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Abstract

In this note we derive a lower bound for the regret in the adversarial multi-armed bandit

problem with expert advice, showing that the regret is Ω

(√
KT lnN

lnK

)
, where K is the

number of arms, T is the number of game rounds, and N is the number of experts. The√
lnN factor in the lower bound solves a problem that was open since the work of Auer

et al. (2002) and posed explicitly in Stoltz (2005).

1. Introduction

The adversarial multi-armed bandit problem with expert advice, introduced in Auer et al.
(2002), is one of the fundamental models in online learning. It combines prediction with
expert advice (Vovk, 1990; Littlestone and Warmuth, 1994) with the limited feedback frame-
work of multi-armed bandits (Auer et al., 2002). In this model, a repeated game is played
between a decision maker and an adversary. At every round of the game, the decision maker
(or forecaster) has a selection of K possible actions (the so-called “arms”) and access to
the “advice” of N “experts”, where the “experts” can be seen as (potentially randomized)
algorithms for action selection. The decision maker selects one action and, simultaneously,
the adversary assigns a (bounded) loss to each arm. The forecaster suffers the loss assigned
to the selected arm and each “expert” suffers the loss of the arm of its choice. The loss
of the arm selected by the forecaster is revealed to the forecaster, but the losses of other
arms remain unobserved. (Note that this implies that the forecaster does not observe the
losses of experts which did not select the same arm as the forecaster.) The performance
of the forecaster is measured by the regret, which is defined as the difference between the
cumulative loss of the forecaster and that of the best expert in hindsight.

Auer et al. (2002) proposed a randomized algorithm (EXP4) for the adversarial multi-
armed bandit problem with expert advice and showed that in expectation it achieves a

regret of order O
(√

KT lnN
)

after T rounds. It was also shown that with a slight modi-

fication of the algorithm the same order of regret can be guaranteed with high probability
(Beygelzimer et al., 2011). The algorithm and its optimized modifications have been exten-
sively applied to advertizing and personalized recommendations (Beygelzimer et al., 2011;
Agarwal et al., 2014). While several improvements of the algorithm and the regret bound
have been proposed for special cases (McMahan and Streeter, 2009; Seldin et al., 2011), in
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the general (worst case) scenario the regret guarantee of EXP4 remains the best known to
date.

On the side of lower bounds, a well-known lower bound for the problem of prediction

with expert advice under full information is Ω
(√

T lnN
)

(Cesa-Bianchi et al., 1997) and a

standard lower bound for the expected regret in adversarial multi-armed bandit problems

(without expert advice) is Ω
(√

KT
)

(Auer et al., 2002). Both lower bounds are matched up

to constants by upper bounds (Vovk, 1990; Littlestone and Warmuth, 1994; Audibert and
Bubeck, 2010; Bubeck and Cesa-Bianchi, 2012). Since multi-armed bandits with expert
advice generalize both problems, the lower bounds for the two problems apply to them

and, therefore, the expected regret is at least Ω
(

max
{√

T lnN,
√
KT

})
. However, the

necessity of the product
√
K lnN in the lower bound (that would match the upper bound)

has remained an open question since the model was introduced by Auer et al..

We answer this question affirmatively, showing that the regret is at least Ω

(√
KT lnN

lnK

)
.

The lower bound is proved by constructing several independent instances of the multi-armed
bandit game and linking them through expert advice. Note that for N = K multi-armed
bandit with expert advice can be reduced to a multi-armed bandit (by considering experts
as arms) and that in this case the new regret lower bound matches the lower and upper
bounds for multi-armed bandits. Therefore, we conjecture that the lower bound has the

right asymptotic regret rate for the problem and that the
√

1
lnK factor in the lower bound

cannot be improved.

2. Problem Setting

For our derivation of the lower bound it is sufficient to consider deterministic experts and
in order to keep things simple we consider a problem setting with deterministic experts.
For discussion of alternative versions of the model we refer the reader to Cesa-Bianchi and
Lugosi (2006); Bubeck and Cesa-Bianchi (2012). Note that since deterministic experts are a
special case of randomized experts the lower bound also holds for the more general setting.

Let K,N, T ≥ 2 be positive integers denoting the number of arms, number of ex-
perts, and the length of the game, respectively. At each round t = 1, . . . , T , each ex-
pert h ∈ {1, . . . , N} selects an arm eh,t ∈ {1, . . . ,K}. Upon observing the advice vector
(e1,t, . . . , eN,t), the forecaster selects an arm At in a possibly randomized manner. We con-
sider the so-called oblivious adversary model in which the adversary cannot react to the
choices of the forecaster. Formally, the losses xat for t ∈ {1, . . . , T} and a ∈ {1, . . . ,K} are
arbitrary and fixed before the game starts. For the derivation of a lower bound we assume
without loss of generality that the losses are binary, xat ∈ {0, 1}.

