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Abstract

We introduce a class of partial correlation network models with a community

structure for large panels of time series. In the model, the series are partitioned

into latent groups such that correlation is higher within groups than between them.

We then propose an algorithm that allows one to detect the communities using

the eigenvectors of the sample covariance matrix. We study the properties of the

procedure and establish its consistency. The methodology is used to study real

activity clustering in the U.S..
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1 Introduction

Network analysis has become an active �eld of research in time series econometrics

(Hautsch, Schaumburg, and Schienle, 2015; Diebold and Y�lmaz, 2014). Contributions

in this area focus on developing methods to learn the interdependence structure of large

multivariate systems. This is often achieved by assuming sparsity in the dependence

structure of the system and relying on sparse estimation methods (Kock and Callot,

2015; Medeiros and Mendes, 2016).

In the analysis of real-world networks it is often found that the vertices are partitioned

into groups such that the concentration of linkages depends on whether they belong to the

same group or not. This empirical regularity is called community structure or clustering.

A popular model used to study this type of networks is the Stochastic Block Model (SBM)

(Holland, Laskey, and Leinhardt, 1983). The SBM is a random graph, that is, a graph in

which the vertices are �xed and the edges are determined randomly and independently by

Bernoulli trials (Chung and Lu, 2006). In the simplest version of the model, the vertices

are partitioned into groups and the probability of an edge between two vertices is p if

they belong to the same group and q otherwise. It is typically assumed that p > q so the

vertices are more likely to be linked within the same group. This feature is referred to as

homophily and has been frequently observed empirically (McPherson, Smith-Lovin, and

Cook, 2001).

In this work we introduce a class of partial correlation network models with a com-

munity structure for large panels of time series. In the model, the series are partitioned

into latent groups such that correlation is higher within groups than between them. This

is achieved by letting the partial correlation structure of the n series in the panel be

determined by a latent graph de�ned over n vertices: The i-th and j-th time series have

zero partial correlation if and only if vertices i and j are not joined by an edge. The graph

that determines the partial correlation structure is a generalised version of the SBM.

A natural question that arises in this setting is how to detect the communities of

the model from a sample of T observations. An extensive literature (Fortunato, 2010)

deals with the problem of community detection when the network structure of the data is
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observable. An example of a popular community detection algorithm is spectral cluster-

ing, which uses the eigenvectors of the graph Laplacian to detect community structure.

In our framework, community detection is more challenging as the network structure of

the data is not observed. Motivated by spectral clustering methods (Ng, Jordan, and

Weiss, 2001; von Luxburg, 2007), we propose a community detection procedure called

Blockbuster in which spectral clustering is applied to the sample covariance matrix of the

observations. In particular, the algorithm applies k-means clustering to a matrix whose

columns are the rescaled eigenvectors corresponding to the k largest eigenvalues of the

sample covariance matrix. The k-means partition of the rows of the rescaled eigenvector

matrix is the estimate of the community partition.

We establish that Blockbuster consistently detects the communities when the number

of observations and the dimension of the panel are su�ciently large. More precisely, our

key result establishes a bound on the fraction of vertices that the algorithm misclusters

in a similar fashion to Rohe, Chatterjee, and Yu (2011) and shows that it is close to zero

with high probability when n and T are large enough, provided that n/T is small.

We consider an extension of our model in which the time series in the panel are

in�uenced by a set of common factors. Panels of economic and �nancial time series

typically exhibit evidence of a factor structure and an extensive literature has developed

around factor models (Forni, Hallin, Lippi, and Reichlin, 2000; Bai and Ng, 2013). We

introduce a variant of our algorithm that consistently detects communities in this setting.

Moreover, we introduce a regularised covariance estimator based on the algorithm,

motivated by the block covariance structure of the model introduced in this work. The

estimator takes a block-structured form where the diagonal blocks are the sample co-

variance matrices of each community, while thresholding is applied to the o�-diagonal

blocks. The analysis of the theoretical properties of this estimator is beyond the scope of

the paper, but we use it in an out-of-sample forecast validation exercise.

A natural application of our methodology is to study business cycle synchronisation

(Hamilton and Owyang, 2012; Leiva-Leon, 2017), where it is of interest to �nd regions

that co-move closely over the business cycle (Francis, Owyang, and Savascin, 2017). We
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apply our methodology to analyse a dataset constructed by Hamilton and Owyang (2012),

comprising quarterly employment growth rates at the state-level for the U.S. from 1956-

Q2 to 2007-Q4. Blockbuster delivers a meaningful partition of the states. In particular,

the U.S. communities bear close resemblance to previously published results by Hamilton

and Owyang (2012). We also carry out an out-of-sample validation exercise and show

that the Blockbuster covariance regularisation procedure improves covariance prediction

compared to a number of alternative procedures.

This work is related to several di�erent strands of the literature. First, the litera-

ture on estimation of sparse high-dimensional network models, see for example Demirer,

Diebold, Liu, and Yilmaz (2018), Barigozzi and Brownlees (2019). Second, the literature

on SBMs and community detection, see amongst others Abbe, Bandeira, and Hall (2016),

Sarkar and Bickel (2015), Arias-Castro and Verzelen (2014) and Jin (2015). Our main

contribution with respect to this literature consists of extending the theory of SBMs to a

setting in which the random graph is not observed, under more general assumptions that

are better tailored for economic applications. Third, the literature on identifying latent

group structures in econometrics. Some examples of papers in this area are Hamilton and

Owyang (2012), Ando and Bai (2016), Francis et al. (2017), Su, Shi, and Phillips (2016),

Bonhomme and Manresa (2015). Fourth, the literature on identi�cation of network ef-

fects in panel models, see, among others de Paula (2017). Last, this paper is related to

Gudmundsson (2018) where the community detection problem is studied in the context

of large dimensional Vector Autoregressions.

Section 2 introduces the methodology. Proofs of the main theoretical results are in the

Appendix, together with further empirical results. In Section 3 we conduct a simulation

study and Section 4 is the empirical application. Concluding remarks follow in Section 5.

2 Methodology

We introduce a model for an n-dimensional random vector Yt = (Y1t, . . . , Ynt)
′. The key

feature of the model is that the interdependence structure of the components of Yt is
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determined by a latent random graph G that is endowed with a community structure.

A number of de�nitions relating to graphs and random graphs have to be laid out

before introducing the model. Throughout the paper we use the term graph to refer to

an undirected weighted graph. An undirected weighted graph is a triplet (V , E ,W) where

V = {1, . . . , n} is the vertex set, E ⊂ V×V is the edge set andW is the set of edge weights.

For an edge weight wij ∈ W , we have wij > 0 if (i, j) ∈ E and wij = 0 otherwise. As the

graph is undirected, we have wij = wji. In order to represent the structure of a graph

it is useful to introduce the adjacency, degree and Laplacian matrices. The adjacency

matrix A of a graph is de�ned as an n× n matrix with the (i, j)-th element [A]ij equal

to wij. Let di denote the degree of vertex i, that is, di =
∑n

j=1[A]ij. We de�ne the degree

matrix D as an n × n diagonal matrix with element [D]ii = di. Finally, the symmetric

degree-normalised Laplacian is de�ned as L = In −D−1/2AD−1/2 where In is the n × n

identity matrix. Note that both the adjacency matrix and the Laplacian are symmetric.

