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We address online linear optimization problems when the possible actions of the decision maker are represented
by binary vectors. The regret of the decision maker is the difference between her realized loss and the best loss she
would have achieved by picking, in hindsight, the best possible action. Our goal is to understand the magnitude of
the best possible (minimax) regret. We study the problem under three different assumptions for the feedback the
decision maker receives: full information, and the partial information models of the so-called “semi-bandit” and
“bandit” problems. Combining the Mirror Descent algorithm and the INF (Implicitely Normalized Forecaster)
strategy, we are able to prove optimal bounds for the semi-bandit case. We also recover the optimal bounds for
the full information setting. In the bandit case we discuss existing results in light of a new lower bound, and
suggest a conjecture on the optimal regret in that case. Finally we also prove that the standard exponentially
weighted average forecaster is provably suboptimal in the setting of online combinatorial optimization.
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1. Introduction. In this paper we consider the framework of online linear optimization. The setup
may be described as a repeated game between a “decision maker” (or simply “player” or “forecaster”)
and an “adversary” as follows: at each time instance t = 1, . . . , n, the player chooses, possibly in a
randomized way, an action from a given action set A ⊂ Rd. The action chosen by the player at time t is
denoted by at ∈ A. Simultaneously to the player, the adversary chooses a loss vector zt ∈ Z ⊂ Rd and
the loss incurred by the forecaster is aTt zt. The goal of the player is to minimize the expected cumulative
loss E

∑n
t=1 a

T
t zt where the expectation is taken with respect to the player’s internal randomization (and

eventually the adversary’s randomization). In the basic “full-information” version of this problem, the
player observes the adversary’s move zt at the end of round t. Another important model for feedback is
the so-called bandit problem, in which the player only observes the incurred loss aTt zt. As a measure of
performance we define the regret 1 of the player as

Rn = E
n∑
t=1

aTt zt −min
a∈A

E
n∑
t=1

aT zt .

In this paper we address a specific example of online linear optimization: we assume that the action set A
is a subset of the d-dimensional hypercube {0, 1}d such that ∀a ∈ A, ||a||1 = m, and the adversary has a

1In the full information version, it is straightforward to obtain upper bounds for the stronger notion of regret

E
∑n

t=1 a
T
t zt − Emina∈A

∑n
t=1 a

T zt which is always at least as large as Rn. However, for partial information games,

this requires more work. In this paper we only consider Rn as a measure of the regret.
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Parameters: set of actions A ⊂ {0, 1}d; number of rounds n ∈ N.

For each round t = 1, 2, . . . , n;

(1) the player chooses at ∈ A with the help of an external randomization;

(2) simultaneously the adversary selects a loss vector zt ∈ [0, 1]d (without revealing it);

(3) the player incurs the loss aT
t zt. She observes

– the loss vector zt in the full information setting,

– the coordinates zt(i)at(i) in the semi-bandit setting,

– the instantaneous loss aT
t zt in the bandit setting.

Goal: The player tries to minimize his cumulative loss
∑n

t=1 a
T
t zt.

Figure 1: Online Combinatorial Optimization.

bounded loss per coordinate, that is2 Z = [0, 1]d. We call this setting online combinatorial optimization.
As we will see below, this restriction of the general framework contains a rich class of problems. Indeed,
in many interesting cases, actions are naturally represented by Boolean vectors.

In addition to the full information and bandit versions of online combinatorial optimization, we also
consider another type of feedback which makes sense only in this combinatorial setting. In the semi-
bandit version, we assume that the player observes only the coordinates of zt that were played in at, that
is the player observes the vector (at(1)zt(1), . . . , at(d)zt(d)). All three variants of online combinatorial
optimization are sketched in Figure 1.

1.1 Motivating examples. A great number of specific problems can be tackled under the online
combinatorial optimization framework. We give here three simple examples:

• m-sets. In this example we consider the set A of all
(
d
m

)
Boolean vectors in dimension d

with exactly m ones. In other words, at every time step, the player selects m actions out of d
possibilities. When m = 1, the semi-bandit and bandit versions coincide and correspond to the
standard (adversarial) multi-armed bandit problem.

• Online shortest path problem. Consider a network represented by a graph in which one has
to send a sequence of packets from one fixed vertex to another. For each packet one chooses a
path through the graph and suffers a certain delay which is the sum of the delays on the edges
of the path. Depending on the traffic, the delays on the edges may change, and, at the end of
each round, according to the assumed level of feedback, the player observes either the delays of
all edges, the delays of each edge on the chosen path, or only the total delay of the chosen path.
The player’s objective is to minimize the total delay for the sequence of packets.

One can represent the set of valid paths from the starting vertex to the end vertex as a set
A ⊂ {0, 1}d where d is the number of edges, so that, if at time t, zt ∈ [0, 1]d is the vector of
delays on the edges, then the delay of a path a ∈ A is zTt a. Thus this problem is an instance of
online combinatorial optimization in dimension d, where d is the number of edges in the graph.

• Ranking. Consider the problem of selecting a ranking of m items out of M possible items. For
example a website could have a set of M ads, and it has to select a ranked list of m of these ads
to appear on the webpage. One can rephrase this problem as selecting a matching of size m on
the complete bipartite graph Km,M (with d = m ×M edges). In the online learning version of
this problem, each day the website chooses one such list, and gains one dollar for each click on
the ads. This problem can easily be formulated as an online combinatorial optimization problem.

Our theory applies to many more examples, such as spanning trees (which can be useful in communication
problems), or m-intervals.

1.2 Previous work.

2Note that since all actions have the same size, i.e. ||a||1 = m, ∀a ∈ A, one can reduce the case of Z = [α, β]d to

Z = [0, 1]d via a simple renormalization.
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• Full Information. The full-information setting is now fairly well understood, and an optimal
regret bound (in terms of m, d, n) was obtained by Koolen, Warmuth, and Kivinen [25]. Previous
papers under full information feedback include Kivinen and Warmuth [24], Grove, Littlestone, and
Schuurmans [13], Takimoto and Warmuth [33], Kalai and Vempala [21], Warmuth and Kuzmin
[35], Herbster and Warmuth [18], and Hazan, Kale, and Warmuth [17].

• Semi-bandit. The first paper on the adversarial multi-armed bandit problem (i.e., the special
case of m-sets with m = 1) is by Auer, Cesa-Bianchi, Freund, and Schapire [4] who derived a
regret bound of order

√
dn log d. This result was improved to

√
dn by Audibert and Bubeck

[2, 3]. György, Linder, Lugosi, and Ottucsák[14] consider the online shortest path problem and
derive suboptimal regret bounds (in terms of the dependency on m and d). Uchiya, Nakamura,
and Kudo [34] (respectively Kale, Reyzin, and Schapire [22]) derived optimal regret bounds for
the case of m-sets (respectively for the problem of ranking selection) up to logarithmic factors.

