitly written in terms
of σ1, . . . , σn. Our main conclusion is that, apart from the logarithmic factors and at least in the case of Gaussian data,
our adaptive estimator performs at least as well as the best known guarantees in the literature. We emphasize again that
our estimator does not depend on any parameters of the problem whereas the best known algorithms require some kind
of parameter tuning.
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The result of Xia on the median of Gaussians

Xia [23] analyzed the sample median of independent, not necessarily identically distributed random variables with the
same median. For the sake of an easier comparison, we only consider here the case of normal random variables. The
following result appears in [23, Corollary 6].

Proposition 4. Consider independent X1, . . . ,Xi such that Xi ∼N (µ,σ2
i ). Assume that δ ∈ (0,1) satisfies

(19)

√
n log 1

δ∑n
i=1 σ

−1
i

≤ 7
√

2σ1

10
.

Then, with probability at least 1− δ,

|X(n/2) − µ| ≤
10
7

√
2n log 1

δ∑n
i=1 σ

−1
i

.

At first glance the result of Proposition 4 looks stronger than what is given by Corollary 1 in the special case of
Gaussians. Indeed, it does not have the logn factor and has a better dependence on log 1

δ . The main difference comes
from the assumption (19) which is more restrictive than the only assumption 128 log 6

δ ≤ n of Corollary 1. Indeed, in the

most favourable case when σi = σ for i ∈ [n], the condition (19) implies log 1
δ ≤

(
7
√

2
10

)2

n which coincides with our
assumption up to absolute constants. However, for small σ1 the assumption (19) requires δ→ 1 whereas our bound is not

sensitive to the approximately
√
n log 1

δ smallest variances. The following result shows that the condition (19) simplifies
the bound of Proposition 1 making it almost the same as the result of Proposition 4, up to logarithmic factors.

Corollary 2. Fix δ ∈ (0,1) such that 128 log 6
δ ≤ n and set α=

√
2 log 6

δ . Assume that there is 0< c < 1 such that

8
√

2n log 6
δ∑n

i=1 σ
−1
i

≤ cσ1 .

Under the assumptions of Proposition 1 we have, with probability at least 1− δ,

|Iα| ≤ 64e
√

2

(
log

3

δ
∨ log (n+ 1)

)
β−1

√
2n log 6

δ

(1− c)
∑n
i=1 σ

−1
i

.

Proof. The proof is based on elementary comparisons. Fix j ≤ 8α
√
n. Then

n∑
i=j

σ−1
i ≥

n∑
i=8α

√
n+1

σ−1
i =

n∑
i=1

σ−1
i −

8α
√
n∑

i=1

σ−1
i

≥ 8α
√
n σ−1

1 c−1 −
8α
√
n∑

i=1

σ−1
i ≥ (c−1 − 1)

8α
√
n∑

i=1

σ−1
i .

This implies

c−1
n∑
i=j

σ−1
i ≥ (c−1 − 1)

n∑
i=j

σ−1
i + (c−1 − 1)

8α
√
n∑

i=1

σ−1
i ≥ (c−1 − 1)

n∑
i=1

σ−1
i .

Combining these inequalities, we obtain

max
1≤j≤8α

√
n

8α
√
n− j + 1∑n
i=j σ

−1
i

≤ 1

1− c
max

1≤j≤8α
√
n

8α
√
n− j + 1∑n
i=1 σ

−1
i

=
1

1− c
8α
√
n∑n

i=1 σ
−1
i

.

The result follows. �
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The bound in [9].

Chierichetti et al. [9, Theorem 4.1] introduce an estimator µ̃ such that for Xi ∼N (µ,σi), with probability at least 1− 1
n ,

(20) |µ̃− µ|= Õ(σlogn

√
n) .

The hybrid estimator of Pensia et al. [21] satisfies a similar performance bound if the parameters are chosen in a specific
way. The next result shows that the adaptive estimator introduced in this note achieves this bound without any additional
parameter tuning. Moreover, the result follows from our general bounds written in terms of σ1, . . . , σn.

Proposition 5. Let Assumptions A and B hold and assume that logn is integer. There is a constant c= c(β,φ(0))> 1
such that the adaptive estimator of Theorem 3.1 satisfies for large enough n that, with probability at least 1− 1

n ,

|µ̂− µ| ≤ c
(
σc logn

√
n log3/2 n

)
.

The proof is based on some elementary but tedious computations, see Appendix B.

