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1 Additional Simulation Results

1.1 Blockbuster Illustration

This section contains an illustration of the Blockbuster algorithm on simulated data.

We draw a single sample from the SBPCM with R = 1 common factors and k = 2

communities for T = 500 and n = 100. We draw a GSBM where each community

has size n/k. The edge probabilities are set to ps = p = 0.5 for all s = 1, . . . , k and

qvr = q = 0.01 for all v, r = 1, . . . , k, v 6= r. The network-dependence parameter φ is set

to 20 while the network variance σ2 is 1. We draw [Θ]ii from a power law distribution

f(x) = αxαm/x
α+1 for x ≥ xm with xm = 0.75 and α = 2.5. The edge-weights are drawn

uniformly in the interval [0.3, 1]. We draw the data identically and independently from a

multivariate Gaussian with covariance matrix given as in (9), where the factor loadings

q are generated from a standard normal.

The �rst panel of Figure OA-1 displays a heatmap of the correlation matrix of the

panel conditional on the factor, with the series ordered by the true community partition.

The second and third panels show the corresponding sample correlation matrix when

the series are randomly shu�ed and when they are ordered by the estimated community
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partition. The �gure shows that the Blockbuster algorithm detects the communities

accurately. In particular, in this speci�c instance there are no misclustered series.

Figure OA-1: Heatmaps of simulated data

The �rst panel displays a heatmap of the correlation matrix (conditional on the factor) with the series ordered by the
true community partition. The second and third panels show the sample correlation matrix when the series are randomly
shu�ed and ordered by the estimated community partition. The data are simulated with n = 100, T = 500 and k = 2.

1.2 Blockbuster Performance and Pre-�ltering

The Blockbuster algorithm is designed for stationary strongly mixing data and we have

established performance bounds for it that do not depend on speci�c assumptions on

the time series model that may have generated the data. However, we point out that

performance improvements may be attainable if one exploits knowledge of the speci�c

time series structure of the data.

In this section we consider the same DGP as in the simulation exercise of Section

3. Instead of carrying out community detection by applying the Blockbuster algorithm

to the raw time series as in Section 3, we consider a modi�ed procedure. We estimate

univariate AR(1) models for each series by OLS and then apply Blockbuster to the panel

of AR(1) residuals.
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Table OA-1: Hit Ratio of Blockbuster: Pre-filtering

Panel A: φ = 5 Panel B: φ = 50

T = 50 100 200 500 1 000 50 100 200 500 1 000

p/q n = 50 n = 50

0.25/0.01 64.0% 81.4% 86.1% 95.2% 95.7% 81.5% 91.8% 92.3% 94.0% 95.1%
0.50/0.01 78.0% 96.1% 99.5% 99.9% 100.0% 97.0% 99.6% 99.7% 100.0% 100.0%
0.25/0.05 41.4% 44.6% 49.0% 57.9% 61.8% 42.2% 48.8% 53.9% 61.1% 64.5%

n = 100 n = 100

0.25/0.01 48.6% 64.1% 83.7% 93.4% 96.1% 68.7% 85.0% 94.8% 94.2% 95.1%
0.50/0.01 60.5% 84.2% 97.8% 98.6% 99.9% 89.9% 98.3% 99.7% 99.9% 99.9%
0.25/0.05 33.5% 35.9% 39.2% 47.2% 52.9% 34.3% 36.5% 41.2% 54.3% 59.5%

n = 200 n = 200

0.25/0.01 37.1% 47.2% 66.2% 89.1% 94.5% 49.1% 71.8% 85.7% 94.4% 95.9%
0.50/0.01 44.8% 62.0% 89.9% 98.0% 99.7% 70.7% 90.6% 98.4% 99.8% 99.9%
0.25/0.05 28.9% 30.0% 31.2% 35.5% 43.6% 29.4% 30.3% 33.3% 39.5% 49.4%

We report the results of this exercise in Table OA-1. These results can be compared

to the ones in Table 1 in the main text. The table shows that applying Blockbuster to the

OLS residuals systematically improves performance in the vast majority of cases, although

the improvements are typically minor. Overall, the exercise shows that incorporating �ner

time-series information into the block detection procedure may enhance the performance

of the algorithm.