• Bandit. McMahan and Blum [26], and Awerbuch and Kleinberg [5] were the first to consider
this setting, and obtained suboptimal regret bounds (in terms of n). The first paper with optimal
dependency in n was by Dani, Hayes, and Kakade [11]. The dependency on m and d was then
improved in various ways by Abernethy, Hazan, and Rakhlin [1], Cesa-Bianchi and Lugosi [10],
and Bubeck, Cesa-Bianchi and Kakade [8]. We discuss these bounds in detail in Section 5. In
particular, we argue that the optimal regret bound in terms of d (and m) is still an open problem.

1.3 Contribution and contents of the paper. In this paper we are primarily interested in the
optimal minimax regret in terms of m, d and n. More precisely, our aim is to determine the order of
magnitude of the following quantity: For a given feedback assumption, write sup for the supremum
over all adversaries and inf for the infimum over all allowed strategies for the player under the feedback
assumption. Then we are interested in

max
A⊂{0,1}d:∀a∈A,||a||1=m

inf supRn.

We prove upper and lower bounds for the minimax regret under the different feedback assumptions. The
upper bounds are obtained by constructing prediction strategies. We also discuss the computational
complexity of these strategies.

Our contribution is threefold. First, we unify the algorithms used in Abernethy, Hazan, and Rakhlin
[1], Koolen, Warmuth, and Kivinen[25], Uchiya, Nakamura, and Kudo [34], and Kale, Reyzin, and
Schapire[22] under the umbrella of mirror descent. The idea of mirror descent goes back to Nemirovski
[27], Nemirovski and Yudin[28]. A somewhat similar concept was re-discovered in online learning by
Herbster and Warmuth [19], Grove, Littlestone, and Schuurmans [13], Kivinen and Warmuth [24] un-
der the name of potential-based gradient descent, see [9, Chapter 11]. Recently, these ideas have been
flourishing, see for instance Shalev-Schwartz [32], Rakhlin [29], Hazan [16], and Bubeck [7]. Our main
theorem (Theorem 2.2) allows one to recover almost all known regret bounds for online combinatorial
optimization. This first contribution leads to our second main result, the improvement of the known
upper bounds for the semi-bandit game. In particular, we propose a different proof of the minimax regret
bound of the order of

√
nd in the standard d-armed bandit game that is much simpler than the one

provided in Audibert and Bubeck [3] (which also improves the constant factor). In addition we prove
several lower bounds. First, we establish lower bounds for the minimax regret under the three feedback
assumptions (the main difficulty being the bandit case). Moreover, we also answer a question of Koolen,
Warmuth, and Kivinen[25] by showing that the exponentially weighted average forecaster is provably
suboptimal for online combinatorial optimization. A summary of the bounds proved in this paper can be
found in Tables 1 and 2.

The paper is organized as follows. In Section 2 we introduce the three algorithms discussed in this
paper. In particular, in Section 2.2 we describe osmd (Online Stochastic Mirror Descent) and prove a
general regret bound in terms of the Bregman divergence of the Fenchel-Legendre dual of the regularizer.
Then in Sections 3 and 4, we derive upper bounds for the regret in the full information case and in the
semi-bandit case for osmd with appropriately chosen regularizers. In Section 5 we discuss the regret
bounds obtained in [1, 8] for the bandit version, and formulate a conjecture on the correct order of
magnitude of the regret for that problem. We end the paper with the lower bounds in Section 6.
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Full Information Semi-Bandit Bandit

Lower Bound m
√
n log d

m

√
mdn m

√
dn

Upper Bound m
√
n log d

m

√
mdn m3/2

√
dn log d

m

Table 1: Bounds on the minimax regret proved in this paper (up to constant factors). The new results
are set in boldface.

Full Information Semi-Bandit Bandit

exp2 m3/2
√
n log d

m m
√
dn log d

m m3/2
√
dn log d

m

fpl m
√
dn - -

osmd m
√
n log d

m

√
mdn md3/2

√
n log n

Table 2: Upper bounds on Rn for specific algorithms. The new results are in boldface. We also show
that the bound for exp2 in the full information setting is not improvable.

2. Algorithms. Three classes of algorithms have been proposed for online combinatorial optimiza-
tion. In this section we review them, discuss their computational complexity, and prove general regret
bounds that will be useful to derive bounds under specific feedback assumptions.

2.1 Expanded Exponential weights (exp2). The simplest approach to online combinatorial op-
timization is to consider each action of A as an independent “expert,” and then apply a generic regret
minimizing strategy. Perhaps the most popular such strategy is the exponentially weighted average fore-
caster (see, e.g., [9]). (This strategy is sometimes called Hedge, see Freund and Schapire [12].) We call the
resulting strategy for the online combinatorial optimization problem exp2, see Figure 2. In the full infor-
mation setting, exp2 corresponds to “Expanded Hedge,” as defined in Koolen, Warmuth, and Kivinen
[25]. In the semi-bandit case, exp2 was studied by György, Linder, Lugosi, and Ottucsák [14] while in the
bandit case in Dani, Hayes, and Kakade [11], Cesa-Bianchi and Lugosi [10], and Bubeck, Cesa-Bianchi
and Kakade [8]. Note that in the bandit case, exp2 is mixed with an exploration distribution, see Section
5 for more details.

The following theorem shows the regret bound for exp2 that one may obtain by a standard argument,
as, for example, in [10].

Theorem 2.1 If the loss estimate is unbiased in the sense that, for each t = 1, . . . , n, Eat∼pt z̃t = zt,
then the regret of the exp2 strategy satisfies

Rn ≤
log(|A|)

η
+
η

2

n∑
t=1

∑
a∈A

E
[
pt(a)(aT z̃t)

2 max
(
1, exp(−ηaT z̃t)

)]
.

In its straightforward implementation, when one calculates pt(a) separately for each action a ∈ A,
exp2 is clearly inefficient, unless A has only polynomially many elements. However, for some specific
(non-trivial) sets A, efficient implementation (i.e., of complexity polynomial in d) of exp2 is possible.
We refer to Koolen, Warmuth, and Kivinen [25] and Cesa-Bianchi and Lugosi [10] for examples.

2.2 Online Stochastic Mirror Descent. In this section we describe the main algorithm studied
in this paper. We call it Online Stochastic Mirror Descent (osmd). Each term in this name refers to a
part of the algorithm: Mirror Descent originates in the work of Nemirovski and Yudin [28]. The idea
of mirror descent is to perform a gradient descent, where the update with the gradient is performed in
the dual space (defined by some Legendre function F ) rather than in the primal (see below for a precise
formulation). The Stochastic part takes its origin in Robbins and Monro [30], Kiefer and Wolfowitz [23].
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exp2:

Parameter: Learning rate η.

Let p1 =
(

1
|A| , . . . ,

1
|A|
)
∈ R|A|.

For each round t = 1, 2, . . . , n;

(a) Play at ∼ pt and observe

– the loss vector zt in the full information game,

– the coordinates zt(i)1at(i)=1 in the semi-bandit game,

– the instantaneous loss aTt zt in the bandit game.