5. Concluding remarks

In this note we construct an adaptive estimator for the common mean of independent, not necessarily identically dis-
tributed random variables and provide performance guarantees that hold under certain assumptions for the underlying
distribution. Among the key assumptions are that the distributions are symmetric around the mean and the underlying
densities are unimodal. However, even in the simplest case of normal random variables, the problem is not fully under-
stood. In particular, as far as we know, no general nontrivial lower bounds are available. It is not difficult to prove that no
estimator can have an expected error smaller than that of the maximum likelihood estimator that “knows” the variance of
each sample point, that is,

(∑n
i=1 σ

−2
i

)−1/2
. In the absence of knowledge of the σi, the problem becomes significantly

harder. It remains an interesting challenge to prove general lower bounds that are much larger than the trivial bound(∑n
i=1 σ

−2
i

)−1/2
. In fact, we think that, up to logarithmic factors, the upper bound of Theorem 3.1 is essentially tight

for most interesting values of the parameters. However, the full picture is surely more complex. For example, in some
particular ranges of the parameters it is easy to improve on Theorem 3.1. To illustrate such an example, consider the case
of two variances discussed in Section 4, that is, when σi = σ for i ∈ [m] and σi = σ′ > σ for i ∈ [n] \ [m]. Suppose
that σ

√
logm� σ′/n. In this case, with high probability, the modal interval of length s = 3σ

√
logm contains all of

X1, . . . ,Xm but none of Xm+1, . . . ,Xn. In this case, instead of outputting the center of the modal interval, by averaging
the points falling in it, one obtains an error of the order O(σ/

√
m), as opposed to O(σ) guaranteed by Theorem 3.1 in

this case.
Even our analysis of the sample median leaves room for improvement. In particular, we think that part (iii) of As-

sumption A may be weakened. While it is obviously necessary to assume that the density of the Xi are bounded away
from zero near the mean (consider the case of independent Rademacher random signs in the i.i.d. case), the exponential
tail condition implied by this assumption seems unnecessary. Indeed, Xia [23, Corollary 12] deals with the heavy-tailed
Cauchy distribution.

Another interesting challenge is to gain an understanding of more general cases when X1, . . . ,Xn are independent,
they have the same mean, but their distribution may not be symmetric or unimodal.

Finally, we mention that the model studied in this note is closely related to the model of heteroscedastic linear regres-
sion with fixed design. In this model it is assumed that one observes, for i ∈ [n],

Yi = 〈xi, β〉+ ξi ,

where β ∈Rd is the target parameter, xi ∈Rd are deterministic design vectors, and ξi ∼N (0, σi) are independent noise
variables. In order to provide some reasonable guarantees for this model, one usually makes some additional assumptions.
In a classical model (see, for instance, [10]) it is assumed that the values of σi are arbitrary, but there are enough repetitions
of each observation available so that one can estimate the values of σi. Once the values of σi and their assignments to the
observations are (almost) known, one may use the weighted mean described in the introduction which achieves (almost)
optimal performance. Another line or research which can be attributed, among other papers, to the early work of Carroll
and Ruppert [6], is where some additional assumptions on σi are made. For example, they are increasing according to
some law. Our model can be seen as a particular case of heteroscedastic linear regression in dimension one, where we
additionally assume that the design xi is the same for all i. However, these simplifications are compensated by the fact that
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we make neither the assumption on the repeated observations nor the assumption that the σi follow a particular functional
form. Finally, our estimators are invariant to the permutation of the elements of the sample and thus cannot exploit the
monotonicity of the standard deviations.

Appendix A: Ratio-type VC bounds for non-identically distributed entries

In this section we provide high probability ratio-type VC bounds. These results are originally due to Vapnik and Cher-
vonenkis [22, Theorem 12.2]) and hold for identically distributed random variables. A bound of a similar type for non-
identically distributed random variables was proved in [21, Lemma 2.2] though their result is not sufficient for our pur-
poses1. We also note that similar bounds for non-identically distributed independent random variables were shown in [7].
Consider a set F of {0,1}-valued functions defined on a domain X such with VC-dimension equal to d. Recall that the VC
dimension that is the largest integer d such that there are x1, . . . , xd ∈ X satisfying

∣∣{(f(x1), . . . , f(xd)) : f ∈ F}
∣∣= 2d.