1.3 Blockbuster Performance and Weakly Correlated Factors

In order to establish the consistency of the Blockbuster algorithm in the presence of

factors in Section 2.4, we assume that the low-rank structure induced by the factors is

orthogonal to the one generated by the communities. This assumption is made on the

grounds of simplicity and may be violated in practice. In particular, it may be reasonable

to assume that there exits some weak form of correlation between the factors and the

communities. In this section we explore how the presence of weak correlation between

factors and communities a�ects clustering performance. We consider the same DGP as

in the simulation exercise of Section 3 with the exception that in this exercise the factor

loadings of the model depend on the community membership indicator. In particular, the

factor loading of series i is drawn from a normal whose variance depends on the community

of series i. Speci�cally, the variances of the loadings of the series in community 1, 2, 3, 4
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and 5 are respectively 0.500, 0.875, 1.250, 1.625, and 2.000.

Table OA-2: Hit Ratio of Blockbuster: Weakly Correlated Factors

Panel A: φ = 5 Panel B: φ = 50

T = 50 100 200 500 1 000 50 100 200 500 1 000

p/q n = 50 n = 50

0.25/0.01 64.8% 80.6% 88.6% 94.6% 93.7% 84.5% 90.8% 94.3% 93.6% 95.2%
0.50/0.01 82.5% 94.8% 96.5% 99.7% 99.8% 97.9% 99.5% 99.8% 99.6% 100.0%
0.25/0.05 41.2% 46.3% 50.9% 57.2% 60.8% 43.8% 50.9% 54.2% 61.4% 63.9%

n = 100 n = 100

0.25/0.01 49.4% 64.8% 83.3% 94.3% 95.3% 74.3% 87.7% 93.0% 96.1% 95.1%
0.50/0.01 62.9% 86.2% 96.2% 99.6% 99.8% 93.3% 99.0% 99.6% 99.9% 99.9%
0.25/0.05 34.4% 35.5% 40.0% 47.4% 54.4% 37.1% 38.9% 45.6% 53.4% 59.7%

n = 200 n = 200

0.25/0.01 37.1% 47.0% 66.0% 89.0% 94.3% 57.3% 78.2% 89.7% 96.0% 96.5%
0.50/0.01 43.0% 66.0% 88.0% 98.6% 99.6% 85.5% 95.5% 99.1% 99.8% 99.9%
0.25/0.05 29.2% 30.4% 33.0% 36.6% 43.6% 30.8% 32.6% 34.9% 40.7% 50.8%

We report the results of this exercise in Table OA-2. The results of this table can

be compared to the ones in Table 1 in the paper. The table shows that in case of weak

correlation between the factors and the communities the performance of Blockbuster

deteriorates, but the losses are overall fairly small.

2 Additional Empirical Results

2.1 Estimation Results for Alternative Number of Communities

We run the Blockbuster algorithm with the number of communities set to two and four.

The results are reported in Figure OA-2. When the number of communities is set to

two, the algorithm partitions the U.S. into East Coast states together with California,

Arizona, Missouri and Tennessee, and a residual cluster containing all remaining states.

When the number of communities is set to four, in comparison to the baseline case, the

oil-producing and agricultural states community gets split into into two separate clusters

and California and Arizona are absorbed into the cluster containing oil-producing states.

Note that the community corresponding to the East Coast is relatively stable across

di�erent choices of the number of clusters.
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Figure OA-2: U.S. Real Activity Clustering (k = 2 and 4)

The �gure displays the communities detected by Blockbuster when the number of communities is 2 (left) and 4 (right).

2.2 Robustness of the Community Detection Results over Di�er-

ent Sub-samples

In this section we analyse the stability of the community detection results over di�erent

sub-samples. In particular, we apply Blockbuster to the sub-sample that starts at the

beginning of the sample and ends at observation bT/2 + s(T/8)c for s = 0, 1, 2, 3. We

assume that the number of communities k is 3 and that the data has one factor (R is

1). Setting s = 2 or s = 3 yields identical results to the ones based on the entire sample.

Figure OA-3 shows the results for s = 0 and s = 1. As one may expect, for low values

of s the community assignments di�er slightly, however, overall the discrepancies are

moderate.

Figure OA-3: Stability of Community Detection Results

s = 0 s = 1
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2.3 Community Detection based on the GLASSO algorithm

In this section we compare the Blockbuster community detection results to the ones

obtained by applying spectral clustering to the estimate of the Laplacian of the partial

correlation network obtained by the GLASSO algorithm. In particular, we estimate the

partial correlation network of the panel via the GLASSO algorithm after �ltering out the

�rst factor (estimated by PCA) from the data. We choose the shrinkage parameter of the

GLASSO via cross-validation. Finally, we apply the classic spectral clustering algorithm

to the Laplacian of the estimated partial correlation network. Figure (OA-4) compares

the estimated community partition of the US states when the number of communities is

set to 3 by Blockbuster (left) and GLASSO (right). Overall, the results are close to what

is obtained by applying the Blockbuster algorithm to the sample covariance matrix.