(b) Estimate the loss vector zt by z̃t. For instance, one may take

– z̃t = zt in the full information game,

– z̃t(i) = zt(i)∑
a∈A:a(i)=1 pt(a)

at(i) in the semi-bandit game,

– z̃t = P+
t ata

T
t zt, with Pt = Ea∼pt(aaT ) in the bandit game.

(c) Update the probabilities, for all a ∈ A,

pt+1(a) =
exp(−ηaT z̃t)pt(a)∑
b∈A exp(−ηbT z̃Tt )pt(b)

.

Figure 2: The exp2 strategy.

The key idea is that it is enough to observe an unbiased estimate of the gradient rather than the true
gradient to perform a gradient descent. Finally the Online part comes from Zinkevich [36]. In this latter
paper the Online Gradient Descent (ogd) algorithm was derived, which is a version of gradient descent
tailored to online optimization.

In the full information setting, algorithms of this type were studied by Abernethy, Hazan, and Rakhlin
[1], Rakhlin [29], and Hazan [16]. In these papers the authors adopted the presentation suggested by Beck
and Teboulle [6], which corresponds to a Follow-the-Regularized-Leader (ftrl) type strategy. There the
focus was on F being strongly convex with respect to some norm. Moreover in [1] the authors also consider
the bandit case, and switch to F being a self-concordant barrier for the convex hull of A (see Section 5
for more details). Another line of work studied this type of algorithms with F being the negative entropy,
see Koolen, Warmuth, and Kivinen [25] for the full information case and Uchiya, Nakamura, and Kudo
[34], Kale, Reyzin, and Schapire [22] for specific instances of the semi-bandit case. All these results are
unified and described in details in Bubeck [7]. In this paper we consider a new type of Legendre functions
F inspired by Audibert and Bubeck [3], see Section 4.

To properly describe the osmd strategy, we recall a few concepts from convex analysis, see Hiriart-
Urruty and Lemaréchal [20] for a thorough treatment of this subject. Let D ⊂ Rd be an open convex set,
and D the closure of D.

Definition 2.1 We call Legendre any continuous function F : D → R such that

(i) F is strictly convex continuously differentiable on D,

(ii) limx→D\D ||∇F (x)|| = +∞.3

The Bregman divergence DF : D ×D associated to a Legendre function F is defined by

DF (x, y) = F (x)− F (y)− (x− y)T∇F (y).

Moreover, we say that D∗ = ∇F (D) is the dual space of D under F . We also denote by F ∗ the Legendre-
Fenchel transform of F defined by

F ∗(u) = sup
x∈D

(
xTu− f(x)

)
.

3By the equivalence of norms in Rd, this definition does not depend on the choice of the norm.
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osmd:

Parameters:

• learning rate η > 0,

• Legendre function F defined on D ⊃ Conv(A).

Let x1 ∈ argminx∈Conv(A) F (x).

For each round t = 1, 2, . . . , n;

(a) Let pt be a distribution on the set A such that xt = Ea∼pta.

(b) Draw a random action at according to the distribution pt and observe the feedback.

(c) Based on the observed feedback, estimate the loss vector zt by z̃t.

(d) Let wt+1 ∈ D satisfy

∇F (wt+1) = ∇F (xt)− ηz̃t. (3)

(e) Project the weight vector wt+1 defined by (3) on the convex hull of A:

xt+1 ∈ argmin
x∈Conv(A)

DF (x,wt+1). (4)

Figure 3: Online Stochastic Mirror Descent (OSMD).

Lemma 2.1 Let F be a Legendre function. Then F ∗∗ = F and ∇F ∗ = (∇F )−1 on the set D∗. Moreover,
∀x, y ∈ D,

DF (x, y) = DF∗(∇F (y),∇F (x)). (1)

The lemma above is the key to understanding how a Legendre function acts on the space. ∇F maps D
to the dual space D∗, and ∇F ∗ is the inverse mapping to go from the dual space to the original (primal)
space. Moreover, (1) shows that the Bregman divergence in the primal space corresponds exactly to the
Bregman divergence of the Legendre-Fenchel transform in the dual space. A proof of this result can be
found, for example, in [Chapter 11, [9]].

We now have all ingredients to describe the osmd strategy, see Figure 3 for the precise formulation.
Note that step (d) is well defined if the following consistency condition is satisfied:

∇F (x)− ηz̃Tt ∈ D∗,∀x ∈ Conv(A) ∩ D. (2)

Regarding computational complexity, osmd is efficient as soon as the polytope Conv(A) can be described
by a polynomial number of constraints. Indeed in that case steps (a)-(b) can be performed efficiently
jointly (one can get an algorithm by looking at the proof of Carathéodory’s Theorem), and step (d)
is a convex program with a polynomial number of constraints. In many interesting examples (such as
m-sets, selection of rankings, spanning trees, paths in acyclic graphs) one can describe the convex hull
of A by a polynomial number of constraints, see Schrijver [31]. On the other hand, there also exist
important examples where this is not the case (such as paths on general graphs). Also note that for some
specific examples it is possible to implement osmd with improved computational complexity, see Koolen,
Warmuth, and Kivinen [25].

The following result is at the basis of all our upper bounds for the regret of osmd.

Theorem 2.2 Suppose that (2) is satisfied and the loss estiamtes are unbiased in the sense that
Eat∼pt z̃t = zt. Then the regret of the osmd strategy satisfies

Rn ≤
supa∈A F (a)− F (x1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (xt)− ηz̃t,∇F (xt)

)
.
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Proof. Let a ∈ A. Using that at and z̃t are unbiased estimates of xt and zt, we have

E
n∑
t=1

(at − a)T zt = E
n∑
t=1

(xt − a)T z̃t.

Using (3), and applying the definition of the Bregman divergences, one obtains

ηz̃Tt (xt − a) = (a− xt)T
(
∇F (wt+1)−∇F (xt)

)
= DF (a, xt) +DF (xt, wt+1)−DF (a,wt+1).

By the Pythagorean theorem for Bregman divergences (see, e.g., Lemma 11.3 of [9]), we have
DF (a,wt+1) ≥ DF (a, xt+1) +DF (xt+1, wt+1), hence

ηz̃Tt (xt − a) ≤ DF (a, xt) +DF (xt, wt+1)−DF (a, xt+1)−DF (xt+1, wt+1) .

Summing over t then gives

n∑
t=1

ηz̃Tt (xt − a) ≤ DF (a, a1)−DF (a, an+1) +

n∑
t=1

(
DF (xt, wt+1)−DF (xt+1, wt+1)

)
.

By the nonnegativity of the Bregman divergences, we get

n∑
t=1

ηz̃Tt (xt − a) ≤ DF (a, a1) +
n∑
t=1

DF (xt, wt+1).

From (1), one has DF (xt, wt+1) = DF∗
(
∇F (xt) − η∇`(xt, zt),∇F (xt)

)
. Moreover, by writing the first-

order optimality condition for x1, one directly obtains DF (a, x1) ≤ F (a) − F (x1) which concludes the
proof. �

Note that, if F admits an Hessian, denoted ∇2F , that is always invertible, then one can prove that,
up to a third-order term

(
in z̃t

)
, the regret bound can be written as

Rn /
supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

z̃Tt
(
∇2F (xt)

)−1
z̃t. (5)

The main technical difficulty is to control the third-order error term in this inequality.