Finally, in this paper a random graph is a graph in which the vertex set V is �xed whereas

the existence of an edge in E is determined by a Bernoulli trial, independently of all other

edges.

We assume that the latent network G is generated by a generalised version of the

popular stochastic block model. The stochastic block model (Holland et al., 1983) is

an extension of the Erd®s-Rényi random graph in which the vertex set V is partitioned

into k subsets V1, . . .Vk, typically referred to as communities. An edge is present between

vertices i and j with probability ps if both vertices belong to Vs and probability qsv if they

belong to Vs and Vv, respectively, with s 6= v. Figure 1 gives an example of a stochastic

block model with n = 50, k = 2, ps = p = 0.25 and qsv = q = 0.01. In the stochastic block

model, all vertices within a given community have the same expected degree and edges

are unweighted. In our framework this turns out to be a rather restrictive assumption.

We therefore assume that G is generated by a weighted and degree-corrected stochastic

block model (Karrer and Newman, 2011), an extension of the stochastic block model

that allows for a general degree distribution as well as weighted edges. We call this the

Generalised Stochastic Block Model (GSBM) and formally de�ne it as follows.
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De�nition 1 (Generalised Stochastic Block Model). Let Z be the n × k community

membership matrix, such that [Z]is = 1 if vertex i belongs to community s and zero

otherwise. Each vertex belongs to exactly one community, so for all i,
∑

s[Z]is = 1. Let

B be the symmetric k × k matrix of community-speci�c edge probabilities and let Θ be

the n × n diagonal matrix of non-negative, �xed and unknown vertex-speci�c probability

weights. Let W be an n × n symmetric matrix where each element [W]ij is a random

variable supported on the interval [w,w] with 0 < w ≤ w, and expected value µ.

In a Generalised Stochastic Block Model the probability of an edge between vertices

i and j that belong to communities s and v, respectively, is [Θ]ii[B]sv[Θ]jj ≤ 1 and all

edges are independent. Furthermore, each edge (i, j) is associated with a weight [W]ij

which is drawn independently of all other weights, and all edges. It is convenient to write

G ∼ GSBM (Z,B,Θ,W) , (1)

to indicate that a random graph G is a Generalised Stochastic Block Model.

Notice that the matrix Z de�nes the community partition Vk = {V1, . . .Vk} of the

vertex set V .1 We let ns = |Vs| denote the size of community s. We may assume that the

elements of V1 are the �rst n1 elements of V , the elements of V2 the next n2, and so on. The

probability of an edge between vertices i and j that belong, respectively, to communities

s and v is [Θ]ii[B]sv[Θ]jj. The matrix B contains the community-speci�c component of

the edge probabilities whereas the matrix Θ contains the vertex-speci�c component. This

allows vertices that belong to the same community to have di�erent expected degrees. As

Θ and B are only unique up to a multiplicative constant, we normalise [Θ]ii to sum to

one within communities, that is,
∑

i∈Vs [Θ]ii = 1 for all s = 1, . . . , k (Karrer and Newman,

2011). Last, the random matrix W contains the weights associated with the edges. We

allow entries of W to be heterogeneous yet with the same expected value µ.

1We assume with no loss of generality that there are no empty communities.
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Figure 1: The Stochastic Block Model

The �gure shows a realisation of a stochastic block model with n = 50, k = 2, p = 0.25 and q = 0.01.

In this work the interdependence structure of the random vector Yt (t ∈ {1, . . . , T})

is characterised by partial correlations. We assume, without loss of generality, that for

all t, Yt is mean zero with covariance matrix Σ = E [YtY
′
t ]. The partial correlation

between Yit and Yjt measures the linear dependence between the two variables after

partialling out the in�uence of the remaining variables in the panel. We formally de�ne

it as ρij = Corr(eit, ejt), where eit and ejt are the prediction errors of the best linear

predictors of Yit and Yjt, respectively, based on {Yst : 1 ≤ s 6= i, j ≤ n}. It is well known

that the linear partial dependence structure of the system is embedded in the inverse

of the covariance matrix K = Σ−1 (Dempster, 1972), which we refer to as the precision

matrix hereafter. In fact we have that the elements of the precision matrix [K]ij are

related to the partial correlations through the identity

ρij = − [K]ij√
[K]ii[K]jj

, i 6= j .

The derivation of this identity may be found, for example, in Pourahmadi (2013, Section

5.2). The precision matrix and the partial correlations of Yt thus share the same sparsity

structure: The (i, j)-th element of K is zero if and only if Yit and Yjt have zero partial

correlation. If Yt is Gaussian, a zero partial correlation between Yit and Yjt implies their

conditional independence given the remaining components of Yt.

We introduce a model in which the partial correlation structure of the random vector

Yt is determined by a latent GSBM G. We assume that the precision matrix K is a
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function of the Laplacian L of the latent graph G through the equation

K =
1

σ2
In +

φ

σ2
L, (2)

where σ2 > 0 and φ ≥ 0 are the network variance and dependence parameters.

A number of comments on the speci�cation in (2) are in order. First, it follows from

the properties of the Laplacian that K is guaranteed to be symmetric and positive de�nite.

Note that while it may be natural to make the precision matrix equal to (an appropriately

rescaled version of) the Laplacian only, this would deliver a precision matrix that is not

positive de�nite, as the Laplacian always has at least one zero eigenvalue. Adding the

identity matrix in (2) is a natural way to ensure that all the eigenvalues of K are positive

while preserving the eigenvector structure implied by L. Second, the model is speci�ed in

a way such that the graph G determines the partial correlation structure of the vector Yt.

In fact, we have that ρij is non-zero if and only if i and j are joined by an edge in G. Third,

it is instructive to report the partial correlations and regression representation implied

by the model. It follows from the basic properties of the precision matrix (Pourahmadi,

2013, Section 5.2) that the partial correlation coe�cient for variables i and j is

ρij =
φ

1 + φ

wij√
didj

,

and that the regression representation of the components of Yt is given by

Yit =
∑
j∈N(i)

βijYjt + εit, βij =
φ

1 + φ

wij√
didj

, Var(εit) =
σ2

(1 + φ)
, (3)

where N(i) is the set of vertices that have edges with i and we disallow self-loops for

clarity. The formula in (3) implies that the realisations of the i-th component of Yt can

be represented as a weighted average of its neighbours in G plus an idiosyncratic shock.