Figure OA-4: Community Detection Comparison

Blockbuster on Sample Covariance Matrix Spectral Clustering on Laplacian of
Partial Correlation Network (GLASSO)

2.4 Alternative Out-of-Sample Loss Function Results

In this section we report the results of the forecasting exercise based on two alternative

loss functions. In particular, we have carried out the same forecasting exercise described

in Section 4 with the only modi�cation that out-of-sample forecasts are now evaluated on

the basis of the Square loss, a popular loss function for covariance matrices (Pourahmadi,

2013, Section 2.2), and the Quasi-likelihood loss function, a loss function proposed by An-

drew Patton (Patton and Sheppard, 2009; Patton, 2011). The two losses are respectively
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Table OA-3: U.S. Real Activity Forecasting: Square and Quasi-Likelihood
Losses

Square Loss Quasi-Likelihood Loss
k SCM LW POET SCM LW POET

2 3.710% 23.682% 1.641% 9.476% 1.137% 5.383%
3 −3.406% 18.041% −3.024% 9.083% 0.708% 6.977%
4 −4.203% 17.409% −4.102% 9.013% 0.631% 9.375%

The table reports the relative gain of the Blockbuster covariance estimator over the sample covariance estimator, the

POET estimator and the (linear) Ledoit and Wolf shrinkage estimator in terms of the Square and Quasi-Likelihood losses

for di�erent choices of the number of communities k.

de�ned as

LSL = tr(Σ−1
B Σ̂C − In)2,

LQL = log |Σ̂−1
C |+ tr(Σ̂−1

C ΣB).

The results are reported in Table OA-3. In the case of the Square loss, the table shows that

for k = 2 the Blockbuster procedure achieves the best performance and improves upon

all other benchmarks. For k > 2 the evidence is mixed. In particular, while Blockbuster

appears to always be able to improve over the linear Ledoit and Wolf estimator, however

it performs worse than the sample covariance and POET benchmarks. For the Quasi-

Likelihood loss, the table shows that the Blockbuster procedure performs better than the

other benchmarks and in particular it performs better than the sample covariance matrix.

2.5 Additional Tables

Table OA-4: U.S. Real Activity Correlation Matrix Block Averages (k = 3)

Community Red Blue Green

Red 0.143 −0.078 −0.107
Blue −0.078 0.207 −0.076
Green −0.107 −0.076 0.222

The table shows the averages of the elements of the correlation matrix (conditional on the factor), within the estimated

community blocks on the diagonal and within the across-community blocks on the o�-diagonal, for k = 3.
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3 Population Lemma for the Common Factor Model

Lemma OA-1. Let G ∼ GSBM (Z,B,Θ,W) be a Generalised Stochastic Block Model

as in De�nition 1 and Kε its population precision matrix. Let K−1 = K−1
ε +

∑R
r=1 qrq

′
r

be the population analogue of (9), U the matrix of its (R + 1)-th to (R + k)-th bottom

eigenvectors and X the row-normalised counterpart of U .

Then λi (K) = 1/
(
σ2/(1 + φ) + ‖qi‖2)

for i = 1, . . . R, λi (K) ∈ [1/σ2, (1 +φ)/σ2) for

i = R + 1, . . . , R + k and λi(K) = (1 + φ)/σ2 for all i = R + k + 1, . . . , n. Furthermore,

there exists a k × k orthonormal matrix V such that X = ZV.

Proof. We �rst �nd the eigenvalues and eigenvectors of K−1 = K−1
ε +

∑R
r=1 qrq

′
r. We

then show that U = Uε, which allows us to apply Lemma 1 and �nish the proof.

We proceed by induction and consider R = 1 with K−1
1 = K−1

ε + q1q
′
1 �rst. We then

�nd the eigenvectors of K−1 ≡ K−1
R = K−1

R−1 +qRq
′
R given those of K−1

R−1. The eigenvectors

ui(Kε) for i = 1, . . . , n form a basis in Rn, so we may write

q1 =
n∑
i=1

γi,1ui(Kε),

where γi,1 are scalars. By Assumption 3, we have q′1[Uε]•i = 0 which implies γi,1 = 0 for

i = 1, . . . , k, so that q1 = γk+1,1uk+1(Kε) + . . .+ γn,1un(Kε).