The proof of the next technical lemma is a quite straightforward generalization of similar bounds for the i.i.d. case. The
analysis is based on localization techniques for empirical processes. We refer, for instance, to [1, Corollary 3.7] and to
[5] for some similar results in the context of VC classes.

Lemma A.1. Let X1, . . . ,Xn be independent but not necessary identically distributed random variables taking their
values in X . Assume that the class F of {0,1}-valued functions has the VC dimension d. Then there are numerical
constants κ1, κ2 > 0 such that for any δ ∈ (0,1), with probability at least 1− δ, for all f ∈ F ,

(21)

∣∣∣∣∣
n∑
i=1

(f(Xi)−Ef(Xi))

∣∣∣∣∣≤ κ1


√√√√( n∑

i=1

Ef(Xi)

)(
d log

n

d
+ log

1

δ

)
+ d log

n

d
+ log

1

δ


and

(22)

∣∣∣∣∣
n∑
i=1

(f(Xi)−Ef(Xi))

∣∣∣∣∣≤ κ2


√√√√( n∑

i=1

f(Xi)

)(
d log

n

d
+ log

1

δ

)
+ d log

n

d
+ log

1

δ

 .

Proof. Without loss of generality we may assume that 0 ∈ F since by adding f ≡ 0 to the class the VC dimension
increases by at most one which can be absorbed by choosing slightly larger values of κ1, κ2 > 0. Consider the star-shaped
hull of F around zero, that is, the class H of [0,1]-valued functions defined as

H= {αf : f ∈ F , α ∈ [0,1]} .

For h ∈H, we denote Ph2 = 1
n

∑n
i=1 Eh(Xi)

2. Fix any δ ∈ (0,1) and consider the fixed point

γ(λ, δ) = inf

{
s > 0 : P

(
sup

h∈H,Ph2≤s2

∣∣∣∣∣
n∑
i=1

(h(Xi)−Eh(Xi))

∣∣∣∣∣≤ λns2

)
≥ 1− δ

}
,

where λ > 0 is a numerical constant specified below. By the definition of γ(λ, δ) we have, with probability at least 1− δ,

(23) sup
h∈H,Ph2≤γ(λ,δ)2

∣∣∣∣∣
n∑
i=1

(h(Xi)−Eh(Xi))

∣∣∣∣∣≤ λnγ(λ, δ)2 .

Fix any h ∈H such that Ph2 ≥ γ(λ, δ)2. Since H is star-shaped, we have that h′ = hγ(λ, δ)/
√
Ph2 ∈H and P (h′)2 =

γ(λ, δ)2, which, applying (23) for h′, implies on the same event (and the same holds simultaneously for any such h)∣∣∣∣∣
n∑
i=1

(h(Xi)−Eh(Xi))

∣∣∣∣∣≤ λnγ(λ, δ)
√
Ph2 .

The last inequality, combined with (23), implies simulteniously for all h ∈H,

(24)

∣∣∣∣∣
n∑
i=1

(h(Xi)−Eh(Xi))

∣∣∣∣∣≤ λnγ(λ, δ)
√
Ph2 + λnγ(λ, δ)2 .

1In particular, our result covers some values of their parameter t that are not allowed in [21, Lemma 2.2].



16

Finally, we need to prove an upper bound for γ(λ, δ). Denoting H′ =H∪ (−H), we have

sup
h∈H,Ph2≤s2

∣∣∣∣∣
n∑
i=1

(h(Xi)−Eh(Xi))

∣∣∣∣∣= sup
h∈H′,Ph2≤s2

(
n∑
i=1

(h(Xi)−Eh(Xi))

)
.

By [11, Theorem 3.3.16] (see inequality (3.128) there which is relaxed in what follows by using
√

2(2EZ + Vn)x ≤√
2Vnx+x+EZ), since almost surely |h(Xi)−Eh(Xi)| ≤ 1 and by fixing x= log 1

δ , we have, with probability at least
1− δ,

sup
h∈H′,Ph2≤s2

(
n∑
i=1

(h(Xi)−Eh(Xi))

)

≤ 2E sup
h∈H′,Ph2≤s2

(
n∑
i=1

(h(Xi)−Eh(Xi))

)
+ s

√
n log

1

δ
+ (5/2) log

1

δ
.(25)

Finally, using the symmetrization inequality [16] we have

E sup
h∈H′,Ph2≤s2

(
n∑
i=1

(h(Xi)−Eh(Xi))

)
≤ 2E sup

h∈H′,Ph2≤s2

(
n∑
i=1

εih(Xi)

)
,

where ε1, . . . , εn are i.i.d. Rademacher random variables with P{εi = 1} = P{εi = −1} = 1/2. Conditioning on
X1, . . . ,Xn, we may use Dudley’s entropy integral bound (see, for instance, [4]). First, we estimate the covering numbers
of the set H with respect to the (random) distance ρ(f, g) =

√∑n
i=1(f(Xi)− g(Xi))2/n. Denote

diam(n, s) = sup
f,h∈H,Pf2≤s2,Ph2≤s2

ρ(f,h) .