We remark that while specifying a precise functional form for the relation between G

and K is clearly quite restrictive, the speci�cation allows for a fair amount of �exibility

in that each regression coe�cient βij is a function of the pair speci�c weight wij. In
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the equation of the βij coe�cients we have that the pair speci�c weight wij is rescaled

by the square root of the product of the degrees of i and j. Note that in general some

appropriate form of rescaling is required when the weights wij are arbitrarily chosen in

order to ensure that the covariance matrix implied by the model is positive de�nite. We

point out that in our framework we impose the weights to be positive, which implies that

the partial correlations of the model are non-negative. It is possible to relax this, however,

the fraction of negative weights would have to be appropriately controlled to ensure the

positive de�niteness of K. We leave this for future research. Barigozzi and Brownlees

(2019) and Brownlees, Nualart, and Sun (2018) document that the fraction of negative

partial correlations estimated in network models for economic panels is negligible, so this

assumption has some empirical justi�cation. Last, we also point out that the model

in (3) may be interpreted as a spatial lag model with spatial autoregressive coe�cient

φ/(1 + φ) ∈ [0, 1) and spatial weight matrix D−1/2WD−1/2.2

We conclude with the formal de�nition of our partial correlation network model.

De�nition 2 (Stochastic Block Partial Correlation Model). Let G ∼ GSBM (Z,B,Θ,W)

be a Generalised Stochastic Block Model as in De�nition 1. Let K be the n× n precision

matrix corresponding to the random graph G, de�ned as in (2). In a Stochastic Block

Partial Correlation Model, the n-dimensional stationary stochastic process {Yt} is such

that, for all t, Yt has mean zero and covariance matrix Σ = K−1.

2.1 The Blockbuster Algorithm

Suppose we observe a sample Y1, . . . ,YT of observations from the model in De�nition 2

arranged into the T×nmatrix Y = [Y1, . . . ,YT ]′, and let k be the number of communities.

The community structure of the model is assumed to be unknown, although we assume

that k is known. We adapt spectral clustering techniques (Ng et al., 2001) to detect

the communities of the model from the sample in a procedure we call Blockbuster. The

2A spatial lag (or spatial autoregressive) model (Anselin, 2007) for a random vector Yt is given by

Yt = ρWYt−1 + εt ,

where ρ is called spatial autoregressive coe�cient and W is called spatial weight matrix.
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proposed algorithm detects the communities using the rescaled eigenvectors of the sample

covariance matrix. An important feature of the algorithm is that it allows one to detect

the communities without estimating the network structure of the data.

We provide a description of Blockbuster in Algorithm 1. Given the sample and the

number of communities k, �rst construct the n × k matrix Û of the eigenvectors corre-

sponding to the k largest eigenvalues of the sample covariance matrix Σ̂ = (1/T )Y′Y.3

We refer to this matrix as the matrix of partitioning eigenvectors. Then form the matrix

X̂ by normalising the rows of Û to unit length, that is, X̂ = N̂Û where N̂ is an n×n di-

agonal matrix with its i-th element [N̂]ii = 1/
∥∥∥[Û]i•

∥∥∥ and
∥∥∥[Û]i•

∥∥∥ is the Euclidean norm

of [Û]i•, the i-th row of Û. The algorithm then applies k-means clustering to the rows of

X̂. The k-means algorithm partitions a set of data points into k clusters by solving

min
{m1,...,mk}

n∑
i=1

min
s
‖[X̂]i• −ms‖2. (4)

Let m∗s ∈ Rk be the vectors that solve the problem.45 These vectors are called the

centroids of the clusters returned by k-means. Each row [X̂]i• is then assigned to the

cluster corresponding to the centroid closest to it. This yields a partition of the vertex

set V̂k = {V̂1, . . . , V̂k}, which is our estimator of the community partition Vk.

2.2 Theory

In this section we show that the fraction of vertices that are incorrectly clustered by

Blockbuster is close to zero with probability close to one when the cross-sectional dimen-

sion n and the number of observations T are large enough, provided n/T is small. The

proofs of this section are collected in the Appendix A.

We introduce additional notation to be used throughout. Let ‖A‖ and ‖A‖F denote

the spectral and Frobenius norms of the n × n matrix A, respectively. We denote the

3If the k-th and k + 1-th are tied, we may take both.
4The solution is not necessarily unique. We letm∗s be some set of vectors that achieve the minimum.
5The exact solution is NP hard and the standard approximation to it is prone to local minima, which

may be arbitrarily far from the solution. We use k-means++ which guarantees an approximation within
a factor of O (log k) of the optimum. For simplicity of discussion, we assume that the minimum is
computed. All theoretical �ndings remain true for k-means++.
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Algorithm 1 The Blockbuster Algorithm

Input: Sample Yt for t = 1, . . . , T , number of communities k.

Procedure:

1. Compute the sample covariance matrix Σ̂.

2. Construct the [n×k] eigenvector matrix Û such that its columns are the eigenvectors

corresponding to the k largest eigenvalues of Σ̂.

3. Standardise each row of Û by its norm and denote the row-normalised eigenvector

matrix by X̂, so that [X̂]ij = [Û]ij/
∥∥∥[Û]i•

∥∥∥.
4. Apply the k-means algorithm to the rows of X̂.

Output: The k-means partition V̂k = {V̂1, . . . , V̂k}.

i-th smallest eigenvalue of A as λi(A). Notice that we use the convention λ1(A) ≤ · · · ≤

λn(A). We refer to the eigenvectors corresponding to the k largest (smallest) eigenvalues

of A as its k top (bottom) eigenvectors, counting multiplicities. By f(n) = O (g(n)) we

mean that there exist a real numberM > 0 and a real number n0 such that for all n ≥ n0

we have |f(n)| ≤ M |g(n)|. Similarly, f(n) = Ω (g(n)) means |f(n)| ≥ M |g(n)| for all

n ≥ n0 and M > 0. We refer to an event that happens with probability approaching one

as an event that happens with high probability.

De�ne A = E[A] as the population adjacency matrix of the graph G. Notice that if

G ∼ GSBM (Z,B,Θ,W) we may decompose the population adjacency matrix as A =

µΘZBZ′Θ. We also de�ne the population degree matrix D as the diagonal matrix with

[D]ii =
∑n

j=1[A]ij, the population normalised Laplacian L = In − D−1/2AD−1/2 and the

population precision matrix K = 1
σ2 In+ φ

σ2L, analogously to D, L and K. Let U and U be

the n× k matrices of the bottom k eigenvectors of K and K, respectively. De�ne N and

N as n× n diagonal matrices with [N]ii = ‖[U]i•‖−1 and [N ]ii = ‖[U ]i•‖−1, respectively.

Last, X = NU and X = NU are the row-normalised counterparts of U and U .

In our framework only the time series Y1, . . . ,YT are observed and the community

detection is based on the eigenvectors of the sample precision matrix K̂ = Σ̂−1. Notice

that in our framework two layers of randomness are present. First, the precision matrix K

di�ers from the population precision matrix K because of the randomness of the graph G.
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Second, the sample precision matrix K̂ di�ers from K because of sampling uncertainty

of the data Y1, . . . ,YT . It is important to remind readers familiar with network data

inference that in our framework the random graph G and thus K are unobserved.

We begin by establishing that the population precision matrix K allows one to trivially

retrieve the communities of the random graph G. To establish this result we require the

following assumptions on the random graph.

Assumption 1. We assume that (i) B is symmetric and positive de�nite and (ii) all the

elements of B are proportional to the common rate variable ρn, with ρn = Ω (log(n)/n).