We guess and verify the eigenvectors and eigenvalues of K1 using the eigenvalue equa-

tion K−1
1 ui(K1) = λi(K1)−1ui(K1) and ensure they are mutually orthogonal. We begin

with the bottom eigenvalue and eigenvector of K1 and guess λ1(K1)−1 = λn(Kε)−1 +

‖q1‖2 and u1(K1) = q1/‖q1‖. Then K−1
1 q1 = (K−1

ε + q1q
′
1) q1 = K−1

ε q1 + ‖q1‖2q1 =(
λn(Kε)−1 + ‖q1‖2) q1 where the last equality follows from

K−1
ε q1 =

n∑
i=k+1

γi,1K−1
ε ui(Kε) =

n∑
i=k+1

γi,1λi(Kε)−1ui(Kε) = λn(Kε)−1q1,

as λi(Kε) = λn(Kε) for i = k + 1, . . . , n from Lemma 1. Dividing through by ‖q1‖ we

have the eigenvector. Next we consider the second to the k+1-th bottom eigenvalues and

eigenvectors of K1. We postulate λ1+i(K1)−1 = λi(Kε)−1 and u1+i(K1) = ui(Kε) for i =
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1, . . . , k. ConsiderK−1
1 ui(Kε) = K−1

ε ui(Kε)+q1q
′
1ui(Kε) = K−1

ε ui(Kε) = λi(Kε)−1ui(Kε)

for i = 1, . . . , k, which follows from the fact that the bottom k eigenvectors of K−1
ε are

orthogonal to q1 and shows that those are the desired eigenvalues and eigenvectors.

It remains to �nd the last n− k− 1 eigenvectors of K1. Let un(K1) = γn−1,1un(Kε)−

γn,1un−1(Kε) and

un−i(K1) = γn,1un(Kε)+γn−1,1un−1(Kε)+. . .+γn−i,1un−i(Kε)−

(∑n
j=n−i γ

2
j,1

γn−i−1,1

)
un−i−1(Kε),

for all i = 1, . . . n − k − 2. These vectors are orthogonal to q1, as the last term always

cancels out all the others. They are also orthogonal to each other by a similar argument.

Returning to the eigenvalue equation, we have K−1
1 ui(K1) = (K−1

ε + q1q
′
1)ui(K1) =

K−1
ε ui(K1) = λn (Kε)−1 ui(K1) for i = k + 2, . . . , n. Dividing through by the norm

delivers the remaining eigenvectors of K1, all with eigenvalue λn(Kε)−1.

Now assume that we know the eigenvectors ui(KR−1) of KR−1. We look for the

eigenvectors of K−1 ≡ K−1
R = K−1

R−1 + qRq
′
R and note that K−1

R−1 = K−1
ε +

∑R−1
r=1 qrq

′
r.

Proceeding as before, we begin with the bottom R eigenvalues and eigenvectors of K and

guess λi(K)−1 = λn(Kε)−1 + ‖qi‖2 and u1(K) = qi/‖qi‖ for i = 1, . . . R. We have

K−1qi =

(
K−1
ε +

R∑
r=1

qrq
′
r

)
qi = K−1

ε qi + ‖qi‖2qi =
(
λn(Kε)−1 + ‖qi‖2) qi,

for all i = 1, . . . , R as q′iqv = 0 for all v = 1, . . . , R, v 6= i. We next postulate λR+i(K)−1 =

λi(Kε)−1 and uR+i(K) = ui(Kε) for i = 1, . . . , k. As before

K−1ui(Kε) = K−1
ε ui(Kε) +

R∑
r=1

qrq
′
rui(Kε) = K−1

ε ui(Kε) = λi(Kε)−1ui(Kε),

for i = 1, . . . , k. Finally, as K is a rank-one update of KR−1 we may apply a similar logic

to before: Notice that ui(KR−1) form a basis for Rn and write

qR =
n∑

i=R+k

γi,Rui(KR−1).
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Then let un(K) = γn−1,Run(KR−1)− γn,Run−1(KR−1) and

un−i(K) = γn,Run(KR−1) + . . .+ γn−i,Run−i(KR−1)−

(∑n
j=n−i γ

2
j,R

γn−i−1,R

)
un−i−1(KR−1),

for all i = 1, . . . n − k − R − 1. We then have K−1ui(K) =
(
K−1
R−1 + qRq

′
R

)
ui(K) =

K−1
R−1ui(K) = λn (KR−1)−1 ui(K) for all i = 1, . . . n− k−R− 1. Notice that by induction

λn (KR−1)−1 = λn (Kε)−1. After normalising, we have the last n− k−R eigenvectors, all

with eigenvalue λn (Kε)−1. We have thus shown that U = Uε and may apply Lemma 1 to

�nish the proof.