The cumulative loss of the forecaster after T rounds is
∑T

t=1 x
At
t and the regret of the

forecaster after T rounds is the difference between its cumulative loss and the cumulative
loss of the best expert in hindsight, that is,

∑T
t=1 x

At
t −minh∈{1,...,N}

∑T
t=1 x

eh,t
t . Note that

the regret is a random variable due to the randomization of the forecaster. We study the

2
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expected regret E
[∑T

t=1 x
At
t

]
−minh∈{1,...,N}

∑T
t=1 x

eh,t
t . The minimax regret is

inf
A

sup
x,e

(
E

[
T∑
t=1

xAt
t

]
− min

h∈{1,...,N}

T∑
t=1

x
eh,t
t

)
,

where the supremum is taken over all possible loss assignments x = {xat }t∈{1,...,T},a∈{1,...,K} ∈
{0, 1}KT and expert advice e = {eh,t}h∈{1,...,N},t∈{1,...,T} ∈ {1, . . . ,K}

NT and the infimum
is over all randomized forecasters.

As it is usual in proving lower bounds for the minimax regret, the first steps are

inf
A

sup
x,e

(
E

[
T∑
t=1

xAt
t

]
− min

h∈{1,...,N}

T∑
t=1

x
eh,t
t

)

≥ inf
A

sup
e

E

[
T∑
t=1

XAt
t − min

h∈{1,...,N}

T∑
t=1

X
eh,t
t

]
(where Xa

t -s are random loss assignments and the expectation is w.r.t Xa
t -s and At-s)

≥ inf
A

sup
e

(
E

[
T∑
t=1

XAt
t

]
− min

h∈{1,...,N}
E

[
T∑
t=1

X
eh,t
t

])
.

The right-hand side is sometimes called the pseudo regret.

3. Main Result

The main result of the paper is the following theorem.

Theorem 1 Assume that N = KM for an integer M and that T is a multiple of M .
Assume that T/M > K/(4 ln(4/3)). Then there exists a distribution for loss assignments,
such that the pseudo regret satisfies

inf
A

sup
e

(
E

[
T∑
t=1

XAt
t

]
− min

h∈{1,...,N}
E

[
T∑
t=1

X
eh,t
t

])
≥ c

√
KT

lnN

lnK
,

where inf is an infimum over all possible forecasting strategies, sup is a supremum over
all possible expert advice sequences, the expectations are with respect to both the random

generation of losses and the internal randomization of the forecaster, and c =
√
2−1√

32 ln(4/3)
>

0.13.

4. Proof of the Main Result

The proof is based on the following lower bound for multi-armed bandits due to Auer
et al. (2002, Theorem 5.1). The formulation of the theorem is slightly modified based on
Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012).

3
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Theorem 2 (Auer et al. 2002) Assume that T > K/(4 ln(4/3)). Then there exists a
distribution for loss assignments1, such that

inf
A

(
E

[
T∑
t=1

XAt
t

]
− min

a∈{1,...,K}
E

[
T∑
t=1

Xa
t

])
≥ c
√
KT ,

where inf is an infimum over all forecasting strategies, the expectations are with respect to
both the random generation of losses and the internal randomization of the forecaster, and
c is defined in Theorem 1.

Proof of Theorem 1. Split the time interval 1, . . . , T into M non-overlapping subin-
tervals of length T/M . Let m ∈ {1, . . . ,M} index the subintervals. For each subinterval
design a multi-armed bandit game according to the construction in the proof of Theorem 2,
independently of other intervals. Design KM sequences of expert advice, such that for
every possible sequence of arms a1, . . . , aM ∈ {1, . . . ,K}M there is an expert h that rec-
ommends the arms from the sequence throughout the corresponding subintervals. Due to
independence of subintervals, for each subinterval by Theorem 2 we have

inf
A

E

T/M∑
s=1

XAs
s

− min
a∈{1,...,K}

E

T/M∑
s=1

Xa
s

 ≥ c
√

KT/M ,

where s indexes the game rounds within a subinterval. Since by our construction there is
an expert that picks the best action within each subinterval, we obtain:

inf
A

sup
e

(
E

[
T∑
t=1

XAt
t

]
− min

h∈{1,...,N}
E

[
T∑
t=1

X
eh,t
t

])

≥
M∑

m=1

inf
A

E

 m(T/M)∑
t=(m−1)(T/M)+1

XAt
t

− min
a∈{1,...,K}

E

 m(T/M)∑
t=(m−1)(T/M)+1

Xa
t


≥ cM

√
KT/M

= c
√
KTM .

By our construction, we have N = KM or, equivalently, M = lnN
lnK .

5. Discussion

We presented an Ω

(√
KT lnN

lnK

)
lower bound for the adversarial multi-armed bandit prob-

lem with expert advice. Our result leads to a new open question of whether the multiplica-

tive gap of
√

1
lnK between the new lower bound and the upper bound can be closed. We

1. See Auer et al. (2002); Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012) for an explicit
construction.
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conjecture that the presented lower bound has the right asymptotic rate and that closing
the gap will require more advanced tools for the upper bound.
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