By the bound of Haussler [13], the covering number of F at scale r is upper bounded by e(d + 1)
(

2e
r2

)d
and by a

standard argument we have that the covering number of H is upper bounded by e(d+ 1)
(

8e
r2

)d (
1 + d 2

r e
)

(see [1, Proof
of Corollary 3.7]). Therefore, by the Dudley’s bound we have, for some constants c1, c2 > 0,

E sup
h∈H′,Ph2≤s2

(
n∑
i=1

εih(Xi)

)
= E sup

h∈H,Ph2≤s2

∣∣∣∣∣
n∑
i=1

εih(Xi)

∣∣∣∣∣
≤ c1
√
nE

diam(n,s)∫
0

√
d log

e

r
dr

≤ c2
√
nEdiam(n, s)

√
d log

e

diam(n, s)

(
1diam(n,s)≥

√
d/n

+ 1diam(n,s)<
√
d/n

)
≤ c2

(√
nEdiam(n, s)

√
d log

n

d
+ d

√
log

n

d

)
.

By Jensen’s inequality combined with the standard symmetrization and contraction inequalities [16] we have, for some
c3 > 0,

√
nEdiam(n, s)≤

√√√√2E sup
h∈H′,Ph2≤s2

n∑
i=1

h2(Xi)

≤

√√√√2E sup
h∈H′,Ph2≤s2

n∑
i=1

(h2(Xi)−Eh2(Xi)) + 2ns2

≤ c3


√√√√E sup

h∈H′,Ph2≤s2

(
n∑
i=1

εih(Xi)

)
+
√
ns

 .
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Combining the last two arguments, we have, for some c4 > 0,

(26) E sup
h∈H′,Ph2≤s2

(
n∑
i=1

εih(Xi)

)
≤ c4

(
s

√
dn log

n

d
+ d

√
log

n

d

)
.

Finally, combining (25), (26) and adjusting the constant λ we have, for some c5 > 0, that

γ(λ, δ)≤ c5

√
d log n

d + log 1
δ

n
,

which implies our first bound (21) by (24).
To prove (22) we use that for a, b, x > 0,

√
ab≤ a

2x + bx
2 . This implies

(27) κ1

√√√√( n∑
i=1

Ef(Xi)

)(
d log

n

d
+ log

1

δ

)
≤ 1

2

n∑
i=1

Ef(Xi) +
κ2

1

2

(
d log

n

d
+ log

1

δ

)
,

which, by (21), implies that on the same event where (21) holds,

1

2

n∑
i=1

Ef(Xi)≤
n∑
i=1

f(Xi) +
(
κ2

1/2 + κ1

)(
d log

n

d
+ log

1

δ

)
.

Plugging this into (21) and adjusting the constant κ2 proves (22). �

Appendix B: Proof of Proposition 5

To simply the presentation we assume that the values logn,n1/3, n1/6, . . . corresponding to the indexes are always inte-
gers. It follows from Theorem 3.1 that there exists a constant C > 0 (which only depends on β and φ(0)) such that, with
the same probability of error, the adaptive estimator has an error at most

Cmin

( √
n log3/2 n∑

i>C
√
n logn

1
σi

, σm

)
,

where m is any integer that satisfies

(28) m≥Cmax

√σm∑
i≥m

1

σi
logn, logn

 .

Therefore, it is sufficient to prove that for all sequences σi,

min

( √
n log3/2 n∑

i>C
√
n logn

1
σi

, σm

)
.
√
n(log3/2 n)σC logn .

If
√
n log3/2 n∑

i>C
√
n logn

1
σi

≤
√
n(log3/2 n)σC logn ,

then we are done, so we may assume
√
n log3/2 n∑

i>C
√
n logn

1
σi

>
√
n(log3/2 n)σC logn ,

or, equivalently,

(29)
∑

i>C
√
n logn

1

σi
<

1

σC logn
.
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It suffices to show that, when (29) holds, then there exists a value ofm satisfying (28) for which σm ≤
√
n(log3/2 n)σC logn.