4 Auxiliary Results

This appendix contains some results that are used in Section 2. In Theorem OA-1 we

extend the random graph concentration result of Theorem 3.1 in Oliveira (2009) to allow

for weighted graphs.

Theorem OA-1. Consider a random undirected and weighted graph on n vertices G =

(V , E ,W) where (i, j) ∈ E with probability pi,j = pj,i independently and the edge weights

Wij ∈ W are independent random variables supported on the interval [αij, βij] with βij >

0, mean µ > 0 and variance σ2
ij for all i, j. Let L be the Laplacian matrix corresponding

to G and L be its population analogue. Let d̄min = mini d̄i be the minimum expected degree

of G.

If d̄min = Ω (log(n)), then

‖L− L‖ = O

(√
log(n)

d̄min

)
,

with high probability.

Proof. We follow Oliveira (2009). We begin by controlling the following sum of indepen-
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dent zero-mean random variables

di − d̄i =
n∑
j=1

(BijWij − pijµij) .

Notice that |BijWij − pijµij| takes its maximum at one of the following: pijµij, |αij|+pijµij

or βij − pijµij. Hence

BijWij − pijµij ≤ |αij|+ βij ≤ max
ij
|αij|+ max

ij
βij.

as the the eigenvalues of Aij are in {−1, 0, 1}. Next consider the variance statistic

n∑
j=1

E
[
(BijWij − pijµij)2] =

n∑
j=1

Var (BijWij) .

We require the variance of the composite random variable BijWij, where Bij and Wij are

independent. We have

Var (BijWij) = Var (Bij)E [Wij]
2 + Var (Wij)E [Bij]

2 + Var (Bij) Var (Wij)

= pij(1− pij)µ2
ij + σ2

ijp
2
ij + pij(1− pij)σ2

ij = pij(1− pij)µ2
ij + pijσ

2
ij

≤ pij
(
µ2
ij + σ2

ij

)
= pijµij

(
µij +

σ2
ij

µij

)
≤ pijµij

(
max
ij

µij + max
ij

σ2
ij

)
,

using E [Bij] = pij and Var (Bij) = pij(1− pij). It follows that

n∑
j=1

Var (BijWij) ≤
(

max
ij

µij + max
ij

σ2
ij

)
d̄i,

as d̄i =
∑

j pijµij.

De�ne ν = maxij µij + maxij σ
2
ij + maxij|αij|+ maxij βij, �x c > 0 and assume n−c ≤

δ ≤ 1/2. We may then apply Corollary 7.1. from Oliveira (2009) with n = 1 to obtain

for all r > 0 and all i

P
(∣∣di − d̄i∣∣ ≥ r

)
= P

(∣∣∣∣did̄i − 1

∣∣∣∣ ≥ r

d̄i

)
= P

(∣∣∣∣did̄i − 1

∣∣∣∣ ≥ t

)
≤ 2e

− t2d̄2i
8s2+4Mtd̄i ,
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where we took r = td̄i. Using the arguments from the previous paragraph, we set M = ν

and s2 = νd̄i and take t = 4
√

ν log(2n/δ)

d̄min
≤ 2, where the inequality follows as d̄min >

C log(n) and we may choose C high enough. Then

P

(∣∣∣∣did̄i − 1

∣∣∣∣ ≤ 4

√
ν log(2n/δ)

d̄min

)
≥ 1− δ. (OA-1)

By the mean value theorem

∣∣∣√1 + x− 1
∣∣∣ =

(
1

2
√

1 + γ

)
|x| ≤ max

γ∈[−3/4,3/4]

(
1

2
√

1 + γ

)
|x| = |x|,

with x ∈ [−3/4, 3/4] and the last equality follows as γ = −3/4 yields the maximum.

Take x = di
d̄i
− 1 and notice that we may choose C to make d̄min > C log(n) large enough

for (OA-1) to imply
∣∣∣did̄i − 1

∣∣∣ ≤ 3/4. It follows that

∣∣∣∣∣
√
di
d̄i
− 1

∣∣∣∣∣ ≤
∣∣∣∣did̄i − 1

∣∣∣∣ ≤ 4

√
ν log(2n/δ)

d̄min
,

with probability greater than 1− δ.