The �rst assumption implies the invertibility of B, so that all k communities are

distinguishable.6 As an example, consider the simple version of the model where ps = p

and qsv = q for all s 6= v. Then this assumption simply requires p > q. It is natural to

characterise the behaviour of a random graph when n grows as a function of the edge

probabilities in B. The second assumption requires the probabilities to be at least of

the order log(n)/n, which is termed the semi-sparse regime by Sarkar and Bickel (2015).

This is the sparsest regime where exact recovery of the communities is possible (Abbe

et al., 2016), even with the network fully observed.

The following lemma is an extension of Lemma 3.3 from Qin and Rohe (2013).

Lemma 1. Let G ∼ GSBM (Z,B,Θ,W) be a Generalised Stochastic Block Model as in

De�nition 1. Let K be the population precision matrix, U the matrix of its bottom k

eigenvectors and X the row-normalised counterpart of U . Suppose Assumption 1 holds.

Then λi(K) = (1 + φ)/σ2 for all i = k + 1, . . . , n and λi (K) ∈ [1/σ2, (1 + φ)/σ2) for

i = 1, . . . , k. Furthermore, there exists a k×k orthonormal matrix V such that X = ZV.

In particular, the lemma implies [X ]i• = [X ]j• if and only if [Z]i• = [Z]j•, so the

rows corresponding to two vertices that belong to the same community are equal in X .

Hence there are only k di�erent rows in X and if k-means was to be applied then it

would trivially recover the partition Vk from X by selecting each of the di�erent rows as

centroids.

6In fact, we can easily allow B to be negative de�nite. This corresponds to a bipartite graph with a
heterophilic community structure (Rohe et al., 2011), but we do not pursue this here.
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We proceed by showing that the sample row-normalised eigenvector matrix X̂ associ-

ated with K̂ is concentrated around its population counterpart X . To this end, we require

appropriate mixing and distributional assumptions. We derive the result conditional on

the random graph G. This is justi�ed by the fact that observing a single random graph suf-

�ces in random graph concentration results like those of Oliveira (2009), provided that n is

large enough. We formulate our assumptions on the sequence of isotropic random vectors

Σ−1/2Yt.
7 Let Br−∞ and B∞r+m be the σ-algebras generated by {Σ−1/2Yt : −∞ ≤ t ≤ r}

and {Σ−1/2Yt : r+m ≤ t ≤ ∞}, respectively. De�ne the α-mixing coe�cients of the pro-

cess as α(m) = supr supA∈Br−∞,B∈B∞r+m|P (A ∩B|G)− P (A|G)P (B|G)|. We assume that

the process {Yt} satis�es the following assumptions.

Assumption 2. Let {Yt} be a zero-mean stationary process with covariance matrix Σ =

E[YtY
′
t ]. We assume that (i) {Σ−1/2Yt} is strongly mixing with mixing coe�cients satis-

fying α(m) ≤ e−c1m
γ1 for any positive integer m, where γ1, c1 > 0 are constants; (ii) for

any vector x with ‖x‖ = 1 and for any s > 0, supt>0 P
(∣∣x′Σ−1/2Yt∣∣ > s

∣∣G) ≤ c3e
−(s/c2)γ2 ,

where γ2, c2, c3 > 0 are constants; and (iii) γ < 1 where 1/γ = 1/γ1 + 1/γ2.

The assumptions allow us to apply the concentration inequality of Merlevède, Peligrad,

and Rio (2011) to the sample covariance matrix Σ̂, which plays a key role in the following

theorem. The second assumption imposes generalised exponential tails on the distribution

of the isotropic vectors Σ−1/2Yt. In particular, this implies that the elements of the vector

have generalised exponential tails similar to what Fan, Liao, and Mincheva (2013) assume.

Theorem 1 establishes the concentration of the sample row-normalised eigenvectors.

Theorem 1 (Concentration). Let Yt for t = 1, . . . , T be observations from an SBPCM

as in De�nition 2. Let Û the matrix of the bottom k eigenvectors of the sample precision

matrix K̂ and X̂ its row-normalised counterpart. Let U and X be as in Lemma 1. Suppose

Assumptions 1 and 2 hold. If T = Ω
(
n2/γ−1), there exists a k × k orthonormal rotation

matrix O, that depends on X̂ and X , such that with, high probability,

∥∥∥X̂−XO∥∥∥ = O

(
n√
T

+

√
log n

ρn

)
.

7Notice that {Σ−1/2Yt} is a sequence of isotropic random vectors as E
[
Σ−1/2YtY

′
t Σ−1/2

∣∣G] = In.
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A number of remarks are in order. First, the theorem establishes the concentration

of the sample row-normalised eigenvectors X̂ around their population analogue X , up to

a rotation. The rotation is required because K̂ = K does not necessarily imply Û = U .

In particular, O is a k× k orthonormal rotation matrix obtained from the singular value

decomposition of U ′Û. Second, the number of observations T is required to be larger

than the cross-sectional dimension n. The more fat-tailed and dependent the data are (γ

closer to 1), the larger T has to be. Last, we remark that the concentration rate of the

theorem does not depend on the φ and σ2 parameters of the GSBM.

To bound the fraction of misclustered vertices, we follow the strategy of Rohe et al.

(2011). We begin by noting that the k-means objective function of (4) can be written as

min
{m1,...,mk}

n∑
i=1

min
s
‖[X̂]i• −ms‖2 = min

M∈M(n,k)

∥∥∥X̂−M
∥∥∥2
F
,

whereM(n, k) = {M ∈ Rn×k : M has no more than k di�erent rows}. De�ne

Ĉ = argmin
M∈M(n,k)

∥∥∥X̂−M
∥∥∥2
F
, (5)

as the estimated centroid matrix. Its i-th row [Ĉ]i• is equal to the k-means centroid that

is closest to row i of the eigenvector matrix X̂, so that [Ĉ]i• ∈ {m∗1, . . . ,m∗k}. It is clear

that the k-means centroid matrix has no more than k di�erent rows. We similarly de�ne

the population centroid matrix as

C = argmin
M∈M(n,k)

‖XO −M‖2F . (6)

We adopt the same de�nition of misclustered vertices as Rohe et al. (2011) and say

that vertex i is correctly clustered if [Ĉ]i• is closer to [C]i• than any other population

centroid [C]j• for j 6= i. The next lemma provides a condition that implies that vertex

i is correctly clustered. This statement is established in Theorem 4.4 in Qin and Rohe

(2013) (see also Rohe et al. (2011)).

Lemma 2. Let Ĉ be the estimated centroid matrix from (5) and C the population centroid
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matrix from (6). Then
∥∥∥[Ĉ]i• − [C]i•

∥∥∥ < ∥∥∥[Ĉ]i• − [C]j•
∥∥∥ for all j 6= i holds for all i that

satisfy the condition
∥∥∥[Ĉ]i• − [C]i•

∥∥∥ <√1/2.