In this paper we restrict our attention to the combinatorial learning setting in which A is a subset
of {0, 1}d and the loss is linear. However, one should note that this specific form of A plays no role in
the definition of osmd. Moreover, if the loss is not linear, then one can modify osmd by performing
a gradient update with a gradient of the loss (rather than the loss vector zt). See Bubeck [7] for more
details on this approach.

2.3 Follow the Perturbated Leader (FPL). The last strategy that we consider, called Follow
the Perturbated Leader (FPL), was proposed by Hannan [15], see also Kalai and Vempala [21]. The idea
is simple: it is clear that following the leader, that is, choosing at time t,

argmin
a∈A

t−1∑
s=1

zTs a

is a strategy that can be hazardous. In FPL, this choice is regularized by adding a small amount of noise.
More precisely, let ξ1, . . . , ξn be an i.i.d. sequence of random variables uniformly distributed on [0, 1/η]d.
Then FPL picks the action

argmin
a∈A

(
ξt +

t−1∑
s=1

zs

)T
a.

This strategy may be generalized to the partial information models (semi-bandit and bandit) by replacing
the losses in the definition by their unbiased estimates. Unfortunately however, such a forecaster does
not seem to have a good performance. Moreover, as we will see below, even for the full-information case,
the known bounds for FPL are suboptimal by a factor

√
d. Nonetheless, FPL has the advantage that it

is computationally efficient as soon as there exist efficient algorithms for the offline problem (that is, the
problem of linear optimization over A). This is an important property, and an interesting open problem
is to decide whether there exists a strategy with this property and optimal regret bounds.
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The following regret bound was proved by Kalai and Vempala [21]. We slightly improve the constant
(by following the same proof technique as in [21]). We perform the analysis in a restrictive framework,
namely we only consider oblivious adversaries (i.e., the loss sequence (zt) is fixed and zt cannot depend
on the past moves a1, . . . , at−1 of the player). The details of the proof are given in the Appendix.

Theorem 2.3 For any oblivious adversary, the regret of the FPL strategy satisfies

Rn ≤
m

2η
+ ηmdn .

In particular, with η =
√

1
2dn , one obtains

Rn ≤ m
√

2dn .

3. Full Information. In this section we consider online combinatorial optimization with full infor-
mation feedback. First we analyze the regret of the exp2 strategy in the full information setting.

Theorem 3.1 The regret of the exp2 strategy satisfies

Rn ≤
m log ed

m

η
+
η

2
nm2.

In particular, with η =

√
2 log( edm )
nm ,

Rn ≤ m3/2

√
2n log

(
ed

m

)
.

Proof. Apply Theorem 2.1 by noting that log |A| ≤ log
(
d
m

)
≤ m log

(
ed
m

)
, and zTt a ∈ [0,m]. �

Perhaps surprisingly, there is a gap between this upper bound and the minimax lower bound proved
below in Theorem 6.2. It is natural to ask whether one can improve the analysis of exp2. This question
was posed by Koolen, Warmuth, and Kivinen [25]. In Theorem 6.1 we give a negative answer, that is,
we show that the upper bound of Theorem 3.1 cannot be improved substantially. As we also show that
the minimax lower bound can be achieved (up to a constant factor), this proves that the popular exp2
strategy is suboptimal.

The key to obtaining optimal regret bounds in online combinatorial optimization is to use the osmd
strategy, which gives the flexibility to adapt to the geometry of the action set A. The following theorem
shows that the negative entropy is a good choice of the Legendre function.

Theorem 3.2 (Koolen, Warmuth, Kivinen [25].) The regret of osmd with F (x) =
∑d
i=1 xi log xi − xi

(and D = (0,+∞)d) satisfies

Rn ≤
m log d

m

η
+
η

2
nm.

In particular, with η =

√
2 log( dm )
nm ,

Rn ≤ m

√
2n log

(
d

m

)
.

Proof. One can easily see that for the negative entropy the dual space is D∗ = Rd. Thus, (2) is
verified and osmd is well defined. Moreover, again by straightforward computations, one can also see
that

DF∗

(
∇F (x),∇F (y)

)
=

d∑
i=1

y(i) Θ

(
(∇F (x)−∇F (y))(i)

)
, (6)
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where Θ(x) = exp(x) − 1 − x. Thus, using Theorem 2.2 and the facts that Θ(x) ≤ x2

2 for x ≤ 0 and∑d
i=1 xt(i) ≤ m, one obtains

Rn ≤
supa∈A F (a)− F (x1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (xt)− ηz̃t,∇F (xt)

)

≤
supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

xt(i)zt(i)
2 (7)

≤
supa∈A F (a)− F (x1)

η
+
η

2
nm.

The proof is concluded by noting that:

F (a)− F (x1) ≤
d∑
i=1

x1(i) log
1

x1(i)
≤ m log

(
d∑
i=1

x1(i)

m

1

x1(i)

)
= m log

d

m
. (8)

�

4. Semi-bandit feedback. In this section we consider online combinatorial optimization with semi-
bandit feedback. As we saw in the full information case, the key to obtaining optimal regret bounds is
the osmd strategy. First we analyze the behavior of osmd with the negative entropy (which is an optimal
strategy under full information feedback), and with the following estimate for the loss vector:

z̃t(i) =
zt(i)at(i)

xt(i)
. (9)

Note that this is a valid estimate since it makes only use of (zt(1)at(1), . . . , zt(d)at(d)). Moreover it is
unbiased with respect to the random draw of at from pt, since by definition, Eat∼ptat(i) = xt(i). In other
words, Eat∼pt z̃t(i) = zt(i).

Theorem 4.1 The regret of OSMD with F (x) =
∑d
i=1 xi log xi −

∑d
i=1 xi (and D = (0,+∞)d) and any

non-negative unbiased loss estimate z̃t(i) ≥ 0 satisfies

Rn ≤
m log d

m

η
+
η

2

n∑
t=1

d∑
i=1

xt(i)z̃t(i)
2.

In particular, with the estimate (9) and η =
√

2m log dm
nd ,

Rn ≤
√

2mdn log
d

m
.

Proof. The first inequality directly follows from (7) and (8). The second inequality follows from

Ext(i)z̃t(i)2 ≤ E
at(i)

xt(i)
= 1.

�

As the lower bound of Theorem 6.2 shows, this upper bound has an extra logarithmic factor. This
phenomenon already appeared in the basic multi-armed bandit setting (when A corresponds to the
canonical basis). In that case, the extra logarithmic factor was removed in Audibert and Bubeck [2]
by resorting to a new class of strategies for the expert problem, called INF (Implicitely Normalized
Forecaster). Next we generalize this class of algorithms to the combinatorial setting, and thus remove
the extra logarithmic factor. First we introduce the notion of a potential and the associated Legendre
function.