De�ne T = D−1/2 and T = D−1/2. Notice that ‖T T−1 − In‖ = maxi

∣∣∣√di
d̄i
− 1
∣∣∣ as this

is a diagonal matrix, which yields ‖T T−1 − In‖ ≤ 4
√

ν log(2n/δ)

d̄min
with probability greater

than 1−δ. We de�ne the intermediate operatorM = In−TAT and note that it satis�es

M = In − (T T−1) (In − L) (T T−1) as L = In −TAT. To compare L with L, we bound

the distance of each fromM. We begin with ‖M− L‖ and write

‖M− L‖ =
∥∥(T T−1

)
(In − L)

(
T T−1

)
+ (In − L)

(
T T−1

)
− (In − L)

(
T T−1

)
− (In − L)

∥∥
=
∥∥(T T−1 − In

)
(In − L)

(
T T−1

)
+ (In − L)

(
T T−1 − In

)∥∥
≤
∥∥T T−1 − In

∥∥∥∥T T−1
∥∥+

∥∥T T−1 − In
∥∥

≤ 4

√
ν log(2n/δ)

d̄min

(
1 + 4

√
ν log(2n/δ)

d̄min

)
+ 4

√
ν log(2n/δ)

d̄min
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≤ 10

√
ν log(2n/δ)

d̄min
,

where we used the fact that ‖In − L‖ ≤ 1 (Chung, 1997).

We now control ‖M−L‖. Let Bij for all 1 ≤ i, j ≤ n be independent Bernoulli

variables that take the value 1 with probability pij and 0 otherwise. Let e1, e2, . . . , en be

the standard basis for Rn. De�ne for all 1 ≤ i, j ≤ n the n× n matrices

Aij =


eie
′
j + eje

′
i, i 6= j,

eie
′
i, i = j.

Then we may write the object of interest as the sum

M−L =
∑
i≤j

Yij,

where

Yij =
BijWij − pijµij√

d̄id̄j
Aij

are mean-zero independent random matrices. As the eigenvalues of Aij are in {−1, 0, 1},

the eigenvalues of Yij are in

{
± (BijWij − pijµij)√

d̄id̄j
,
±pijµij√
d̄id̄j

, 0

}
,

and thus ‖Yij‖ ≤ ν/
√
d̄id̄j ≤ ν/d̄min by similar arguments to before. Notice that

A2
ij =


eie
′
i + eje

′
j, i 6= j,

eie
′
i, i = j.

The variance statistic is

∑
1≤i≤j≤n

E
[
Y2
ij

]
=

∑
1≤i≤j≤n

Var (BijWij)
A2
ij

d̄id̄j

13



=
n∑
i=1

Var (BiiWii)
eie
′
i

d̄2
i

+
∑

1≤i<j≤n

Var (BijWij)

(
eie
′
i + eje

′
j

)
d̄id̄j

=
n∑
i=1

1

d̄i

(
n∑
j=1

Var (BijWij)

d̄j

)
eie
′
i.

Using Var (BijWij) ≤ pijµijν from before and the fact that this is a diagonal matrix, we

obtain

λn

( ∑
1≤i≤j≤n

E
[
Y2
ij

])
= max

i

1

d̄i

(
n∑
j=1

Var (BijWij)

d̄j

)

≤ ν max
i

1

d̄i

(
n∑
j=1

pijµij
d̄j

)
≤ ν

d̄min
max
i

1

d̄i

(
n∑
j=1

pijµij

)
=

ν

d̄min
,

as
∑

j pijµij = d̄i.

We may thus set M = s2 = ν/d̄min and apply Corollary 7.1 from Oliveira (2009),

which yields for all t > 0

P

(∥∥∥∥∥ ∑
1≤i≤j≤n

Yi

∥∥∥∥∥ ≥ t

)
≤ 2ne−

t2d̄min
ν(8+4t) .

Take t = 4
√

(ν log(2n/δ)) /d̄min. When we bounded the degrees, we had ensured t ≤

3/4 ≤ 2. Hence

P

(
‖M−L‖ ≤ 4

√
ν log(2n/δ)

d̄min

)
≥ 1− δ,

and it follows by the triangle inequality that

P

(
‖L− L‖ ≤ 14

√
ν log(2n/δ)

d̄min

)
≥ 1− δ.

Theorem OA-2 extends the matrix concentration inequality results for matrices with

independent sub-Gaussian rows of Theorem 5.39 from Vershynin (2012). The rows are

allowed to be strongly mixing with generalised exponential tails. A key result that we

make use of is Theorem 1 (and Remark 1) of Merlevède, Peligrad, and Rio (2011), which

is a Bernstein-type concentration inequality for strongly mixing random variables. We

14



consider sample covariance matrices in particular.

Theorem OA-2. Consider a T × n matrix Y, whose rows are observations of centred

n-dimensional stationary random vectors [Y]t• that satisfy Assumption 2. Let their co-

variance matrix be Σ and de�ne the sample covariance matrix as Σ̂ = 1
T
Y′Y.