The lemma justi�es bounding the number of misclustered vertices by the number of

nodes that do not satisfy the condition
∥∥∥[Ĉ]i• − [C]i•

∥∥∥ < √
1/2, which is su�cient for

vertex i to be correctly clustered. De�ne the set

M =
{
i :
∥∥∥[Ĉ]i• − [C]i•

∥∥∥ ≥√1/2
}
. (7)

The set M hence contains the set of all misclustered nodes and its cardinality |M | is thus

an upper bound of the number of misclustered vertices. Finally, Theorem 2 bounds the

fraction |M |/n. The theorem is in the spirit of Theorem 3.1 from Rohe et al. (2011) and

Theorem 4.4 of Qin and Rohe (2013). The theorem shows that the fraction of misclassi�ed

vertices is close to zero with high probability when log n/(nρn) and n/T are close to zero.

Theorem 2 (Misclustered Vertices). Consider an SBPCM as in De�nition 2 and let M

be as in (7). Suppose Assumptions 1 and 2 hold. If T = Ω
(
n2/γ−1), we have with high

probability

|M |
n

= O

(
n

T
+

log n

nρn

)
.

2.3 Discussion

A number of comments on the SBPCM of De�nition 2 and the Blockbuster algorithm

are in order. The model bears some similarities to a factor model with a block structure,

that is, a model in which the variables are generated by a factor model and each variable

loads on exactly one factor (Hallin and Liska, 2011). However, it is typically assumed in

such models that the correlation across blocks is negligible so that the covariance matrix

is approximately diagonal. Assume, for ease of exposition, that ps = p and qsv = q.

Then, a block factor model corresponds to q close to or equal to zero. On the contrary,

we only require p > q in our framework implying that there may be high correlation

between blocks. Furthermore, notice that a block factor model is associated with a

partial correlation network in which each community is a clique, that is, a sub-graph

15



where every possible pair of vertices is joined by an edge. Our model can replicate such

a structure with p = 1 and q = 0, but it also allows for much sparser structures.

Alternative approaches to detect communities when the graph structure is unknown

may be considered. One possibility is to estimate the partial correlation network and

then apply spectral clustering to the estimated network Laplacian. The estimation of the

graphical structure of the data is typically carried out using LASSO techniques, which

requires the selection of a tuning parameter that determines the sparsity of the estimated

network (Meinshausen and Bühlmann, 2006). Note that Meinshausen (2008) shows that

LASSO may not recover the sparsity pattern consistently for some classes of graphical

models. A highlight of our approach is that it allows us to learn the community structure

without estimating the network.

The parameters of the GSBMmay be estimated by pseudo-likelihood methods (Karrer

and Newman, 2011; Amini, Chen, Bickel, and Levina, 2013) if one assumes that the graph

is known. In our setting the graph is unobserved and hence these methods ought to be

appropriately adapted. A possible strategy is to �rst use the GLASSO algorithm (?) to

recover the network structure of the graph.

We point out that the methodology we develop is designed for stationary strongly-

mixing data. The objective of our analysis is to establish that the Blockbuster algorithm

performs well in a time series setting, irrespective of the speci�c time series model that

may have generated the data. That being said, we point out that knowledge of the speci�c

time series structure of the data may be used to improve the algorithm.

Finally, it should be noted that the sample covariance estimator in Blockbuster may be

substituted with other covariance matrix estimators, for example a shrinkage estimator.

By resorting to a shrinkage estimator for the covariance, one may obtain a better rate of

convergence.

2.4 Community Detection in the Presence of Common Factors

We introduce an extension of the SBPCM in which the components of Yt are in�uenced by

common factors, and an algorithm that consistently detects communities in this setting.
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Let Ft be an R-dimensional vector of common factors with mean zero and covariance

matrix IR and let qr be n-dimensional �xed vectors of factor loadings for r = 1, . . . , R.

We assume that the random vector Yt is generated as

Yt = QFt + εt, (8)

where Q = [q1, q2, . . . , qR] is an n×R matrix of factor loadings and εt is generated by an

SBPCM as in De�nition 2, with E [εt|Ft] = 0 and covariance matrix Cov (εt|Ft) = Σε.

We may assume without loss of generality that ‖q1‖ ≥ ‖q2‖ ≥ . . . ≥ ‖qR‖. We de�ne

the SBPCM with common factors as follows.

De�nition 3. Let G ∼ GSBM (Z,B,Θ,W) be a Generalised Stochastic Block Model as

in De�nition 1. Let Kε be the n× n precision matrix corresponding to the random graph

G, de�ned as in (2). In an SBPCM with common factors, the n-dimensional stationary

stochastic process {Yt} is such that, for all t, Yt, de�ned as in (8), has mean zero and

covariance matrix

Σ = K−1ε +
R∑
r=1

qrq
′
r. (9)

Consider a sample drawn from the model in De�nition 3 satisfying Assumption 2,

arranged into a T ×n matrix Y = [Y1, . . . ,YT ]′. Under appropriate conditions, with high

probability, the top R eigenvectors of Σ̂ = (1/T )Y′Y correspond to the R factors and

the next k eigenvectors are the partitioning eigenvectors. This motivates us to propose

the following extension of our algorithm. Given Y and k, construct the n × k matrix

Û such that it contains the eigenvectors corresponding to the (R + 1)-th largest to the

(R + k)-th largest eigenvalues of Σ̂. Then follow steps 3 and 4 of Algorithm 1.

It is convenient to state the results of this section in terms of the precision matrices

rather than covariances. Let Kε be the population precision matrix of ε from (8) and K

be the population precision matrix of Y . Let ui(K) and ui(Kε) for i = 1, . . . , n be their

eigenvectors. De�ne Uε as the n× k matrix of the bottom k eigenvectors of Kε and U as

the matrix of the eigenvectors corresponding to the (R+ 1)-th smallest to the (R+ k)-th

smallest eigenvalues of K, so that [U ]•i = uR+i(K) for i = 1, . . . , k, where [U ]•i refers to

17



the i-th column of U . We impose the following assumptions.

Assumption 3. Let the process {Yt} be an SBPCM as in De�nition 3, satisfying As-

sumption 2. We assume additionally that (i) q′rqv = 0 for all r, v = 1, . . . , R, r 6= v; (ii)

q′r[Uε]•i = 0 for all r = 1, . . . , R and i = 1, . . . , k; and (iii) ‖qR‖2 > σ2φ
1+φ

.

The �rst assumption requires the factor loadings to be mutually orthogonal. The

second implies that the factor loading vectors carry no information on the community

structure nor the degrees of the underlying graph G. We remark that this assumption

is made for simplicity and may be violated in practice. In the Online Appendix we

show through simulations that the procedure performs well even when weak correlation

between the factors and communities is present. The third assumption guarantees that

the factors are strong enough to be dominant in the spectrum of K. Notice that this

assumption is trivially satis�ed for large enough n when the factors are strong and the

norms diverge to in�nity, as in for example Bai and Ng (2013). It is not restrictive in the

case of weak factors either, where the norms of the factor loading vectors are bounded,

see for example Onatski (2012).8

The following is an extension of Theorem 2 which allows for the presence of factors.

Theorem 3 (Misclustered Vertices II). Consider an SBPCM with common factors as

in De�nition 3. Let M be de�ned analogously to (7). Suppose Assumptions 1, 2 and 3

hold. If T = Ω
(
n2/γ−1), we have with high probability

|M |
n

= O

(
n

T
‖Σ‖2 +

log n

nρn

)
.