Definition 4.1 Let ω ≥ 0. A function ψ : (−∞, a)→ R∗+ for some a ∈ R∪{+∞} is called an ω-potential
if it is convex, continuously differentiable, and satisfies

lim
x→−∞

ψ(x) = ω lim
x→a

ψ(x) = +∞

ψ′ > 0

∫ ω+1

ω

|ψ−1(s)|ds < +∞.
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To a potential ψ we associate the function Fψ defined on D = (ω,+∞)d by:

Fψ(x) =

d∑
i=1

∫ xi

ω

ψ−1(s)ds.

In this paper we restrict our attention to 0-potentials which we will simply call potentials. A non-zero
value of ω may be used to derive regret bounds that hold with high probability (instead of pseudo-regret
bounds, see footnote 1).

The first order optimality condition for (4) implies that osmd with Fψ is a direct generalization of
INF with potential ψ, in the sense that the two algorithms coincide when A is the canonical basis.
Note, in particular, that with ψ(x) = exp(x) we recover the negative entropy for Fψ. In [3], the choice
of ψ(x) = (−x)q with q > 1 was recommended. We show below that here, again, this choice gives a
minimax optimal strategy.

Lemma 4.1 Let ψ be a potential. Then Fψ is Legendre and for all u, v ∈ D∗ = (−∞, a)d such that
ui ≤ vi,∀i ∈ {1, . . . , d},

DF∗(u, v) ≤ 1

2

d∑
i=1

ψ′(vi)(ui − vi)2.

Proof. It is easy to check that F is a Legendre function. Moreover, since ∇F ∗(u) = (∇F )−1(u) =(
ψ(u1), . . . , ψ(ud)

)
, we obtain

DF∗(u, v) =

d∑
i=1

(∫ ui

vi

ψ(s)ds− (ui − vi)ψ(vi)

)
.

From a Taylor expansion, we get

DF∗(u, v) ≤
d∑
i=1

max
s∈[ui,vi]

1

2
ψ′(s)(ui − vi)2.

Since the function ψ is convex, and ui ≤ vi, we have

max
s∈[ui,vi]

ψ′(s) ≤ ψ′
(

max(ui, vi)
)
≤ ψ′(vi),

which gives the desired result. �

Theorem 4.2 Let ψ be a potential. The regret of osmd with Fψ and any non-negative unbiased loss
estimate z̃t satisfies

Rn ≤
supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

d∑
i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
.

In particular, with the estimate (9), ψ(x) = (−x)−q, q > 1,and η =
√

2
q−1

m1−2/q

d1−2/q ,

Rn ≤ q
√

2

q − 1
mdn .

With q = 2 this gives

Rn ≤ 2
√

2mdn .

In the case m = 1, the above theorem improves the bound Rn ≤ 8
√
nd obtained in Theorem 11 of [3].

Proof. First note that since D∗ = (−∞, a)d and z̃t has non-negative coordinates, osmd is well
defined (that is, (2) is satisfied).

The first inequality trivially follows from Theorem 2.2, and the fact that ψ′(ψ−1(s)) = 1
(ψ−1)′(s) .
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Let ψ(x) = (−x)−q. Then ψ−1(x) = −x−1/q and F (x) = − q
q−1

∑d
i=1 x

1−1/q
i . In particular, note that

by Hölder’s inequality, since
∑d
i=1 x1(i) = m,

F (a)− F (x1) ≤ q

q − 1

d∑
i=1

x1(i)1−1/q ≤ q

q − 1
m(q−1)/qd1/q.

Moreover, note that (ψ−1)′(x) = 1
qx
−1−1/q, and

d∑
i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
≤ q

d∑
i=1

xt(i)
1/q ≤ qm1/qd1−1/q,

which concludes the proof. �

For sake of completeness, we end this section with a regret bound for the exp2 strategy in the semi-
bandit setting.

Theorem 4.3 The regret of exp2 satisfies

Rn ≤
m log ed

m

η
+
ηnmd

2
.

In particular, for η =

√
2 log edm

n , we have

Rn ≤ m
√

2nd log
ed

m
.

Proof. The proof follows from Theorem 2.1 and the following: let xt = Ea∼pta =
∑
a∈A pt(a)a. In

particular, we have z̃t(i) = zt(i)at(i)
xt(i)

, and:

Eat∼pt
∑
a∈A

pt(a)(aT z̃t)
2 = Eat∼pt,a′t∼pt

∑
i,j

zt(i)at(i)a
′
t(i)

xt(i)

zt(j)at(j)a
′
t(j)

xt(j)

≤ Eat,a′t
∑
i,j

at(i)
at(j)

xt(j)

a′t(i)

xt(i)

= mEat
∑
j

at(j)

xt(j)

= md.

�

5. Bandit feedback. In this section we consider online combinatorial optimization with bandit
feedback. This setting is much more challenging than the semi-bandit case, and to obtain sublinear
regret bounds all known strategies add an exploration component to the algorithm. For example, in exp2,
instead of playing an action at random according to the exponentially weighted average distribution pt,
one draws a random action from pt with probability 1−γ and from some fixed “exploration” distribution
µ with probability γ. On the other hand, in osmd, one randomly perturbs xt to some x̃t, and then plays
at random a point in A such that on average one plays x̃t.

In Bubeck, Cesa-Bianchi and Kakade [8], the authors study the exp2 strategy with the exploration
distribution µ supported on the contact points between the polytope Conv(A) and the John’s ellipsoid of
this polytope (i.e., the ellipsoid of minimal volume enclosing the polytope). Using this method they are
able to prove the best known upper bound for online combinatorial optimization with bandit feedback.
They show that the regret of exp2 mixed with the John’s exploration (and with the estimate described
in Figure 2) satisfies

Rn ≤ 2m3/2

√
3dn log

ed

m
.

This regret is off by a factor
√
m log d

m from the minimax lower bound described in Section 6. However

this may not come as a surprise, since even in the full information case the exp2 strategy is provably
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suboptimal, see Section 6. We conjecture that the correct order of magnitude for the minimax regret in
the bandit case is m

√
dn, as Theorem 6.2 suggests.

A promising approach to resolve this conjecture is to consider again the osmd approach. However we
believe that in the bandit case, one has to consider Legendre functions with non-diagonal Hessian (on
the contrary to the Legendre functions considered so far in this paper). Abernethy, Hazan, and Rakhlin
[1] propose to use a self-concordant barrier function for the polytope Conv(A). Then they randomly
perturb the point xt given by osmd using the eigenstructure of the Hessian. This approach leads to a
regret upper bound of order md

√
θn log n for θ > 0 when Conv(A) admits a θ-self-concordant barrier

function. Unfortunately, even when there exists a O(1)-self concordant barrier, this bound is still larger
than the conjectured optimal bound by a factor

√
d. In fact, it was proved in [8] that in some cases

there exist better choices for the Legendre function and the perturbation than those described in [1],
even when there is a O(1)-self concordant function for the action set. How to generalize this approach to
the polytopes involved in online combinatorial optimization is an interesting open problem.