For any m≤C
√
n logn, we may write∑

i>m

1

σi
=

∑
i>C
√
n logn

1

σi
+

∑
i∈[m,C

√
n logn]

1

σi
.

Using (29), we see that m satisfies (28) whenever

(30)
m2

C2σm
≥max

 log2 n

σm
,

logn

σC logn
+ logn

∑
i∈[m,C

√
n logn]

1

σi

 .

First, note that if the first term dominates on the right-hand side of the above inequality, then m = C logn satisfies the
inequality above, and therefore the new bound is at most CσC logn and our claim follows.

Hence, we may assume that the second term dominates and therefore we look for the values of m such that

(31)
m2

C2σm
≥ logn

σC logn
+ logn

∑
i∈[m,C

√
n logn)

1

σi
.

We distinguish two cases depending on which term dominates on the right-hand side: in case (i),

1

σC logn
>

∑
i∈[m,C

√
n logn)

1

σi
,

while in case (ii) the opposite holds. In case (i), the right-hand side of (31) is at most 2 logn/σC logn. Hence, we may take
m=C logn to satisfy the inequality (28) for n large enough, leading to the bound CσC logn which proves our claim.

In case (ii), the right-hand side of (31) is bounded by

(32) 2 logn
∑

i∈[m,C
√
n logn)

1

σi
≤ 2C

√
n(log3/2 n)

1

σm
.

This implies by (31) that the inequality (28) is satisfied when

m≥
√

2C3/2n1/4(log3/4 n) .

Since for n large enough

n1/3 ≥
√

2C3/2n1/4(log3/4 n) ,

this yields the upper bound σm1 with m1 = n1/3.
If σm1 ≤

√
n(log3/2 n)σC logn, then the proof is finished. Otherwise,

(33)
∑

i∈[m,C
√
n logn)

1

σi
≤

∑
i∈[m,m1)

1

σi
+C

√
n logn

1

σm1

≤
∑

i∈[m,m1)

1

σi
+

C

(logn)σC logn
.

Plugging this back to (31), we see that in case (ii), the upper bound becomes σm for any m that satisfies

(34)
m2

C2σm
≥ C + logn

σC logn
+ logn

∑
i∈[m,m1)

1

σi
.

This has the same form as (31) but with a reduced range in the summation on the right-hand side.
We proceed the same way as above. Once again, we consider two cases. In case (iii),

C + logn

σC logn
> logn

∑
i∈[m,m1)

1

σi
,
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while in case (iv),

C + logn

σC logn
≤ logn

∑
i∈[m,m1)

1

σi
,

In case (iii), the right-hand side of (34) is at most 2(C + logn)/σC logn, so, just like before, we may take m=C logn to
satisfy the inequality (31), leading to the bound CσC logn whenever logn&C .

In case (iv), the right-hand side of (34) is bounded by

(35) 2 logn
∑

i∈[m,m1)

1

σi
≤ 2 logn

m1

σm
=

2n1/3 logn

σm
.

Thus, in this case (30) is satisfied for any m ≥ 2Cn1/6 log3/2 n, and in particular, for m2 = n2/9. If σm2
≤√

n(log3/2 n)σC logn, then the proof is finished. Otherwise,∑
i∈[m,m1)

1

σi
≤

∑
i∈[m,m2)

1

σi
+
m1

σm2

≤
∑

i∈[m,m2)

1

σi
+

1

n1/6(log3/2 n)σC logn

.

Resubstituting into (31), we see that in case (iv), the upper bound becomes σm for any m that satisfies

m2

C2σm
≥ C + logn

σC logn
+

1

n1/6(log1/2 n)σC logn

+ logn
∑

i∈[m,m2)

1

σi
.

We may now continue the same fashion, at each step reducing the range of the sum on the right-hand side unless at the
j-th iteration σmj ≤

√
n(log3/2 n)σC logn and we are done. In general, at the j-th iteration, the summation is between m

and mj = n(2/3)j/2. If we reach the j-th iteration such that mj =C log1/2 n, we have

logn
∑

i∈[m,mj)

1

σi
≤ C log3/2 n

σm
,

so that one may choose m=C logn for large enough n. The claim follows.
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