2.5 Community Structure and Covariance Estimation

The presence of a community structure in a panel suggests a natural covariance estimation

strategy. The covariance matrix may be estimated by a block covariance matrix estimator

where the diagonal blocks contain the sample covariance matrices of each community,

while thresholding is applied to the o�-diagonal blocks (Pourahmadi, 2013, Chapter 6).

We provide a description of an estimator based on this idea in Algorithm 2.

8For further discussion on strong and weak factors, see Chudik, Pesaran, and Tosetti (2011).
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Notice that we may choose a di�erent thresholding parameter for each block of the

covariance matrix in our estimator. This is a reasonable compromise between universal

thresholding (where a single threshold level is chosen for all entries of the matrix) and

adaptive thresholding (where a di�erent threshold level is chosen for each entry) for

panels exhibiting a block covariance structure. In the empirical application we choose

the threshold parameters using an adaptation of the cross-validation criterion of Bickel

and Levina (2008). We emphasise that the criterion does not ensure positive de�niteness

of the resulting covariance estimator. However, this was not a concern in our empirical

exercise for reasonable ranges of the thresholding parameters.

Algorithm 2 Blockbuster Covariance Estimator

Input: Sample Yt for t = 1, . . . , T , number of communities k, threshold parameters λij
for 1 ≤ i 6= j ≤ k.

Procedure:

1. Run the Blockbuster algorithm and obtain an estimate of the community partition
of the panel V̂k = {V̂1, . . . , V̂k}.

2. Re-order the series in the panel so that the �rst n̂1 = |V̂1| series are the ones in

community V̂1, the following n̂2 series are the ones in V̂2, and so on.

3. Let Σ̂sv denote the n̂s× n̂v sample covariance matrix of the series in community V̂s
with the series in community V̂v.

4. The Blockbuster covariance estimator Σ̂B is de�ned as

Σ̂B sv =

{
Σ̂ss s = v,

Tλsv(Σ̂sv) otherwise,

where Σ̂B sv denotes the (s, v)-th n̂s × n̂v block of Σ̂B, and Tλsv

(
Σ̂sv

)
returns Σ̂sv

with the elements that are less than λsv in absolute value set to zero.

Output: Return the Blockbuster covariance Σ̂B.

In case there are common factors present in the panel, as in the model in De�nition 3,

we may employ a regularisation approach similar to POET (Fan et al., 2013). Let λi(Σ̂)

and ui(Σ̂) denote the i-th eigenvalue and eigenvector of the sample covariance matrix.
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Then we can regularise the sample covariance of the data using

Σ̂B =
n∑

i=n−R+1

λi(Σ̂)ui(Σ̂)u′i(Σ̂) + R̂B,

where R is the number of factors and R̂B is the Blockbuster covariance estimator applied

to the residual matrix R̂ =
∑n−R

i=1 λi(Σ̂)ui(Σ̂)u′i(Σ̂). Notice that we apply block-by-

block thresholding to the o�-diagonal blocks of the residual covariance matrix whereas

the standard POET estimator applies universal thresholding to the o�-diagonal elements.

We use this estimator to validate the community partition estimated by Blockbuster out-

of-sample in the empirical application.9

3 Simulation Study

In this section we investigate the �nite-sample properties of the Blockbuster algorithm

with a simulation study. We draw repeated samples of size T from an n-variate diagonal

VAR(1) with coe�cients drawn uniformly from the interval [0,0.9] and i.i.d. innovations

drawn from a Gaussian SBPCM. In particular we rely on the SBPCM with common

factors, with R = 1 factors and k = 5 communities. The edge probabilities are set

to ps = p = cp(log n)1.01/n for all s = 1, . . . , k and qvr = q = cq(log n)1.01/n for all

v, r = 1, . . . , k, v 6= r. We calibrate cp and cq so that when n = 100 the (p, q) pair is

equal to (0.25, 0.01), (0.25, 0.05) or (0.50, 0.01). Note that as the edge probabilities are

functions of n, varying n changes the probabilities. We draw [Θ]ii from a power law

distribution f(x) = αxαm/x
α+1 for x ≥ xm with xm = 0.75 and α = 2.5 and the edge-

weights wij from the interval [0.3, 1] uniformly. The entries of the factor loading vector

q are generated from a standard normal.

We apply the Blockbuster algorithm to each sample to recover the communities. To

measure the quality of the Blockbuster partition V̂k we compare it to Vk by calculating

the hit ratio as the fraction of correctly classi�ed vertices.10 We repeat the Monte Carlo

9The properties of the estimator have not been studied and we leave this question for future research.
10Note that V̂k only estimates Vk up to a permutation. As k is low in our simulations, we calculate

the hit percentage for every possible permutation and select the maximum as the �nal hit ratio.
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experiment 1 000 times for di�erent values of n (50, 100 and 200) and T (50, 100, 200,

500 and 1 000). The results are summarised in Table 1. Panel A of Table 1 shows the

results with φ = 5, whereas panel B shows the results when φ = 50. The �rst two rows

of panel A in Table 1 show that Blockbuster performs quite well when n = 50. If the

probability of within-community edges is high as in the second row, the algorithm has a

82% hit ratio even with a small sample of T = 50. Comparing the second to third rows,

we see that results improve when p is large relative to q. It is also clear that the results

with n = 100 and n = 200 are only better than those with n = 50 when the sample size

is larger, as in the last column of Panel B. For larger n, more samples are required to

consistently estimate the covariance matrix and thus the community partition as Theorem

2 suggests. Additional simulation evidence is reported in the Online Appendix. There

we show that pre-�ltering the time series using an AR(1) before applying Blockbuster

improves detection and that Blockbuster performs satisfactorily in the presence of weak

correlation between the factors and communities.

Table 1: Hit Ratio of Blockbuster

Panel A: φ = 5 Panel B: φ = 50

T = 50 100 200 500 1 000 50 100 200 500 1 000

p/q n = 50 n = 50

0.25/0.01 65.5% 82.1% 90.6% 94.0% 94.7% 81.7% 91.2% 94.4% 94.6% 93.2%
0.50/0.01 82.4% 96.9% 99.7% 99.9% 100.0% 97.0% 99.9% 99.8% 99.9% 99.9%
0.25/0.05 40.9% 43.5% 50.5% 57.8% 61.8% 44.3% 48.0% 52.7% 62.7% 61.6%

n = 100 n = 100

0.25/0.01 49.0% 65.8% 83.0% 92.7% 94.6% 75.1% 88.1% 92.1% 95.0% 94.4%
0.50/0.01 63.6% 87.3% 97.6% 99.7% 99.9% 94.8% 98.9% 99.8% 99.9% 100.0%
0.25/0.05 33.8% 35.8% 38.1% 44.8% 52.5% 35.1% 38.6% 43.9% 53.0% 59.3%

n = 200 n = 200

0.25/0.01 37.2% 46.6% 67.4% 86.4% 94.6% 59.6% 80.3% 89.8% 93.9% 95.7%
0.50/0.01 46.1% 67.7% 88.0% 98.6% 99.7% 82.6% 94.7% 98.8% 99.9% 99.9%
0.25/0.05 29.2% 29.9% 31.1% 35.9% 42.9% 30.2% 31.5% 33.7% 41.6% 51.8%

The table reports hit ratios for Blockbuster algorithm. The probabilities in the rows correspond to n = 100.