6. Lower Bounds. In this section we offer various lower bounds. We start this with a result that
shows that the exp2 strategy is suboptimal for online combinatorial optimization, answering a question
of Koolen, Warmuth, and Kivinen [25]. Then we turn to minimax lower bounds that show limitations
that no strategy can surpass.

Theorem 6.1 Let n ≥ d. There exists a subset A ⊂ {0, 1}d such that in the full information setting, the
regret of the exp2 strategy (for any learning rate η), satisfies

sup
adversary

Rn ≥ 0.01 d3/2
√
n.

Proof. For the sake of simplicity, we assume here that d is a multiple of 4 and that n is even. We
consider the following subset of the hypercube:

A =

{
a ∈ {0, 1}d :

d/2∑
i=1

ai = d/4 and(
ai = 1,∀i ∈ {d/2 + 1; . . . , d/2 + d/4}

)
or

(
ai = 1,∀i ∈ {d/2 + d/4 + 1, . . . , d}

)}
.

That is, choosing a point in A corresponds to choosing a subset of d/4 elements among the first half of
the coordinates, and choosing one of the two first disjoint intervals of size d/4 in the second half of the
coordinates.

We prove that for any parameter η, there exists an adversary such that Exp2 (with parameter η) has
a regret of at least nd

16 tanh
(
ηd
8

)
, and that there exists another adversary such that its regret is at least

min
(
d log 2
12η , nd12

)
. As a consequence, we have

supRn ≥ max

(
nd

16
tanh

(ηd
8

)
,min

(
d log 2

12η
,
nd

12

))
≥ min

(
max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
,
nd

12

)
≥ min

(
A,

nd

12

)
,

with

A = min
η∈[0,+∞)

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
≥ min

{
min
ηd≥8

nd

16
tanh

(ηd
8

)
, min
ηd<8

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)}
≥ min

{
nd

16
tanh(1), min

ηd<8
max

(
nd

16

ηd

8
tanh(1),

d log 2

12η

)}
≥ min

{
nd

16
tanh(1),

√
nd3 log 2× tanh(1)

128× 12

}
≥ min

(
0.04nd, 0.01 d3/2

√
n
)
.

As n ≥ d, this implies the stated lower bound.
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First we prove the lower bound nd
16 tanh

(
ηd
8

)
. Define the following adversary:

zt(i) =


1 if i ∈ {d/2 + 1; . . . , d/2 + d/4} and t odd,
1 if i ∈ {d/2 + d/4 + 1, . . . , d} and t even,
0 otherwise.

This adversary always puts a zero loss on the first half of the coordinates, and alternates between a loss of
d/4 for choosing the first interval (in the second half of the coordinates) and the second interval. At the
beginning of odd rounds, any vertex a ∈ A has the same cumulative loss and thus Exp2 picks its expert
uniformly at random, which yields an expected cumulative loss equal to nd/16. On the other hand, at
even rounds the probability distribution to select the vertex a ∈ A is always the same. More precisely,
the probability of selecting a vertex which contains the interval {d/2 + d/4 + 1, . . . , d} (i.e, the interval
with a d/4 loss at this round) is exactly 1

1+exp(−ηd/4) . This adds an expected cumulative loss equal to
nd
8

1
1+exp(−ηd/4) . Finally, note that the loss of any fixed vertex is nd/8. Thus, we obtain

Rn =
nd

16
+
nd

8

1

1 + exp(−ηd/4)
− nd

8
=
nd

16
tanh

(ηd
8

)
.

It remains to show a lower bound proportional to 1/η. To this end, we consider a different adversary
defined by

zt(i) =


1− ε if i ≤ d/4,

1 if i ∈ {d/4 + 1, . . . , d/2},
0 otherwise,

where the value of ε > 0 is specified below.

Note that against this adversary the choice of the interval (in the second half of the components) does
not matter. Moreover, by symmetry, the weight of any coordinate in {d/4 + 1, . . . , d/2} is the same (at
any round). Finally, note that this weight is decreasing with t. Thus, we have the following identities (in
the big sums i represents the number of components selected in the first d/4 components):

Rn =
nεd

4

∑
a∈A:a(d/2)=1 exp(−ηnzT1 a)∑

a∈A exp(−ηnzT1 a)

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(−η(nd/4− inε))∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(−η(nd/4− inε))

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

=
nεd

4

∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

where we used
(
d/4−1
d/4−i−1

)
=
(
1− 4i

d

)(
d/4
d/4−i

)
in the last equality. Thus, taking ε = min

(
log 2
ηn , 1

)
yields

Rn ≥ min

(
d log 2

4η
,
nd

4

) ∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)2
min(2, exp(ηn))i∑d/4

i=0

(
d/4
i

)2
min(2, exp(ηn))i

≥ min

(
d log 2

12η
,
nd

12

)
,

where the last inequality follows from Lemma B.1 below. This concludes the proof of the lower bound.
�

The next theorem is one of the main results of this paper. It gives lower bounds for the minimax
regret under all three feedback assumptions. Note that the lower bounds for the full information and
semi-bandit cases follow easily from standard lower bounds. Our main contribution here is the lower
bound for bandit online combinatorial optimization.

Theorem 6.2 Let n ≥ d ≥ 2m. There exists a subset A ⊂ {0, 1}d such that ||a||1 = m, ∀a ∈ A, under
full information feedback,

inf
strategies

sup
adversaries

Rn ≥ 0.03m

√
n log

d

m
, (10)
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under semi-bandit feedback,

inf
strategies

sup
adversaries

Rn ≥ 0.04
√
mdn, (11)

and under bandit feedback,

inf
strategies

sup
adversaries

Rn ≥ 0.02m
√
dn. (12)

Before the proof, it is interesting to note that the lower bound (10) is maximized when m is a constant
multiple of d. For such sets, the bound under the semi-bandit assumption are not larger than for the full
information case. Indeed, the matching upper bounds show the, perhaps surprising, fact that for rich
classes, the full information and the semi-bandit problems have essentially the same difficulty.

Proof. For the sake of simplifying notation, we assume here that d is a multiple of m, and we
identify {0, 1}d with the set of m × (d/m) binary matrices {0, 1}m× d

m . We consider the following set of
actions:

A = {a ∈ {0, 1}m× d
m : ∀i ∈ {1, . . . ,m},

d/m∑
j=1

a(i, j) = 1}.

In other words the player is playing in parallel m finite games with d/m actions.

The bounds (10) and (11) follow directly from Audibert and Bubeck [3, Theorem 30] (which gives
the bound in the case m = 1). Indeed, full information and semi-bandit feedback, the player faces m
independent games. On the other hand, in the bandit case the situation is more delicate. We focus now
on this latter setting and divide the proofs in four steps. From step 1 to 3 we restrict our attention to
the case of deterministic strategies for the player, and we show how to extend the results to arbitrary
strategies in step 4.

First step: definitions.

We denote by Ii,t ∈ {1, . . . ,m} the random variable such that at(i, Ii,t) = 1. That is, Ii,t is the action
chosen at time t in the ith game. Moreover, let τ be drawn uniformly at random in {1, . . . , n}.