If T = Ω
(
n2/γ−1

)
, we have

∥∥∥Σ̂−Σ
∥∥∥ = O

(√
n

T
‖Σ‖

)
,

with high probability where C > 0 is an absolute constant.

Proof. We begin by working with the isotropic version of the random vectors, Σ−1/2Yt.

For those, we adopt a similar strategy to Vershynin (2012) and proceed in three steps.

First we discretise the unit sphere using a net which allows us to approximate the spectral

norm of the quantity of interest. We then apply the mixing concentration inequality of

Merlevède et al. (2011) to control the spectral norm for every vector on the unit sphere.

Next, we take the union bound over all such vectors to evaluate the spectral norm. At

this point we have a concentration inequality for the isotropic vectors. In the fourth step,

we translate that statement to the non-isotropic vectors Yt.

Step 1: Approximation. Apply Lemma 5.4 of Vershynin (2012) with a 1/4-net

N1/4 ≡ N to obtain

∥∥∥∥ 1

T
Σ−1/2Y′YΣ−1/2 − In

∥∥∥∥ ≤ 1

1− 1/2
sup
x∈N

∣∣∣∣x′( 1

T
Σ−1/2Y′YΣ−1/2 − In

)
x

∣∣∣∣
= 2 sup

x∈N

∣∣∣∣ 1

T
x′Σ−1/2Y′YΣ−1/2x− x′x

∣∣∣∣ = 2 sup
x∈N

∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣,
and let

ε = C

√
n

T
+

r√
T
,

for some r ≥ 0 where C > 0 is a constant. We �rst wish to establish

sup
x∈N

∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣ ≤ ε

2
,

15



with high probability.

Step 2: Concentration. Fix a vector x with ‖x‖ = 1 and notice that
∥∥YΣ−1/2x

∥∥2

may be written as a sum so that

1

T

∥∥YΣ−1/2x
∥∥2 − 1 =

1

T

T∑
t=1

(
Y ′t Σ

−1/2x
)2 − 1 ≡ 1

T

T∑
t=1

Zt,

where Zt ≡
(
Y ′t Σ

−1/2x
)2 − 1. Notice that E

[(
Y ′t Σ

−1/2x
)2
]

= ‖x‖2 = 1 as Σ−1/2Yt are

isotropic vectors, so Zt are centred. Assumption 2 implies

P
(∣∣∣(Y ′t Σ−1/2x

)2 − 1
∣∣∣ > s

)
≤ c3e

−(s/c′2)
γ2/2

,

which is the required tail behaviour for the sequence {Zt} (See Lemmas 7 and 8 of

Gudmundsson, 2018). We may then apply Theorem 1 of Merlevède et al. (2011) to the

sequence {Zt}. For any T ≥ 4, there exist positive constants C1, C2, C3 and C4 that

depend only on c1, c2, c3, γ1 and γ2 such that for any ε > 0

P
(∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣ ≥ ε

2

)
= P

(∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≥ Tε

2

)
≤ P

(
sup
r≤T

∣∣∣∣∣
r∑
t=1

Zt

∣∣∣∣∣ ≥ Tε

2

)

≤ T exp

(
−(Tε/2)γ

C1

)
+ exp

(
− (Tε/2)2

C2 (1 + TV )

)

+ exp

(
−(Tε/2)2

C3T
exp

(
(Tε/2)γ(1−γ)

C4 (log (Tε/2))γ

))
,

(OA-2)

where V is �nite and γ is as in Assumption (2).

We begin by looking at the �rst term of (OA-2). Substituting ε = C
√

n
T

+ r√
T
in, we

obtain

T exp

(
−(Tε/2)γ

C1

)
= exp

log(T )−

(
T
(
C
√

n
T

+ r√
T

))γ
2γC1


= exp

(
log(T )− 1

2γC1

(
C
√
Tn+ r

√
T
)γ)

≤ exp

(
log(T )− 1

2γC1

(
C2Tn+ r2T

)γ/2)
,
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as
√
a+ b ≤

√
a+
√
b for a, b ≥ 0. Notice that

(C2Tn+ Tr2)
γ/2

C2n+ r2
=

(Tn)γ/2

n

(C2 + r2/n)
γ/2

C2 + r2/n
= T γ/2nγ/2−1

(
C2 +

r2

n

)γ/2−1

.

As T = Ω
(
n2/γ−1

)
, this ratio is not shrinking to zero. Furthermore, we may assume that

T = o (en) for all practical purposes, so we may write

exp

(
log(T )− 1

2γC1

(
C2Tn+ r2T

)γ/2) ≤ exp
(
−C ′

(
C2n+ r2

))
,

for some appropriately small constant C ′ > 0.