4 Empirical Application

We apply our methodology to a panel of state-level real activity growth for the U.S. Our

goal is to group the states into communities characterised by a high degree of interdepen-
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dence. We consider a dataset constructed by Hamilton and Owyang (2012). It consists

of quarterly growth rates of payroll employment for the U.S. states (excluding Alaska

and Hawaii) from the second quarter of 1956 to the fourth of 2007, which results in a

panel of n = 48 time series over T = 207 periods. The data are seasonally adjusted and

annualised.11 See Hamilton and Owyang (2012) for further details.

Hamilton and Owyang (2012) use their dataset to study business cycle synchronic-

ity. We summarise their �ndings for the purpose of comparison, even if their research

question di�ers from the present one. They introduce a Bayesian methodology based on

a Markov-switching model to cluster the states into communities with similar business

cycle timing. They also propose a cross-validation procedure to estimate the number

of communities and �nd evidence of three clusters. We focus on the results where they

use a set of exogenous state level characteristics in addition to the employment growth

rate. They �nd (see right column of �gure 3 in Hamilton and Owyang, 2012) that the

states are partitioned, roughly speaking, into a cluster of oil-producing and agricultural

states, a cluster containing several East Coast states together with California, Arizona

and Colorado, and a cluster containing the remaining states. Note that our results are

not directly comparable with theirs, as we provide point estimates while they provide

community membership posterior probability. Moreover, they use more information than

us as they also take advantage of exogenous explanatory variables. It is also worth point-

ing out that in their results some states have a low posterior probability of belonging to

any cluster, whereas in our algorithm every state is assigned to a community.

We show the results of applying Blockbuster to the entire sample in Figure 2. A scree

plot suggests one common factor, so we apply the extension of our algorithm with R = 1.

The number of communities is set to three as in Hamilton and Owyang (2012). The left

panel of the �gure shows that our results bear interesting similarities to their �ndings.

The dark grey community roughly matches the �rst cluster of Hamilton and Owyang

(2012) and contains oil-producing and agricultural states. The light grey cluster contains

East Coast states, California and Arizona, which roughly corresponds to their third clus-

11We winsorise the data when the growth rates are larger than 20% in absolute value. There are only
three such observations and they all belong to West Virginia. See also Hamilton and Owyang (2012).

22



ter. Finally, the grey cluster contains Mid West states together with Alabama. Notice

that the communities estimated by Blockbuster mostly form geographically contiguous

areas even though no spatial information is given to the algorithm.12 The right panel of

Figure 2 shows a heatmap of the correlation matrix of the panel conditional on the factor

where the series are ordered according to their community membership.13 Series in the

same community are positively correlated in the vast majority of cases and the intra-

community correlation is larger than the inter-community correlation. We also calculate

the proportion of variance explained by the principal components. The �rst principal

component explains 50% of the total variance. The proportion of the variance explained

by the principal components associated with the communities is sizeable and explains

16% of the total variation. We remark that the Online Appendix contains a number of

robustness checks. In particular, it shows that results are relatively stable to the choice

of k and the estimation window. Moreover, we show that an alternative community de-

tection procedure based on applying spectral clustering to the partial correlation network

estimate obtained through the GLASSO algorithm delivers similar results.

Figure 2: U.S. Real Activity Clustering (k = 3)

The �gure displays the results of Blockbuster with k = 3. The left panel shows the communities on a map and the
right panel a heatmap of the correlations (conditional on the factor) ordered by the Blockbuster partition. The top group
in the heatmap corresponds to the dark grey community on the map, the middle to the grey and the bottom to the light
grey.

We carry out an out-of-sample validation exercise to assess the performance of the

community detection algorithm on the basis of the covariance regularisation procedure

from Algorithm 2. We split the sample in half and label the �rst half in-sample and the

12We also try setting k = 2 and k = 4, the results of which may be found in the Online Appendix.
13In the Online Appendix we report the average correlations by block.
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second half out-of-sample.14 We estimate the Blockbuster covariance matrix in the in-

sample period and then use it to predict the sample covariance matrix of the panel in the

out-of-sample period. We apply the Blockbuster covariance estimator accounting for one

factor. We measure the precision of the forecast on the basis of the Kullback-Leibler (KL)

loss L = tr
(
Σ̂CΣ−1B

)
−log

(∣∣∣Σ̂CΣ−1B

∣∣∣)−n, where Σ̂C is a candidate estimator and ΣB is a

benchmark to compare against. We use the sample covariance matrix of the out-of-sample

period as the benchmark. We run the procedure with the number of communities ranging

from two to four. We compare the performance of the Blockbuster covariance estimator

with the (standard) sample covariance, the POET covariance estimator (Fan et al., 2013)

and the (linear) Ledoit and Wolf (LW) shrinkage covariance estimator (Ledoit and Wolf,

2004). Table 2 reports the relative KL loss gains over the sample covariance, POET

and LW estimators. The Blockbuster estimator performs favourably relative to these

alternatives. The Online Appendix contains forecasting results using a set of alternative

loss functions. Broadly speaking, the Blockbuster estimator performs satisfactorily but

we do document some degree of heterogeneity in the performance depending on the loss

function of interest.

Table 2: U.S. Real Activity Kullback-Leibler Losses

k SCM LW POET

2 5.735% 13.436% 4.313%
3 3.127% 11.041% 1.521%
4 1.537% 9.581% 1.950%

The table reports the relative Kullback-Leibler loss gains of the Blockbuster covariance estimator over the sample

covariance, the POET and the Ledoit and Wolf shrinkage estimators as a function of the number of communities k.

5 Conclusion

We introduce a class of partial correlation network models in which the underlying net-

work structure is random and determined by a latent random graph with a community

structure. We then propose an algorithm called Blockbuster that uses the k-means clus-

14We do this to estimate the out-of-sample covariance matrix with su�cient accuracy. For example, a
75%/25% split would yield only 51 observations to estimate a 48-dimensional matrix.
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tering procedure on the top rescaled eigenvectors of the estimated covariance matrix to

detect the community structure. We establish the consistency of the algorithm when the

number of variables n and observations T are large. The methodology is applied to study

real activity clustering in the U.S. using a dataset of quarterly state-level employment

growth rates. Blockbuster detects a meaningful partition of the states that bears a close

resemblance to previously published results. An out-of-sample validation exercise shows

that covariance regularisation based on Blockbuster improves estimation accuracy.
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A Proofs of Main Results

Proof of Lemma 1. See Lemmas 3.2 and 3.3 of Qin and Rohe (2013) and let τ = 0. Notice
that K = (1/σ2)In + (φ/σ2)L implies that the eigenvectors of K and L are the same.