In this proof we consider random adversaries indexed by A. More precisely, for α ∈ A, we define the α-
adversary as follows: For any t ∈ {1, . . . , n}, zt(i, j) is drawn from a Bernoulli distribution with parameter
1
2 − εα(i, j). In other words, against adversary α, in the ith game, the action j such that α(i, j) = 1 has
a loss slightly smaller (in expectation) than the other actions. We denote by Eα integration with respect
to the loss generation process of the α-adversary. We write Pi,α for the law of α(i, Ii,τ ) when the player
faces the α-adversary. Note that we have Pi,α(1) = Eα 1

n

∑n
t=1 1α(i,Ii,t)=1, hence, against the α-adversary,

we have

Rn = Eα
n∑
t=1

m∑
i=1

ε1α(i,Ii,t)6=1 = nε

m∑
i=1

(1− Pi,α(1)) ,

which implies (since the maximum is larger than the mean)

max
α∈A

Rn ≥ nε
m∑
i=1

(
1− 1

(d/m)m

∑
α∈A

Pi,α(1)

)
. (13)

Second step: information inequality.

Let P−i,α be the law of α(i, Ii,τ ) against the adversary which plays like the α-adversary except that
in the ith game, the losses of all coordinates are drawn from a Bernoulli distribution of parameter 1/2.
We call it the (−i, α)-adversary and we denote by E(−i,α) integration with respect to its loss generation
process. By Pinsker’s inequality,

Pi,α(1) ≤ P−i,α(1) +

√
1

2
KL(P−i,α,Pi,α).
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Moreover, note that by symmetry of the adversaries (−i, α),

1

(d/m)m

∑
α∈A

P−i,α(1) =
1

(d/m)m

∑
α∈A

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

∑
α:(−i,α)=(−i,β)

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m
E(−i,β)

∑
α:(−i,α)=(−i,β)

α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

=
m

d
, (14)

and thus, thanks to the concavity of the square root,

1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+

√
1

2(d/m)m

∑
α∈A

KL(P−i,α,Pi,α). (15)

Third step: computation of KL(P−i,α,Pi,α) with the chain rule.

Note that since the forecaster is deterministic, the sequence of observed losses (up to time n) Wn ∈
{0, . . . ,m}n uniquely determines the empirical distribution of plays, and, in particular, the law of α(i, Ii,τ )
conditionally to Wn is the same for any adversary. Thus, if we denote by Pnα (respectively Pn−i,α) the law
of Wn when the forecaster plays against the α-adversary (respectively the (−i, α)-adversary), then one
can easily prove that KL(P−i,α,Pi,α) ≤ KL(Pn−i,α,Pnα). Now we use the chain rule for Kullback-Leibler
divergence iteratively to introduce the laws Ptα of the observed losses Wt up to time t. More precisely,
we have,

KL(Pn−i,α,Pnα)

= KL(P1
−i,α,P1

α) +

n∑
t=2

∑
wt−1∈{0,...,m}t−1

Pt−1−i,α(wt−1)KL(Pt−i,α(.|wt−1),Ptα(.|wt−1))

= KL
(
B∅,B′∅

)
1α(i,Ii,1)=1 +

n∑
t=2

∑
wt−1:α(i,Ii,1)=1

Pt−1−i,α(wt−1)KL
(
Bwt−1

,B′wt−1

)
,

where Bwt−1
and B′wt−1

are sums of m Bernoulli distributions with parameters in {1/2, 1/2− ε} and such
that the number of Bernoullis with parameter 1/2 in Bwt−1

is equal to the number of Bernoullis with
parameter 1/2 in B′wt−1

plus one. Now using Lemma B.2 (see below) we obtain,

KL
(
Bwt−1

,B′wt−1

)
≤ 8 ε2

(1− 4ε2)m
.

In particular, this gives

KL(Pn−i,α,Pnα) ≤ 8 ε2

(1− 4ε2)m
E−i,α

n∑
t=1

1α(i,Ii,t)=1 =
8 ε2n

(1− 4ε2)m
P−i,α(1).

Summing and plugging this into (15) we obtain (again thanks to (14)), for ε ≤ 1√
8
,

1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+ ε

√
8n

d
.

To conclude the proof of (12) for deterministic players one needs to plug this last equation in (13) along
with straightforward computations.

Fourth step: Fubini’s theorem to handle non-deterministic players.

Consider now a randomized player, and let Erand denote the expectation with respect to the random-
ization of the player. Then one has (thanks to Fubini’s theorem),

1

(d/m)m

∑
α∈A

E
n∑
t=1

(aTt zt − αT z) = Erand
1

(d/m)m

∑
α∈A

Eα
n∑
t=1

(aTt zt − αT z).
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Now note that if we fix the realization of the forecaster’s randomization then the results of the previous
steps apply and, in particular, one can lower bound 1

(d/m)m

∑
α∈A Eα

∑n
t=1(aTt zt − αT z) as before (note

that α is the optimal action in expectation against the α-adversary). �

Appendix A. Proof of Theorem 2.3. The first step of the proof is a simple lemma, see Kalai
and Vempala [21].

Lemma A.1 Let ` : Rd × Rd → R be a loss function and

a∗t = argmin
a∈A

t∑
s=1

`(a, zt).

Then one has
n∑
t=1

`(a∗t , zt) ≤
n∑
t=1

`(a∗n, zt).

We can now prove the theorem.

Proof. Let

a∗t = argmin
a∈A

(
ξ1 +

t∑
s=1

zs

)T
a.

Using Lemma A.1 with

`(a, zt) =

{
(ξ1 + z1)Ta1 if t = 1,

zTt a if t > 1,

one obtains that for any u ∈ A,

ξT1 a
∗
1 +

n∑
t=1

zTt a
∗
t ≤ ξT1 u+

n∑
t=1

zTt u.

In particular, we get

E
n∑
t=1

zTt (a∗t − u) ≤ m

2η
.

Now let

ãt = argmin
a∈A

(
ξt +

t∑
s=1

zs

)T
a.

Since the adversary is oblivious, ãt has the same distribution as a∗t . In particular, we have EzTt a∗t = EzTt ãt,
which implies

E
n∑
t=1

zTt (ãt − u) ≤ m

2η
.

To conclude, it suffices to show that EzTt (at − ãt) ≤ ηmd. Let

h(ξ) = zTt

argmin
a∈A

(
ξ +

t−1∑
s=1

zs

)T
a

 .

Then one has

EzTt (at − ãt) = Eh(ξt)− Eh(ξt + zt)

= ηd
∫
ξ∈[0,1/η]d

h(ξ)dξ − ηd
∫
ξ∈zt+[0,1/η]d

h(ξ)dξ

≤ mηd
∫
ξ∈[0,1/η]d\{zt+[0,1/η]d}

= mP (∃i ∈ {1, . . . , d} : ξ1(i) ≤ zt(i))
≤ ηmd.

�
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Appendix B. Technical lemmas.