Plugging ε = C
√

n
T

+ r√
T
into the second term of (OA-2), we obtain

exp

(
− (Tε/2)2

C2 (1 + TV )

)
= exp

(
− 1

4C2 (1 + TV )

(
C
√
Tn+ r

√
T
)2
)

≤ exp

(
− 1

4C2 (V + 1/T )

(
C2n+ r2

))
≤ exp

(
−C ′′

(
C2n+ r2

))
,

for an appropriate constant C ′′ > 0, where we used the fact that (a + b)2 ≥ a2 + b2 if

a, b ≥ 0.

We begin by looking at the inner exponential term in the third term of (OA-2)

exp

(
(Tε/2)γ(1−γ)

C4 (log (Tε/2))γ

)
= exp

 1

2γ(1−γ)C4


(
C
√
Tn+ r

√
T
)1−γ

log
(
C
√
Tn+ r

√
T − log(2)

)

γ .

As γ < 1, we have (1− γ)x−γ > x−1 for all x large enough. This term is thus increasing

in T , so we may bound the third term of (OA-2) with

exp

(
−(Tε/2)2

C3T
exp

(
(Tε/2)γ(1−γ)

C4 (log (Tε/2))γ

))
≤ exp

(
−(Tε/2)2

C3T
C∗

)

= exp

(
− C∗

4C3

(
C
√
n+ r

)2
)
≤ exp

(
− C∗

4C3

(
C2n+ r2

))
≤ exp

(
−C ′′′

(
C2n+ r2

))
,

for appropriate constants C∗, C ′′′ > 0.
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Finally, let c = min{C ′, C ′′, C ′′′}. Taking things together, we obtain from (OA-2)

P
(∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣ ≥ ε

2

)
≤ 3 exp

(
−c
(
C2n+ r2

))
,

for the vector x that we �xed.

Step 3: Union bound. Notice that we may choose the net N such that its covering

number N (Sn−1, 1/4) is bounded by (1 + 2/(1/4))n = 9n by Lemma 5.2 of Vershynin

(2012). We then obtain

P
(

max
x∈N

∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣ ≥ ε

2

)
= P

(⋃
x∈N

(∣∣∣∣ 1

T

∥∥YΣ−1/2x
∥∥2 − 1

∣∣∣∣ ≥ ε

2

))

≤ 3 · 9n exp
(
−c
(
C2n+ r2

))
≤ 3e−cr

2

,

where the second inequality follows for C large enough. In other words, if T = Ω
(
n2/γ−1

)
and n is su�ciently large, we have for every r ≥ 0

P
(∥∥∥∥ 1

T
Σ−1/2Y′YΣ−1/2 − In

∥∥∥∥ ≤ C

√
n

T
+

r√
T

)
≥ 1− 3e−cr

2

,

where c, C > 0 are absolute constants.

Step 4: Translation to the non-isotropic random vectors. Notice that

∥∥Σ1/2
∥∥2

= sup
x:‖x‖=1

∥∥Σ1/2x
∥∥2

= sup
x:‖x‖=1

xΣx = ‖Σ‖.

We then have

ε‖Σ‖ = ε
∥∥Σ1/2

∥∥2 ≥
∥∥Σ1/2

∥∥∥∥∥∥ 1

T
Σ−1/2Y′YΣ−1/2 − In

∥∥∥∥∥∥Σ1/2
∥∥

≥
∥∥∥∥ 1

T
Σ1/2Σ−1/2Y′YΣ−1/2Σ1/2 −Σ

∥∥∥∥ =

∥∥∥∥ 1

T
Y′Y −Σ

∥∥∥∥,
with probability at least 1−3e−cr

2
. This shows that if T = Ω

(
n2/γ−1

)
and n is su�ciently
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large, we have for every r ≥ 0

P
(∥∥∥∥ 1

T
Y′Y −Σ

∥∥∥∥ ≤ (C√n

T
+

r√
T

)
‖Σ‖

)
≥ 1− 3e−cr

2

.

As the vectors Σ−1/2Yt are isotropic, c, C > 0 are absolute constants and do not depend

on ‖Σ‖. Finally, take r = C
√
n to obtain

∥∥∥Σ̂−Σ
∥∥∥ ≤ 2C

√
n

T
‖Σ‖ ≡ C ′

√
n

T
‖Σ‖,

with probability at least 1− 3e−cC
2n ≥ 1− 3e−n for C large enough.
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