Proof of Theorem 1. We rely on Theorems OA-1 and OA-2 that are stated and proved in
the Online Appendix. As d̄min = Ω(nρn), Theorem OA-1 gives us with high probability

‖K−K‖ = O (‖L− L‖) = O

(√
log n

nρn

)
, (10)
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and Theorem OA-2, provided that T = Ω
(
n2/γ−1), gives with high probability∥∥∥Σ̂−Σ

∥∥∥ = O

(√
n

T
‖Σ‖

)
.

To obtain a statement about the precision matrix, note that we may write∥∥∥K̂−K
∥∥∥ =

∥∥∥K̂(Σ− Σ̂
)

K
∥∥∥ ≤ ∥∥∥K̂∥∥∥∥∥∥Σ− Σ̂

∥∥∥‖K‖ = O

(√
n

T

)
, (11)

as ‖Σ‖ and ‖K‖ are bounded with high probability by (10), Weyl's inequality and Lemma
1 for large enough T . The triangle inequality along with (11) and (10) then delivers

∥∥∥K̂−K∥∥∥ ≤ ∥∥∥K̂−K
∥∥∥+

∥∥∥K−K∥∥∥ = O

(√
n

T
+

√
log n

nρn

)
. (12)

We next apply the Davis-Kahan theorem to bound the angles between the subspaces
of the bottom k eigenvectors of K̂ and K. We follow Sarkar and Bickel (2015) and the
arguments of Appendix B of Rohe et al. (2011) closely to obtain with high probability

∥∥∥Û− UO∥∥∥ = O

(√
n

T
+

√
log n

nρn

)
, (13)

where O ≡ FG′ is a k × k orthonormal rotation matrix based on the singular value

decomposition U ′Û = FΨG′. Notice that
∣∣∣[Û]ji − [U ]j•[O]•i

∣∣∣ ≤ ∥∥∥[Û]•i − U [O]•i

∥∥∥ ≤∥∥∥Û− UO∥∥∥ for all i, j = 1, . . . , k. As the rows of Û and U have only k elements, we have

∥∥∥[Û]j• − [U ]j•O
∥∥∥ =

√√√√ k∑
i=1

(
[Û]ji − [U ]j•[O]•i

)2
= O

(∥∥∥Û− UO∥∥∥) ,
which bounds the row norms of Û − UO. By the reverse triangle inequality, [N̂−1 −
N−1]jj =

∥∥∥[Û]j•

∥∥∥−∥∥∥[U ]j•O
∥∥∥ ≤ ∥∥∥[Û]j• − [U ]j•O

∥∥∥. Thus ∥∥∥N̂−1 −N−1∥∥∥ = O
(∥∥∥Û− UO∥∥∥)

as N̂−1−N−1 is a diagonal matrix. Furthermore
∥∥∥N̂−N∥∥∥ ≤ ∥∥∥N̂∥∥∥∥∥∥(N−1 − N̂−1)

∥∥∥‖N‖ =

O
(
‖N‖

∥∥∥Û− UO∥∥∥) with high probability, as
∥∥∥N̂∥∥∥ is close to ‖N‖ for large enough n.

As ‖N‖ = 1/minj‖[U ]j•‖ and row i of U has length

‖[U ]i•‖ =

(
[Θ]ii∑
j∈Vs [Θ]jj

)1/2

,

where s is the community that vertex i belongs to, we have ‖N‖ = O (
√
n). It then

follows with high probability that∥∥∥N̂−N∥∥∥ = O
(√

n
∥∥∥Û− UO∥∥∥) . (14)
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To put the pieces together, we may write∥∥∥X̂−XO∥∥∥ =
∥∥∥N̂Û−NUO

∥∥∥ ≤ ∥∥∥N̂−N∥∥∥∥∥∥Û− UO∥∥∥+
∥∥∥N̂−N∥∥∥‖UO‖+‖N‖∥∥∥Û− UO∥∥∥.

The cross term is lower order and ‖UO‖ is a constant, as the matrix UO has k columns
of unit length. This taken together with (13) and (14), yields with high probability

∥∥∥X̂−XO∥∥∥ = O
(√

n
∥∥∥Û− UO∥∥∥) = O

(
n√
T

+

√
log n

ρn

)
.

Proof of Lemma 2. For the GSBM of De�nition 1 we have C = XO = ZVO. It follows
that [C]i• = [Z]i•VO and we may thus equivalently de�ne vertex i as correctly clustered

if [Ĉ]i• is closer to [Z]i•VO than any other rotated population centroid [Z]j•VO, j 6= i.
The result then follows from the proof of Theorem 4.4 of Qin and Rohe (2013). See also
the proof of Lemma 3.2 from Rohe et al. (2011).

Proof of Theorem 2. We follow Rohe et al. (2011) closely. Note that as C ∈ M(n, k), we

have
∥∥∥X̂− Ĉ

∥∥∥
F
≤
∥∥∥X̂− C∥∥∥

F
, and by the triangle inequality we obtain∥∥∥Ĉ− C∥∥∥

F
≤
∥∥∥Ĉ− X̂

∥∥∥
F

+
∥∥∥X̂− C∥∥∥

F
≤ 2
∥∥∥X̂− C∥∥∥

F
.

Notice that |M | =
∑

i∈M 1 ≤ 2
∑

i∈M

∥∥∥[Ĉ]i• − [Z]i•VO
∥∥∥2 ≤ 2

∥∥∥Ĉ− C∥∥∥2
F
≤ 8
∥∥∥X̂−XO∥∥∥2

F

where the second inequality follows from the fact that
∑n

i=1

∥∥∥[Ĉ]i• − [Z]i•VO
∥∥∥2 =

∥∥∥Ĉ− C∥∥∥2
F

and that the sum only includes a subset of the vertices. Theorem 1 implies

∥∥∥X̂−XO∥∥∥
F

= O

(
n√
T

+

√
log n

ρn

)
,

as
∥∥∥X̂−XO∥∥∥

F
≤
√
k
∥∥∥X̂−XO∥∥∥ for a rank k matrix. The result follows.

Proof of Theorem 3. We have

∥∥K−1 −K−1∥∥ =

∥∥∥∥∥K−1ε +
R∑
r=1

qrq
′
r −

(
K−1ε +

R∑
r=1

qrq
′
r

)∥∥∥∥∥ =
∥∥K−1ε −K−1ε ∥∥ = O

(√
log n

nρn

)
,

by Theorem OA-1 and the fact hat ‖K−1ε ‖ is bounded by Lemma 1. This implies

‖K−K‖ = O
(√

logn
nρn

)
, as ‖K‖ is bounded by Lemma OA-1. By Theorem OA-2 we

obtain
∥∥∥K̂−K

∥∥∥ = O
(√

n
T
‖Σ‖

)
, as ‖K‖ is bounded with high probability. Then we have

by the triangle inequality
∥∥∥K̂−K∥∥∥ ≤ ∥∥∥K̂−K

∥∥∥ +
∥∥∥K − K∥∥∥ = O

(√
n
T
‖Σ‖+

√
logn
nρn

)
.

Similar arguments as in Theorems 1 and 2 then yield the result.
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