Lemma B.1 For any k ∈ N∗, for any 1 ≤ c ≤ 2, we have∑k
i=0(1− i/k)

(
k
i

)2
ci∑k

i=0

(
k
i

)2
ci

≥ 1/3.

Proof. Let f(c) denote the expression on the left-hand side of the inequality. Introduce the random

variable X, which is equal to i ∈ {0, . . . , k} with probability
(
k
i

)2
ci
/∑k

j=0

(
k
j

)2
cj . We have f ′(c) =

1
cE[X(1 − X/k)] − 1

cE(X)E(1 − X/k) = − 1
ckVarX ≤ 0. So the function f is decreasing on [1, 2], and

therefore it suffices to consider c = 2. Numerator and denominator of the left-hand side differ only by
the factor 1− i/k. A lower bound for the left-hand side can thus be obtained by showing that the terms
for i close to k are not essential to the value of the denominator. To prove this, we may use Stirling’s
formula which implies that for any k ≥ 2 and i ∈ [1, k − 1],(k

i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e−1/6 <

(
k

i

)
<
(k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e1/12,

hence (k
i

)2i( k

k − i

)2(k−i) ke−1/3

2πi(k − i)
<

(
k

i

)2

<
(k
i

)2i( k

k − i

)2(k−i) ke1/6
2πi

.

Introduce λ = i/k and χ(λ) = 2λ

λ2λ(1−λ)2(1−λ) . We have

[χ(λ)]k
2e−1/3

πk
<

(
k

i

)2

2i < [χ(λ)]k
e1/6

2πλ
. (16)

Lemma B.1 can be numerically verified for k ≤ 106. We now consider k > 106. For λ ≥ 0.666, since

the function χ can be shown to be decreasing on [0.666, 1], the inequality
(
k
i

)2
2i < [χ(0.666)]k e1/6

2×0.666×π
holds. We have χ(0.657)/χ(0.666) > 1.0002. Consequently, for k > 106, we have [χ(0.666)]k < 0.001 ×
[χ(0.657)]k/k2. So for λ ≥ 0.666 and k > 106, we have(

k

i

)2

2i < 0.001× [χ(0.657)]k
e1/6

2π × 0.666× k2
< [χ(0.657)]k

2e−1/3

1000πk2

= min
λ∈[0.656,0.657]

[χ(λ)]k
2e−1/3

1000πk2

<
1

1000k
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i , (17)

where the last inequality comes from (16) and the fact that there exists i ∈ {1, . . . , k − 1} such that
i/k ∈ [0.656, 0.657]. Inequality (17) implies that for any i ∈ {1, . . . , k}, we have∑

5
6k≤i≤k

(
k

i

)2

2i <
1

1000
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i <
1

1000

∑
0≤i<0.666k

(
k

i

)2

2i.

To conclude, introducing A =
∑

0≤i<0.666k

(
k
i

)2
2i, we have∑k

i=0(1− i/k)
(
k
i

)(
k
k−i
)
2i∑k

i=0

(
k
i

)(
k
k−i
)
2i

>
(1− 0.666)A

A+ 0.001A
≥ 1

3
.

�

Lemma B.2 Let ` and n be integers with 1
2 ≤

n
2 ≤ ` ≤ n. Let p, p′, q, p1, . . . , pn be real numbers in (0, 1)

with q ∈ {p, p′}, p1 = · · · = p` = q and p`+1 = · · · = pn. Let B (resp. B′) be the sum of n+ 1 independent
Bernoulli distributions with parameters p, p1, . . . , pn (resp. p′, p1, . . . , pn). We have

KL(B,B′) ≤ 2(p′ − p)2

(1− p′)(n+ 2)q
.
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Proof. Let Z,Z ′, Z1, . . . , Zn be independent Bernoulli distributions with parameters p, p′, p1, . . . , pn.
Define S =

∑`
i=1 Zi, T =

∑n
i=`+1 Zi and V = Z +S. By a slight abuse of notation, merging in the same

notation the distribution and the random variable, we have

KL(B,B′) = KL
(
(Z + S) + T, (Z ′ + S) + T

)
≤ KL

(
(Z + S, T ), (Z ′ + S, T )

)
= KL

(
Z + S,Z ′ + S

)
.

Let sk = P(S = k) for k = −1, 0, . . . , `+ 1. Using the equalities

sk =

(
`

k

)
qk(1 − q)`−k =

q

1− q
`− k + 1

k

(
`

k − 1

)
qk−1(1 − q)`−k+1 =

q

1− q
`− k + 1

k
sk−1,

which holds for 1 ≤ k ≤ `+ 1, we obtain

KL(Z + S,Z ′ + S) =

`+1∑
k=0

P(V = k) log

(
P(Z + S = k)

P(Z ′ + S = k)

)

=

`+1∑
k=0

P(V = k) log

(
psk−1 + (1− p)sk
p′sk−1 + (1− p′)sk

)

=

`+1∑
k=0

P(V = k) log

(
p 1−q

q k + (1− p)(`− k + 1)

p′ 1−qq k + (1− p′)(`− k + 1)

)
= E log

(
(p− q)V + (1− p)q(`+ 1)

(p′ − q)V + (1− p′)q(`+ 1)

)
. (18)

First case: q = p′.
By Jensen’s inequality, using that EV = p′(`+ 1) + p− p′ in this case, we get

KL(Z + S,Z ′ + S) ≤ log

(
(p− p′)E(V ) + (1− p)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
(p− p′)2 + (1− p′)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
1 +

(p− p′)2

(1− p′)p′(`+ 1)

)
≤ (p− p′)2

(1− p′)p′(`+ 1)
.

Second case: q = p.
In this case, V is a binomial distribution with parameters `+ 1 and p. From (18), we have

KL(Z + S,Z ′ + S) ≤ −E log

(
(p′ − p)V + (1− p′)p(`+ 1)

(1− p)p(`+ 1)

)
≤ −E log

(
1 +

(p′ − p)(V − EV )

(1− p)p(`+ 1)

)
. (19)

To conclude, we will use the following lemma.

Lemma B.3 The following inequality holds for any x ≥ x0 with x0 ∈ (0, 1):

− log(x) ≤ −(x− 1) +
(x− 1)2

2x0
.

Proof. Introduce f(x) = −(x − 1) + (x−1)2
2x0

+ log(x). We have f ′(x) = −1 + x−1
x0

+ 1
x , and

f ′′(x) = 1
x0
− 1

x2 . From f ′(x0) = 0, we get that f ′ is negative on (x0, 1) and positive on (1,+∞). This
leads to f nonnegative on [x0,+∞). �

Finally, from Lemma B.3 and (19), using x0 = 1−p′
1−p , we obtain

KL(Z + S,Z ′ + S) ≤
(

p′ − p
(1− p)p(`+ 1)

)2E[(V − EV )2]

2x0

=

(
p′ − p

(1− p)p(`+ 1)

)2
(`+ 1)p(1− p)2

2(1− p′)

=
(p′ − p)2

2(1− p′)(`+ 1)p
.
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